Gibsonton Drive From Fern Hill Drive to US 301 Project Development & Environment (PD&E) Study

Noise Study Report

Work Program Item Segment No. 450438-1 ETDM Project No. 14493 Hillsborough County, Florida

Florida Department of Transportation District Seven

In Coordination with:

January 2024

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by the Florida Department of Transportation (FDOT) pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated May 26, 2022, and executed by the Federal Highway Administration and FDOT.

Gibsonton Drive From Fern Hill Drive to US 301 Project Development & Environment (PD&E) Study

Noise Study Report

Work Program Item Segment No. 450438-1 ETDM Project No. 14493 Hillsborough County, Florida

Prepared for:

Florida Department of Transportation District Seven

Prepared by: American Consulting Engineers of Florida, LLC 2818 Cypress Ridge Boulevard, Suite 200 Wesley Chapel, FL 33544 In Coordination with:

January 2024

EXECUTIVE SUMMARY

The Florida Department of Transportation (FDOT) District Seven, in coordination with Hillsborough County, is conducting a Project Development and Environment (PD&E) study along Gibsonton Drive from Fern Hill Drive to U.S. Highway 301 (US 301), in Hillsborough County. The study evaluates widening the existing 4-lane divided facility in this section of Gibsonton Drive and includes pedestrian and bicycle accommodations. The study also evaluates issues related to traffic operations, safety, access management, and freight movements. The proposed improvements will include construction of stormwater management facility (SMF) and floodplain compensation (FPC) sites. The proposed improvements in this study will connect to improvements at the I-75/Gibsonton Drive interchange as well as improvements at Gibsonton Drive/Fern Hill Drive intersection as proposed under other projects.

This highway traffic noise impact analysis was performed as part of the PD&E Study for the project as required by the FDOT's PD&E Manual, and in accordance with the Title 23, Part 772 of the Code of Federal Regulations (23 CFR 772). This Noise Study Report (NSR) presents the results of the noise analysis. This NSR utilized the conceptual plans for the proposed project. The objectives of the NSR are to identify land uses within the project corridor for which there are Noise Abatement Criteria (NAC); to predict and evaluate future traffic noise levels at the receptors with and without the improvements; and to evaluate the need for, and effectiveness of, noise abatement measures. Additional objectives include the identification of sites for potential construction noise and vibration impacts and the identification of traffic noise impact areas for future compatible land use planning adjacent to the corridor.

The prediction of future traffic noise levels with the proposed roadway improvements was performed using FHWA's latest Traffic Noise Model (TNM – Version 2.5). A total of 86 noise receptors were modeled, representing 80 residences, two religious facilities, three medical facilities and the Alafia Scrub Nature Preserve. The 80 residential sites were modeled as Activity Category B. The Alafia Scrub Nature Preserve was modeled as Activity Category C. The religious and medical facilities did not have an outdoor use and were modeled as Activity Category D for interior use. Twelve noise-sensitive receptors were predicted to approach, meet, or exceed the NAC in the Build scenario, including eleven residences and the Alafia Scrub Nature Preserve. None of the sites were predicted to experience a substantial increase (15.0 decibels on the A-weighted scale [dB(A)] or more) in traffic noise as a result of the project.

There are four single-family residences (B12, B47, B50 and B56) that were impacted but are single or isolated sites. Per the FDOT *PD&E Manual, Part 2, Chapter 18,* the number of impacted receptors required to achieve a 5 dB(A) reduction or greater in order for a noise barrier to be considered feasible will be two or greater. Therefore, noise barriers would not meet the feasibility requirement to provide abatement for at least two impacted sites and noise barriers were not analyzed for these impacted receptors.

Barrier 1 was evaluated for the Alafia Scrub Nature Preserve. The FDOT's research publication, *A Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations,* was used for Barrier 1 to determine if a noise barrier could be considered a potential abatement measure. Alafia Scrub Nature Preserve was determined to not receive the amount of use required for the cost to stay below the FDOT's cost reasonable limit of \$995,935 per person-hour per square foot (person-hr/ft²).

Barrier 2 was evaluated for the common noise environment (CNE) involving seven impacted residences north of Gibsonton Drive and along Oakridge Avenue and Pineridge Avenue (B62, B65, B66, B70, B71, B75, and B76). Receptor B75 is part of this CNE; however, it was not included in the barrier analysis since it is planned to be relocated and not considered for noise abatement. Barrier 2 could provide a reduction in noise levels of 7 dB(A) for one noise-sensitive receptor only for all heights evaluated. Since a minimum of two impacted sites must achieve a 5 dB(A) reduction or greater in order for a noise barrier to be considered feasible, Barrier 2 is not a feasible option for noise abatement. Further, Barrier 2 is not cost reasonable at any height considered.

Based on the noise analyses performed to date, there are no feasible and reasonable solutions available to mitigate the noise impacts at the locations identified in **Table 3-2** and shown in **Appendix C**.

TABLE OF CONTENTS

SECTION	1	NTRODUCTION1-	-1
1.1	Proj	ect Description1-	-1
1.2	Proj	ect Purpose and Need1-	-1
	1.2.2	1-Purpose1-	-1
	1.2.2	2 Project Status1-	-3
	1.2.3	B Roadway Capacity1-	-3
	1.2.4		
1.3		ing Facility and Proposed Improvements1-	
	1.3.1		
	1.3.2		
1.4	Repo	ort Purpose1-	-5
SECTION		METHODOLOGY2-	
2.1	Nois	e metrics2-	-1
2.2	Traf	ic Data2-	-1
2.3	Nois	e Sensitive Receptors and Noise Abatement Criteria2-	-2
2.4	Nois	e Abatement Measures2-	
	2.4.2	0	
	2.4.2		
	2.4.3		
	2.4.4	Noise Barriers2-	-5
SECTION	3 -	IRAFFIC NOISE ANALYSIS	-1
3.1		Jated Receptors	
3.2		el Validation	
3.3	Pred	icted Traffic Noise Levels	-3
3.4	Nois	e Barrier Analysis	-6
SECTION	4 (CONCLUSIONS	-1
SECTION	5 1	AND-USE CONTROLS	-1
SECTION	6 (CONSTRUCTION NOISE AND VIBRATIONS6-	-1
SECTION	7 (COMMUNITY COORDINATION7-	-2
SECTION	8	REFERENCES	-1

List of Figures

Figure 1-1	Project Location Map	1-2
-	Gibsonton Drive – Existing Typical Section	
Figure 1-3	Gibsonton Drive – Proposed Typical Section	1-5

List of Tables

Table 1-1	Gibsonton Drive Number of Crashes for 2018-2022	1-3
Table 1-2	Crash Rates for Segments	1-4
Table 1-3	Crash Rates for Intersections	1-4
Table 2-1	Noise Abatement Criteria	2-3
Table 2-2	Typical Noise Levels	2-4
Table 3-1	TNM Validation Results	3-2
Table 3-2	Summary of Traffic Noise Analyses	3-3
Table 3-3	Barrier Analysis – Barrier 1	3-7
Table 3-4	Barrier Analysis – Barrier 2	3-8
Table 5-1	Design Year (2045) Noise Impact Contour Distances	5-1

Appendices

APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E APPENDIX F	Concept Plans Noise Model Traffic Data Noise-Sensitive Receptor Sites Noise Model Validation Data TNM Data Barrier Analysis	
		3

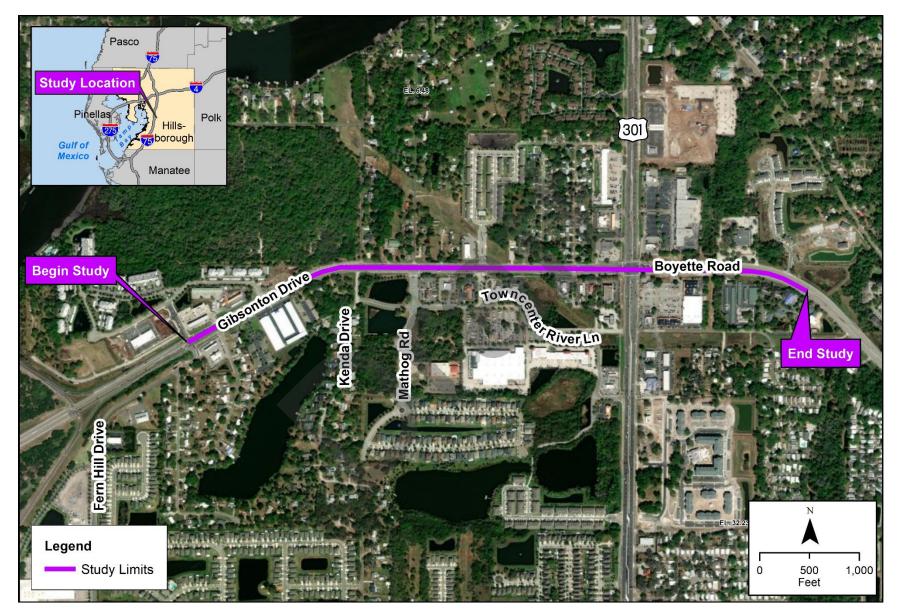
Acronyms

AADT	Annual Average Daily Traffic
C3C	Suburban Commercial (Context Classification)
CFR	Code of Federal Regulations
CNE	Common Noise Environment
dB(A)	Decibels (dB) on the A-weighted scale
ETDM	Efficient Transportation Decision Making
ETAT	Environmental Technical Advisory Team
FDOT	Florida Department of Transportation
FHWA	Federal Highway Administration
FPC	Floodplain Compensation Site
FS	Florida Statute
Ft	Feet
FY	Fiscal Year
hr	Hour
Leq(h)	Hourly Equivalent Sound Level
LOS	Level of Service
LRTP	Long Range Transportation Plan
mph	Miles per Hour
NAC	Noise Abatement Criteria
NEPA	National Environmental Policy Act
NSR	Noise Study Report
OEM	Office of Environmental Management
PD&E	Project Development and Environment
ROW	Right-of-Way
SMF	Stormwater Management Facility
TBRPM	Tampa Bay Regional Planning Model
TIP	Transportation Improvement Program
TNM	Traffic Noise Model
ТРО	Transportation Planning Organization
US 301	U.S. Highway 301
VPD	Vehicles per Day

SECTION 1 INTRODUCTION

The objective of the Project Development and Environment (PD&E) study is to assist the Florida Department of Transportation's (FDOT) Office of Environmental Management (OEM) in reaching a decision on the type, location, and conceptual design of the proposed improvements for the widening of Gibsonton Drive, including stormwater management facility (SMF) and floodplain compensation (FPC) sites. This study documents the need for the improvements as well as the procedures utilized to develop and evaluate various improvements, including elements such as proposed typical sections, preliminary horizontal alignments, and intersection enhancements.

1.1 PROJECT DESCRIPTION


The project consists of widening Gibsonton Drive from Fern Hill Drive to US 301 in Hillsborough County, a distance of approximately 0.95 miles. Improvements will also include a wide sidewalk to accommodate bicycles and pedestrians. The project includes the evaluation of stormwater management facilities (SMF) and floodplain compensation (FPC) sites. The project traverses the unincorporated census designated place of Riverview and provides access to I-75 for the communities of Riverview, Boyette, Fish Hawk and Lithia. Within the project limits, Gibsonton Drive is a four-lane, divided roadway with paved shoulders and 5-foot (ft) sidewalks along both sides of the road. There are some gaps in the sidewalk on the south side (eastbound direction) of the road. Gibsonton Drive is functionally classified by Hillsborough County as an arterial with an existing posted speed limit of 45 miles per hour (mph). A project location map is provided in **Figure 1-1**.

This project was screened through the FDOT's Efficient Transportation Decision Making (ETDM) process as ETDM Project No. 14493. The ETDM Programming Screen Summary Report was published on October 27, 2022, containing comments from the Environmental Technical Advisory Team (ETAT) on the project's effects on various natural, physical, and social resources. A Type 2 Categorical Exclusion is the class of action for this PD&E study.

1.2 PROJECT PURPOSE AND NEED

1.2.1 Purpose

The purpose of this project is to address future roadway capacity issues as well as improve safety conditions on Gibsonton Drive, which is an important east-west connection between I-75 and US 301.

1.2.2 Project Status

This project is listed as a candidate for funding in the Hillsborough Transportation Planning Organization (TPO) FY 2023/2024-2027/2028 Transportation Improvement Program (TIP). Funding for the PD&E study has been requested and an application for Federal funding has been submitted. The project is also listed in the Cost Feasible Plan of the Hillsborough County TPO's 2045 Long Range Transportation Plan (LRTP).

1.2.3 Roadway Capacity

Within the project limits, Gibsonton Drive operates at Level of Service (LOS) F and fails to meet target LOS D, based on 2022 traffic counts. The Gibsonton Drive segment west of Fern Hill Drive is currently not six lanes; however, with the addition of the I-75/Gibsonton Drive interchange improvements, Gibsonton Drive will be widened to six lanes between I-75 and Fern Hill Drive. The segment directly to the east of the project limits is six lanes, thus creating a bottleneck. This segment is projected to continue to operate deficiently in the year 2045 at LOS F with no capacity improvements. This analysis is based on the Generalized Service Volume Tables from the FDOT 2023 Multimodal Quality/Level of Service Handbook for a context classification suburban commercial (C3C) facility and utilizes traffic forecasts from the Tampa Bay Regional Planning Model (TBRPM).

1.2.4 Safety

Crash data was collected for the years 2018 - 2022. Crash totals were obtained for a five-year period and are summarized in **Table 1-1**. This segment suffered a high number of crashes considering its short length (less than one (1) mile). This is reflected in the high crash rates summarized in **Table 1-2** and **Table 1-3**. The calculated crash rates for the segments and intersections are higher than the statewide average rate for similar state facilities except at a short segment between Mathog Road and the Park Place Avenue/Alafia Trace Boulevard intersection, and at the Park Place Avenue/Alafia Trace Boulevard intersection.

Table 1-1	Gibsonton Drive Number of Crashes for 2018-2022

Limits	2018	2019	2020*	2021	2022	Total
Gibsonton Drive from Fern Hill Drive to US 301		239	153	136	162	910

Source: Signal 4 Analytics

*Crashes in 2020 are substantially less than those in 2019 due to COVID

Segr		Length	2022	Crash	Statewide	Above		
From	То	Crashes	(mi)	AADT	Rate (MVMT)	Average	Statewide Average?	
Fern Hill Dr	Mathog Rd	95	0.33	45,800	3.444	1.747	Yes	
Mathog Rd	Park Place Ave	4	0.03	44,000	1.660	1.747	No	
Park Place Ave	US 301	27	0.14	45,600	2.317	1.747	Yes	

Note: Crashes reported to occur within intersection turn lanes were extracted out of the segments.

Intersection	Crashes	Entering Volume	Crash Rate (MEV)	Statewide Average	Above Statewide Average?
Fern Hill Dr	159	57,750	1.509	0.526	Yes
Mathog Rd	68	45,200	0.824	0.526	Yes
Park Place Avenue/Alafia Trace Blvd	3	47,500	0.035	0.526	No
US 301	554	99,800	3.042	0.744	Yes

Table 1-3 C	Crash Rates for	Intersections
-------------	-----------------	---------------

1.3 EXISTING FACILITY AND PROPOSED IMPROVEMENTS

1.3.1 Existing Facility

Gibsonton Drive is owned and maintained by Hillsborough County. Within the project area, Gibsonton Drive is currently a four-lane divided facility functionally classified as an arterial roadway with a posted speed limit of 45 mph. The roadway has two 12 foot (ft) lanes in each direction, a 22-ft median and turn lanes at many locations along the corridor. The shoulders are approximately 10-ft wide (4-ft paved) on the south side and 6.5-ft minimum width (4-ft paved) on the north side throughout the corridor with no dedicated bicycle lanes. There is a 5-ft sidewalk on both sides of the road with a few gaps in the sidewalk on the south side, west of Kendra Drive. Approximately 230 linear feet of the sidewalk on the south side, east of Kendra Drive, is a wooden boardwalk. The existing right of way (ROW) varies along the corridor between 125 ft and 150 ft side. The existing typical section is provided as **Figure 1-2**. There is one existing SMF east of US 301, but no SMF between Fern Hill Drive and US 301 and no existing FPC sites within the project corridor.

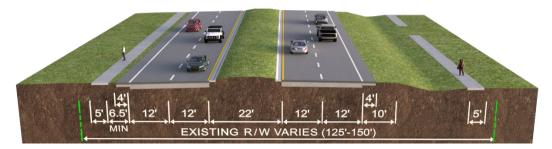


Figure 1-2 Gibsonton Drive – Existing Typical Section

1.3.2 Proposed Improvements

The proposed typical section shows widening Gibsonton Drive to a six-lane divided urban facility with a 22-ft raised median. There will be two 11-ft travel lanes and one 12-ft outside travel lane in each direction with curb and gutter, and 10-ft wide sidewalks. The proposed typical section is provided as **Figure 1-3**. Additional ROW will be required along the north side of Gibsonton Drive (0 to 30 ft in width) to accommodate the widening and along the south side of Gibsonton Drive (0 to 7 ft in width) in advance of the US 301 intersection for intersection improvements. One off-site SMF and one off-site FPC are proposed. Additional ROW will be required for off-site SMF and FPC sites.

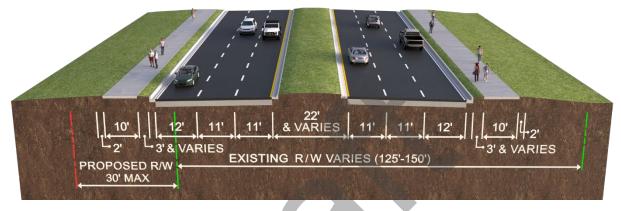


Figure 1-3 Gibsonton Drive – Proposed Typical Section

1.4 REPORT PURPOSE

This Noise Study Report (NSR) presents the assumptions, data, procedures, and results of the highway traffic noise analysis that was conducted to evaluate the proposed improvements to Gibsonton Drive. The objectives of the NSR are to identify land uses within the project corridor for which there are Noise Abatement Criteria (NAC); to predict and evaluate future traffic noise levels at the receptors with and without the improvements; and to evaluate the need for, and effectiveness of, noise abatement measures. Additional objectives include the identification of sites for potential construction noise and vibration impacts and the identification of traffic noise impact areas for future compatible land use planning adjacent to the corridor. This report was performed in accordance with Title 23 Code of Federal Regulations Part 772 (23 CFR 772), *Procedures for Abatement of Highway Traffic Noise and Construction Noise* (effective July 13, 2011), using methodology established by the FDOT in the *PD&E Manual, Part 2, Chapter 18*.

SECTION 2 METHODOLOGY

This traffic noise analysis was prepared in accordance with all applicable guidelines as stated within both Title 23, Part 772 of the Code of Federal Regulations (23 CFR 772) and the FDOT PD&E Manual, Part 2, Chapter 18 (FDOT's Noise Policy). The analysis was performed using the Federal Highway Administration's (FHWA) Traffic Noise Model (TNM), version 2.5. Use of the TNM is required when evaluating the potential for traffic noise impacts during the design year of roadway improvement projects for which the regulations, policies and guidelines within 23 CFR 772 and the PD&E Manual are applicable. This NSR utilized the conceptual plans for the proposed project (**Appendix A**).

To identify potential noise sensitive receptors, land use reviews were conducted for the project area that consisted of a field review, a review of available land use data and other available resources. For the purpose of the traffic noise analysis, the land use review and building permit review were conducted in August 2023.

For properties with uses other than residential, the highway traffic noise analysis methodologies are described in the FDOT's *A Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations*. This methodology was utilized for the Alafia Scrub Nature Preserve.

2.1 NOISE METRICS

The noise levels presented in this report are expressed in decibels (dB) on the A-weighted scale [dB(A)]. This scale most closely approximates the response characteristics of the human ear to traffic noise and is defined as the level equivalent steady-state sound level which in a stated period of time contains the same acoustic energy as the time-varying sound level during the same time period. All noise levels are reported as equivalent level [Leq(h)] values, which theoretically contain the same amount of acoustic energy as an actual time-varying A-weighted sound level over a period of one hour.

2.2 TRAFFIC DATA

Noise levels are low when traffic volumes are low and operating conditions are good (Level of Service [LOS] A or B) and when traffic is so congested that movement is slow (LOS D, E or F). Generally, the maximum hourly noise level occurs between these two conditions (i.e. LOS C). The 2022 existing and future forecast year 2045 traffic data used in TNM for this project are presented in **Appendix B**. For traffic inputs into the model, the lesser of the project demand volumes or LOS "C" volumes were utilized and varied along the corridor. This methodology produces the worst-case traffic noise conditions.

2.3 NOISE SENSITIVE RECEPTORS AND NOISE ABATEMENT CRITERIA

Noise-sensitive receptors are defined as a discrete or representative location of a noise sensitive area(s) for any of the land use categories. To evaluate traffic noise, the FHWA established Noise Abatement Criteria (NAC). As shown in **Table 2-1**, the NAC varies according to a property's activity category. When predicted noise levels approach, meet or exceed the NAC or, when predicted noise levels increase substantially, the FHWA requires that noise abatement measures be considered. The FDOT defines approach to mean within 1.0 dB(A) of the FHWA NAC and considers that a substantial increase will occur if traffic noise levels are predicted to increase by 15.0 or more dB(A) over the existing noise levels as a direct result of a transportation improvement project. For comparative purposes, typical noise levels for common indoor and outdoor activities are provided in **Table 2-2**.

Activity	Activity	Leq(h)1	Evaluation	Description of Activity Category		
Category	FHWA	FDOT	Location			
А	57	56	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.		
B ²	67	66	Exterior	Residential		
C ²	67	66	Exterior	Active sports areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreational areas, Section 4(f) sites, schools, television studios, trails and trail crossings.		
D	52	51	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools and television studios.		
E ²	72	71	Exterior	Hotels, motels, offices, restaurants/bars and other developed lands, properties or activities not included in A-D or F.		
F			-	Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical) and warehousing.		
G				Undeveloped lands that are not permitted. hapter 18 of the FDOT's PD&E Manual (effective July 1, 2020).		

Sources: Table 1 of 23 CFR Part 772 and Figure 18-1 of Chapter 18 of the FDOT's PD&E Manual (effective July 1, 2020). ¹The Leq(h) activity criteria values are for impact determination only, and are not design standards for noise abatement measures.

²Includes undeveloped lands permitted for this activity category.

Note: FDOT defines that a substantial noise increase occurs when the existing noise level is predicted to be exceeded by 15 decibels or more as a result of the transportation improvement project. When this occurs, the requirement for abatement consideration will be followed.

Common Outdoor Activities	Noise Level dB(A)	Common Indoor Activities
	110	Rock band
Jet flyover at 1,000 feet		
	100	
Gas lawnmower at 3 feet		
	90	
Diesel truck at 50 feet at 50 mph		Food blender at 3 feet
	80	Garbage disposal at 3 feet
Noisy urban area daytime		
Gas lawnmower at 100 feet	70	Vacuum cleaner at 10 feet
Commercial area		Normal speech at 3 feet
Heavy traffic at 300 feet	60	
		Large business office
Quiet urban daytime	50	Dishwasher in next room
		Theater, large conference room
Quiet urban nighttime	40	(background)
Quiet suburban nighttime		
	30	Library
		Bedroom at night, concert hall
Quiet rural nighttime		(background)
	20	
		Broadcast/recording studio
	10	
	0	

Table 2-2Typical Noise Levels

Source: California Dept. of Transportation Technical Noise Supplement, Sept. 2013, Page 2-20.

2.4 NOISE ABATEMENT MEASURES

When traffic noise impacts are predicted, noise abatement measures are considered for the impacted properties and the feasibility and reasonableness of providing an abatement measure are considered. Feasibility factors are related to the acoustical and engineering properties of an abatement measure while reasonableness factors relate to the social, economic and environmental properties of a measure. The following subsections of this NSR present and discuss four potential methods of abating traffic noise impacts.

2.4.1 Traffic Management

Traffic management measures that limit motor vehicle speeds and reduce volumes can be effective noise mitigation measures. However, these measures can also negate a project's ability to accommodate forecast traffic volumes.

2.4.2 Alignment Modifications

Modifying the horizontal and/or vertical alignment of a roadway can be an effective traffic noise mitigation measure. When the horizontal alignment is shifted (i.e., moved) away from a noise sensitive property or when the vertical alignment is shifted below (i.e., placing the roadway below the elevation of a noise sensitive land use) or above a noise sensitive property, traffic noise levels have the potential to be reduced.

2.4.3 Buffer Zones

Providing a buffer between a roadway and noise sensitive land uses is an abatement measure that can minimize/eliminate noise impacts. To abate traffic noise at an existing land use for which there are NAC, the property would be acquired to create a buffer zone. Buffer zones can also be used to eliminate the potential for new noise sensitive land uses to be impacted by traffic noise. For this purpose, and to encourage use of this abatement measure through local land use planning, noise contours have been developed and are further discussed in **Section 5.0** of this NSR.

2.4.4 Noise Barriers

Noise barriers have the potential to reduce traffic noise levels by blocking the sound path between the motor vehicles on the roadway (the source) and the noise sensitive land uses adjacent to the roadway. While other noise abatement measures were considered, noise barriers were determined to be the only viable abatement measure to reduce traffic noise at existing noise-sensitive receptors.

In order to effectively reduce traffic noise, a noise barrier must be relatively long, continuous (without intermittent openings) and of sufficient height. Noise barriers must meet the feasibility and reasonableness factors established by the FDOT. For a noise barrier to be considered a potential abatement measure, the barrier must meet the following FDOT criteria:

- Minimum Noise Reduction Requirements A barrier must provide at least a 5 dB(A) reduction in traffic noise for two or more impacted noise sensitive receptors and also meet the FDOT's noise reduction design goal, which includes providing at least a 7 dB(A) reduction for at least one impacted receptor. Receptors are discrete representative locations on a property that has noise sensitive land uses for which there are NAC (see Table 2-1).
- Cost Effectiveness Criteria The current estimated cost to construct noise barriers (i.e., materials and labor) is \$30 per square foot. As stipulated in FDOT's Noise Policy, a barrier should not cost more than \$42,000 per benefited noise sensitive receptor (a benefited receptor is a receptor that receives at least a 5 dB(A) reduction in noise from a mitigation

measure). For special land uses (e.g., the outdoor area of a restaurant/bar), the cost should not be more than \$995,935 per person-hour per square foot (dollars/person-ft²).

Other factors considered when evaluating noise barriers as a potential noise abatement measure address both the feasibility of the barriers (given site-specific details, can a barrier actually be constructed) and the reasonableness of the barriers. Feasibility factors that relate to noise barriers include driver/pedestrian sight distance (safety), ingress and egress requirements to and from affected properties, ROW requirements including access rights and easements for construction and/or maintenance, impacts on existing/planned utilities, and drainage. The viewpoint of the impacted property owners (and renters if applicable) who may, or may not, desire a noise barrier, is also a factor that is considered when evaluating noise barriers as an abatement measure.

The TNM accounts for the shielding effect of a noise barrier, the diffraction of sound over a noise barrier, and the effects of the ground between a barrier and a receptor (i.e. sound absorption). The net effect of the barrier shielding is referred to as insertion loss (i.e. insertion loss is the difference in sound level before and after the installation of the barrier).

SECTION 3 TRAFFIC NOISE ANALYSIS

3.1 EVALUATED RECEPTORS

A total of 86 noise receptors were modeled, representing 80 residences, two religious facilities, three medical facilities and the Alafia Scrub Nature Preserve. The location of each of the noise-sensitive receptors is shown in **Appendix C**. The residences modeled include single-family and multiple-family residences. The 80 residential sites were modeled as Activity Category B. The Alafia Scrub Nature Preserve was modeled as Activity Category C. The religious and medical facilities did not have an outdoor use and were modeled as Activity Category D for interior use. All other sites are identified as Activity Category F or G, and were not modeled since FHWA does not identify noise abatement levels for these sites. Noise abatement measures were considered if the predicted traffic noise level was 66.0 dB(A) or more for Activity Categories B and C or if a substantial increase occurs. For Activity Category D for interior use, a conservative approach of a 20.0 dB(A) reduction (based on a light frame building type with closed windows) of the exterior noise levels was used in the analysis. Noise abatement measures were considered traffic noise level was 51.0 dB(A) or more or if a substantial increase occurs for Activity Category D.

All receptor heights were set at 5 feet, with an additional 10 feet added for each additional building story modeled. Receptor elevations and other elevations along the study area were obtained utilizing topographic survey results, Google Earth Pro and other available similar resources. Elevation data for the roadway was based on previous survey data, as well as use of Google Earth Pro. The use of the elevation data, proposed concept plans, and other existing and proposed project factors are included in TNM in order to predict noise levels at receptor locations. The noise levels are discussed in the following section of this NSR.

3.2 MODEL VALIDATION

As previously stated, future noise levels with the proposed improvements were modeled using the TNM Version 2.5. The computer model was validated to validate the TNM input values and verify that the model reasonably predicts the existing traffic noise based on the current conditions. Traffic and meteorological data, including traffic volumes, traffic mix vehicle speeds, background noise and atmospheric conditions were recorded during each measurement period.

The field measurements for the Gibsonton Drive noise evaluation were conducted in accordance with the FHWA's *Measurement of Highway Related Noise*. Each field measurement was obtained using a Larson Davis SoundTrack LXT2 Type 2 Sound Level Meter. The meter was calibrated before and after each monitoring period with a Larson Davis CAL 150 Type 2 Sound Level Calibrator.

The measured field data were used as input for the TNM to determine if, given the topography and actual site conditions of the area, the computer model could re-create the measured noise levels with the existing roadway. Following FDOT guidelines, a noise prediction model is considered valid for the use of predicting traffic noise levels if the measured and predicted noise levels are within a tolerance

standard of 3 dB(A). Field measurements were taken on August 4, 2023 on the south side of Gibsonton Drive between Park Place Avenue and Kenda Drive (at approximate station 110+00). The sound level meter was placed approximately 15 feet from the edge of pavement at a height of five feet above ground.

The location at which the measurements were taken are depicted on aerials included in **Appendix C**. Three sets of 10-minute measurements were taken for both directions of traffic. Data collected in the field is provided in **Appendix D**.

Table 3-1 presents the field measurements and the computer validation results. As shown, the computer model predicted noise levels are within 3 dB(A) of the field measured noise levels in all instances. Therefore, the ability of the model to reasonably predict noise levels for the project was confirmed.

Validation Location	Measurement Period (time of day- AM)	Modeled dB(A)	Measured dB(A)	Difference dB(A) [Measured – Modeled]	Validation Achieved?
Validation Site -	10:14 - 10:24	73.3	76.2	2.9	Yes
Between Park Place Ave and	10:39 - 10:49	73.2	75.3	2.1	Yes
Kenda Drive	10:53 – 11:03	72.5	75.4	2.9	Yes

Table 3-1	TNM Validation Results

3.3 PREDICTED TRAFFIC NOISE LEVELS

Table 3-2 presents the results of the traffic noise analysis for the proposed improvements. As shown, the results of the analysis indicate that existing (2022) exterior noise levels are predicted to range from 42.0 to 72.3 dB(A), the No-Build (2045) exterior traffic noise levels are predicted to range from 42.0 to 72.3 dB(A), and the Build (2045) exterior traffic noise levels are predicted to range from 45.6 to 75.1 dB(A). With the Build Alternative, twelve of the evaluated receptors are predicted to be impacted by traffic noise that would exceed the NAC. Impacted receptors include eleven residences and the Alafia Scrub Nature Preserve. Documentation in support of the analysis is provided in **Appendix E.**

Abatement measures must also be considered when a substantial increase in traffic noise would occur as a direct result of the transportation project. As previously stated, a substantial increase is defined as an increase of 15 dB(A), or more, above existing conditions. When compared to the 2022 existing condition, design year 2045 Build exterior traffic noise levels with the proposed improvements range from an increase of 1.1 dB(A) to 4.2 dB(A), as shown in **Table 3-2**. As such, none of the receptors were predicted to experience a substantial increase (15.0 dB(A) or more) in traffic noise as a result of the project.

Receptor ID*	# of Units	Existing (2022)	No-Build (2045)	Build (2045)	Difference between Build and Existing	Difference between Build and No-Build	Approaches, Meets or Exceeds NAC?
B1	1	58.7	58.7	60.4	1.7	0.0	No
B2	1	56.9	56.9	58.6	1.7	0.0	No
B3	1	55.3	55.3	56.7	1.4	0.0	No
B4	1	53.8	53.8	55.1	1.3	0.0	No
B5	1	58.6	58.6	60.7	2.1	0.0	No
B6	1	56.8	56.8	58.7	1.9	0.0	No
B7	1	55.0	55.1	56.7	1.7	0.1	No
B8	1	53.3	53.3	54.8	1.5	0.0	No
В9	1	60.3	60.3	62.5	2.2	0.0	No
B10	1	55.9	55.9	57.8	1.9	0.0	No
B11	1	53.8	53.8	55.6	1.8	0.0	No
B12	1	66.4	66.4	69.2	2.8	0.0	Yes
B13	1	63.3	63.3	65.8	2.5	0.0	No
B14	1	60.3	60.3	62.5	2.2	0.0	No
B15	1	57.8	57.8	59.8	2.0	0.0	No
B16	1	56.3	56.3	58.3	2.0	0.0	No
B17	1	54.3	54.4	56.4	2.1	0.1	No
B18	1	58.1	58.1	60.3	2.2	0.0	No

Table 3-2 Summary of Traffic Noise Analyses

Receptor ID*	# of Units	Existing (2022)	No-Build (2045)	Build (2045)	Difference between Build and Existing	Difference between Build and No-Build	Approaches, Meets or Exceeds NAC?
B19	1	61.2	61.2	63.1	1.9	0.0	No
B20	1	56.9	56.9	59.0	2.1	0.0	No
B21	1	60.1	60.1	62.1	2.0	0.0	No
B22	1	58.5	58.5	60.6	2.1	0.0	No
B23	1	61.6	61.6	63.5	1.9	0.0	No
B24	1	57.3	57.3	59.4	2.1	0.0	No
B25	1	60.5	60.5	62.5	2.0	0.0	No
B26	1	58.7	58.8	60.8	2.1	0.1	No
B27	1	61.8	61.8	63.7	1.9	0.0	No
B28	1	57.5	57.5	59.6	2.1	0.0	No
B29	1	60.7	60.7	62.7	2.0	0.0	No
B30	1	59.4	59.4	61.4	2.0	0.0	No
B31	1	62.4	62.4	64.3	1.9	0.0	No
B32	1	58.1	58.1	60.1	2.0	0.0	No
B33	1	61.2	61.2	63.2	2.0	0.0	No
B34	1	60.1	60.1	62.0	1.9	0.0	No
B35	1	63.1	63.1	65.0	1.9	0.0	No
B36	1	58.7	58.7	60.6	1.9	0.0	No
B37	1	61.8	61.8	63.7	1.9	0.0	No
B38	1	60.8	60.8	62.7	1.9	0.0	No
B39	1	63.6	63.6	65.5	1.9	0.0	No
B40	1	59.1	59.1	61.0	1.9	0.0	No
B41	1	62.3	62.3	64.1	1.8	0.0	No
B42	1	61.0	61.0	62.9	1.9	0.0	No
B43	1	63.9	63.9	65.7	1.8	0.0	No
B44	1	59.3	59.3	61.2	1.9	0.0	No
B45	1	62.4	62.4	64.3	1.9	0.0	No
B46	1	61.8	61.8	63.6	1.8	0.0	No
B47	1	64.5	64.5	66.4	1.9	0.0	Yes
B48	1	59.9	59.9	61.8	1.9	0.0	No
B49	1	63.0	63.0	64.9	1.9	0.0	No
B50 ^R	1	65.6	65.6	67.9	2.3	0.0	Yes
B51	1	57.0	57.0	59.2	2.2	0.0	No
B52	1	55.3	55.3	57.7	2.4	0.0	No
B53 ^R	1	63.3	63.3	65.9	2.6	0.0	No
B54	1	56.8	56.9	59.4	2.6	0.1	No
B55	1	54.9	54.9	57.5	2.6	0.0	No

					Difference	Difference	Approaches,
	# of	Existing	No-Build	Build	between Build and	between Build and	Meets or Exceeds
Receptor ID*	Units	(2022)	(2045)	(2045)	Existing	No-Build	NAC?
B56	1	68.6	68.6	71.9	3.3	0.0	Yes
B57	1	59.5	59.5	62.1	2.6	0.0	No
B58	1	61.6	61.6	65.3	3.7	0.0	No
B59	1	57.7	57.7	60.5	2.8	0.0	No
B60	1	58.0	58.0	60.9	2.9	0.0	No
B61	1	62.5	62.6	65.4	2.9	0.1	No
B62	1	69.9	70.0	73.2	3.3	0.1	Yes
B63	1	60.5	60.5	62.8	2.3	0.0	No
B64	1	58.3	58.4	60.6	2.3	0.1	No
B65	1	71.0	71.0	74.2	3.2	0.0	Yes
B66	1	66.4	66.4	68.8	2.4	0.0	Yes
B67	1	62.9	62.9	65.0	2.1	0.0	No
B68	1	60.1	60.2	62.4	2.3	0.1	No
B69	1	58.5	58.6	60.8	2.3	0.1	No
B70	1	71.5	71.5	74.4	2.9	0.0	Yes
B71	1	66.3	66.4	68.6	2.3	0.1	Yes
B72	1	62.7	62.8	64.8	2.1	0.1	No
B73	1	60.4	60.6	62.5	2.1	0.2	No
B74	1	58.9	59.2	60.9	2.0	0.3	No
B75 ^R	1	72.3	72.3	75.1	2.8	0.0	Yes
B76	1	66.9	67.0	69.0	2.1	0.1	Yes
B77	1	63.4	63.6	65.4	2.0	0.2	No
B78	1	61.0	61.3	63.0	2.0	0.3	No
B79	1	59.7	60.0	61.5	1.8	0.3	No
B80	1	60.1	60.5	61.6	1.5	0.4	No
C1	1	70.0	70.0	71.1	1.1	0.0	Yes
D1	1	46.6	46.6	48.4	1.8	0.0	No
D2	1	44.3	44.3	46.2	1.9	0.0	No
D3	1	42.0	42.0	45.6	3.6	0.0	No
D4	1	43.7	43.7	47.9	4.2	0.0	No
D5	1	44.5	44.5	46.8	2.3	0.0	No
*The letter incl Receptors B50 noise barrier.		-					-

If the posted speed limit on Gibsonton Drive were reduced, the capacity of the roadway to handle the forecast traffic demand would also be reduced. Therefore, reducing traffic speeds and/or traffic

volumes is inconsistent with the goal of improving the ability of the roadway to handle the forecast volumes. Likewise, a shift in the roadway alignment would result in the need for additional ROW. The acquisition of property to provide noise buffers is not feasible due to the high cost and/or the unavailability of vacant land in proximity to noise-sensitive receptors. Noise barriers were determined to be the only viable abatement measure to reduce traffic noise at existing noise-sensitive receptors.

3.4 NOISE BARRIER ANALYSIS

As previously stated, in year 2045 with the proposed improvements to Gibsonton Drive, noise levels are predicted to approach, meet, or exceed the NAC at nine residences as well as the Alafia Scrub Nature Preserve. The following presents the results of the noise barrier analysis performed to determine if noise barriers would provide at least the minimum required insertion loss at a cost within the cost reasonable limit for the sites predicted to be impacted by traffic noise with the proposed Gibsonton Drive improvements. Documentation in support of the noise barrier analysis is provided in **Appendix F.**

According to *Part 2, Chapter 18 of the PD&E Manual*, a minimum of two impacted sites must achieve a 5 dB(A) reduction or greater in order for a noise barrier to be considered feasible. There are four single-family residences (B12, B47, B50 and B56), that were impacted but are single or isolated sites. Because the minimum feasibility requirement that abatement must benefit at least two impacted properties for which there are NAC could not be achieved, noise barriers were not evaluated for the single/isolated sites. In addition, receptor B50 is planned for ROW acquisition and relocation and is not considered for a noise barrier.

<u>Barrier 1</u>

Barrier 1 was evaluated for the impacted Alafia Scrub Nature Preserve (receptor C1). The preserve was expected to experience a traffic noise level of 71.1 dB(A) at the portion of the preserve closest to Gibsonton Drive. The FDOT's research publication, *A Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations*, dated July 2009, was used to determine if a noise barrier could be considered a potential abatement measure. The barrier was evaluated at a length of approximately 400 feet beginning at approximate station 109+20 and ending at approximate station 113+00 on the north side of Gibsonton Drive as illustrated in **Appendix C**. The barrier was evaluated in two-ft increments from 8 to 22 feet.

At all heights evaluated, the barrier could reduce predicted traffic noise levels within the preserve by a minimum of 7 dB(A). Per a conversation with Ross Dickerson from the Hillsborough County Parks and Recreation Department, the preserve is visited by approximately 30 people on the weekends with less visitation during the week. The average amount of time the visitors stay is one to one and a half hours. At a height of eight feet and a length of 400 feet and assuming that 30 individuals use this facility for one hour and a half a day, the barrier is not a cost reasonable noise abatement measure. The results of the evaluation are provided in **Table 3-3.** Therefore, although potentially feasible, Barrier 1 is not considered to be a reasonable noise abatement measure.

Item	Criteria	Input	Units
1	Barrier length	400	ft
2	Barrier height	8	ft
3	Multiply item 1 by item 2	3200	ft ²
4	Average time person stays at site per visit	1.5	Hours
5	Average number of people that use site per day that will receive five dB(A)	30	People
6	Multiply item 4 by item 5	45	person-hr
7	Divide item 3 by item 6	71.11	ft²/person-hr
8	Multiply \$42,000 by item 7	\$2,986,666.67	\$/person-hr/ft ²
9	Does item 8 exceed the "abatement cost factor" of: English units = \$995,935/person- hr/ft ² ?	Ye	15
10	If item 9 is yes, abatement is not reasonable	Abatement no	ot reasonable

<u>Barrier 2</u>

Barrier 2 was evaluated for the CNE involving seven impacted residences north of Gibsonton Drive and along Oakridge Avenue and Pineridge Avenue (B62, B65, B66, B70, B71, B75, and B76). Receptor B75 is included in this CNE; however, it was not included in the barrier analysis since it is planned to be relocated and not considered for noise abatement. Impacted receptors include single-family residences. The impacted receptors are predicted to experience traffic noise levels ranging from 68.6 dB(A) and 74.4 dB(A) with the proposed improvements, levels that approach and exceed the NAC. This barrier is separated by Oakridge Avenue and Pineridge Avenue; however, the barrier was analyzed as a single barrier for cost reasonable analysis since these residences are considered a CNE. The barrier was evaluated at a length of approximately 454 feet with three segments as follows. Segment 1 begins at approximate station 130+00 and ends at approximate station 131+16. Segment 2 beings at approximate station 132+50 and ends at approximate station 134+41. Segment 3 beings at approximate station 135+31 and ends at approximate station 136+81. Segment 2 could not be extended further to the west due to sight distance requirement for vehicles turning right onto Gibsonton Drive from Oakridge Avenue. The height of the barrier was evaluated in two-foot increments from 8 to 22 feet.

The results of the evaluation are provided in **Table 3-4**. Segments 1 and 3 of this barrier were unable to provide abatement to any receptors due to their short length. At 189 feet in length, segment 2 of the barrier could provide a reduction in noise levels of 7 dB(A) for one noise-sensitive receptor only for all heights evaluated. Since a minimum of two impacted sites must achieve a 5 dB(A) reduction or greater in order for a noise barrier to be considered feasible, Barrier 2 is not a feasible option for noise

abatement. Further, Barrier 2 is not cost reasonable at any height considered. Therefore, a noise barrier is not recommended for further consideration.

Barrier Height	Barrier Length	In a set of the set of the set				Number of Benefited Receptors			Total Estimated	Cost Per Benefited	Cost Reasonable		
(ft)	(ft)	5	6	7	8	9	≥10	Impacted	Other*	Total	Cost	Receptor	Yes/No
8	189	0	1	0	0	0	0	1	0	1	\$45,466	\$45,466	No
10	189	0	0	1	0	0	0	1	0	1	\$56 <i>,</i> 832	\$56 <i>,</i> 832	No
12	189	0	0	1	0	0	0	1	0	1	\$68,199	\$68,199	No
14	189	0	0	1	0	0	0	1	0	1	\$79,565	\$79 <i>,</i> 565	No
16	189	0	0	1	0	0	0	1	0	1	\$90,932	\$90,932	No
18	189	0	0	1	0	0	0	1	0	1	\$102,298	\$102,298	No
20	189	0	0	1	0	0	0	1	0	1	\$113,665	\$113,665	No
22	189	0	0	1	0	0	0	1	0	1	\$125,031	\$125,031	No
* Docor	* Decenters that are not impacted but benefit from the poice barrier												

 Table 3-4
 Barrier Analysis – Barrier 2

* Receptors that are not impacted but benefit from the noise barrier

SECTION 4 CONCLUSIONS

This NSR has been prepared for the proposed project in accordance with 23 CFR 772 using methodologies established by the FDOT in the *PD&E Manual, Part 2, Chapter 18*. Eleven residences and the Alafia Scrub Nature Preserve were predicted to approach, meet, or exceed the NAC in the Build scenario. None of the sites were predicted to experience a substantial increase (15.0 dB(A) or more) in traffic noise as a result of the project. Two noise barriers were analyzed for the impacted receptors to determine if noise barriers would provide the minimum required insertion loss (or more) as a feasible and reasonable abatement measure.

There are four single-family residences (B12, B47, B50 and B56) that were impacted but are single or isolated sites. Per the FDOT *PD&E Manual, Part 2, Chapter 18,* the number of impacted receptors required to achieve a 5 dB(A) reduction or greater in order for a noise barrier to be considered feasible will be two or greater. Because the minimum feasibility requirement that abatement must benefit at least two impacted properties for which there are NAC could not be achieved, noise barriers were not evaluated for the single/isolated sites.

Barrier 1 was evaluated for the Alafia Scrub Nature Preserve. The FDOT's research publication, *A Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations,* was used for Barrier 1 to determine if a noise barrier could be considered a potential abatement measure. The Alafia Scrub Nature Preserve was determined to not receive the amount of use required for the cost to be below the FDOT's cost reasonable limit of \$995,935/person-hr/ft² for special land uses.

Barrier 2 was evaluated for the CNE involving seven impacted residences north of Gibsonton Drive and along Oakridge Avenue and Pineridge Avenue (B62, B65, B66, B70, B71, B75, and B76). Receptor B75 is included in this CNE; however, it was not included in the barrier analysis since it is planned to be relocated and not considered for noise abatement. Barrier 2 could provide a reduction in noise levels of 7 dB(A) for one noise-sensitive receptor only for all heights evaluated. Since a minimum of two impacted sites must achieve a 5 dB(A) reduction or greater in order for a noise barrier to be considered feasible, Barrier 2 is not a feasible option for noise abatement. Further, Barrier 2 is not cost reasonable at any height considered. Therefore, a noise barrier is not recommended for further consideration.

Based on the noise analyses performed to date, there are no feasible and reasonable solutions available to mitigate the noise impacts at the locations identified in **Table 3-2** and shown in **Appendix C**.

SECTION 5 LAND-USE CONTROLS

Coordination with local agencies and officials has been accomplished during the development of this project. To aid in promoting land use compatibility, a copy of the NSR, which provides information that can be used to protect future land development from becoming incompatible with anticipated traffic noise level, will be provided to Hillsborough County. Land use controls can be used to minimize traffic noise in future developments or areas where redevelopment occurs. Land uses such as residences, hotels, schools, churches, and recreation areas are considered incompatible with highway traffic noise that exceed the NAC for their respective Activity Category. In order to reduce the possibility of additional noise related impacts, noise level contours were developed for the future improved roadway facility. These noise contours delineate the distance from the improved roadway's edge of pavement where the NAC for each exterior Activity Category (A through E) is predicted to be approached (i.e. within one dB(A) of the NAC) in the design year (2045) with the proposed improvements to Gibsonton Drive. The contours do not consider any shielding of noise provided by structures between the receptor sites and the proposed travel lanes. To minimize potential for incompatible land use, noise sensitive land uses should be located beyond this distance.

As shown in **Table 5-1** within the project limits, the extent of noise level contour varies for each of the Activity Categories evaluated.

Roadway Segment	Activity Category*	NAC for Activity Category (dB(A))	Distance to Approach (within 1 dB(A) of NAC for Activity Category (feet)**
	А	57	>500
Study corridor from Fern Hill Drive to US	В	67	140
301	С	67	140
301	E	72	60

 Table 5-1
 Design Year (2045) Noise Impact Contour Distances

*Refer to Table 2-1 for details on Activity Categories.

**Distances are measured from the improved roadways edge of pavement, do not account for any reduction in noise levels that may occur from shielding, and should be used for planning purposes only.

SECTION 6 CONSTRUCTION NOISE AND VIBRATIONS

During the short-term construction phase of the proposed project, noise may be generated by stationary and mobile construction equipment. Using FDOT's listing of noise and vibration sensitive sites, residences, medical facilities, and churches were identified as potentially sensitive to vibration caused during construction.

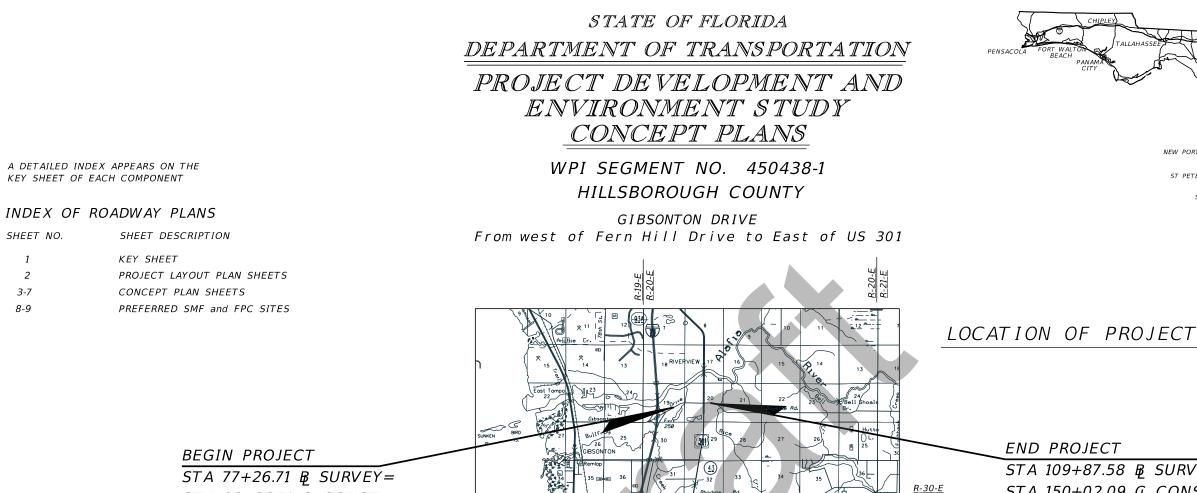
The FDOT commits to coordinating with these facilities and any other construction noise and vibration sites identified during the design phase of the project. The application of the FDOT's *Standard Specifications for Road and Bridge Construction* could minimize or eliminate most of the potential construction noise and vibration. However, should unanticipated noise or vibration issues arise during the construction process, the Project Engineer, in concert with the District Noise Specialist and the Contractor, will investigate additional methods of controlling the issues.

SECTION 7 COMMUNITY COORDINATION

A public hearing will be held for this project. This public hearing will give interested persons an opportunity to express their views concerning the conceptual design, and social, economic, and environmental effects of the proposed improvements. Any public comments specific to noise received at or following the public hearing will be addressed further during the design phase once a detailed analysis for this project has been completed. Although no noise barriers are proposed, additional public coordination specific to potential noise barriers may be conducted during this time.

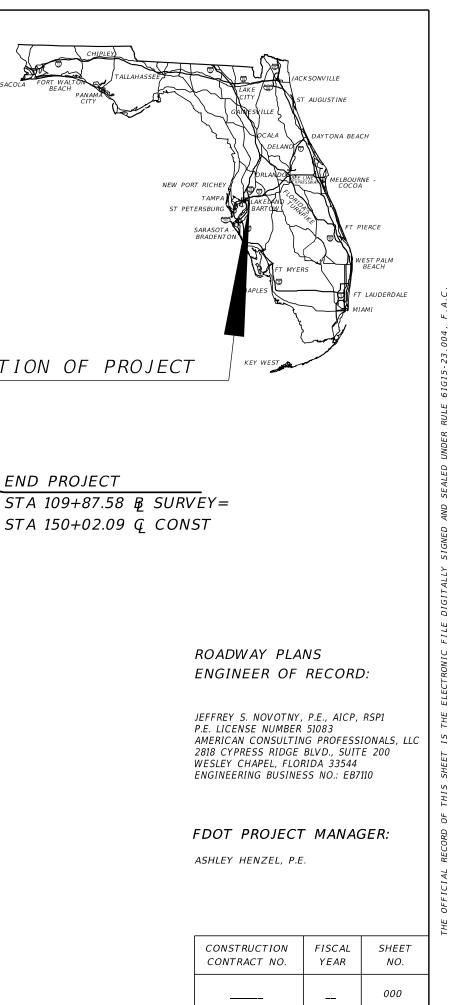
SECTION 8 REFERENCES

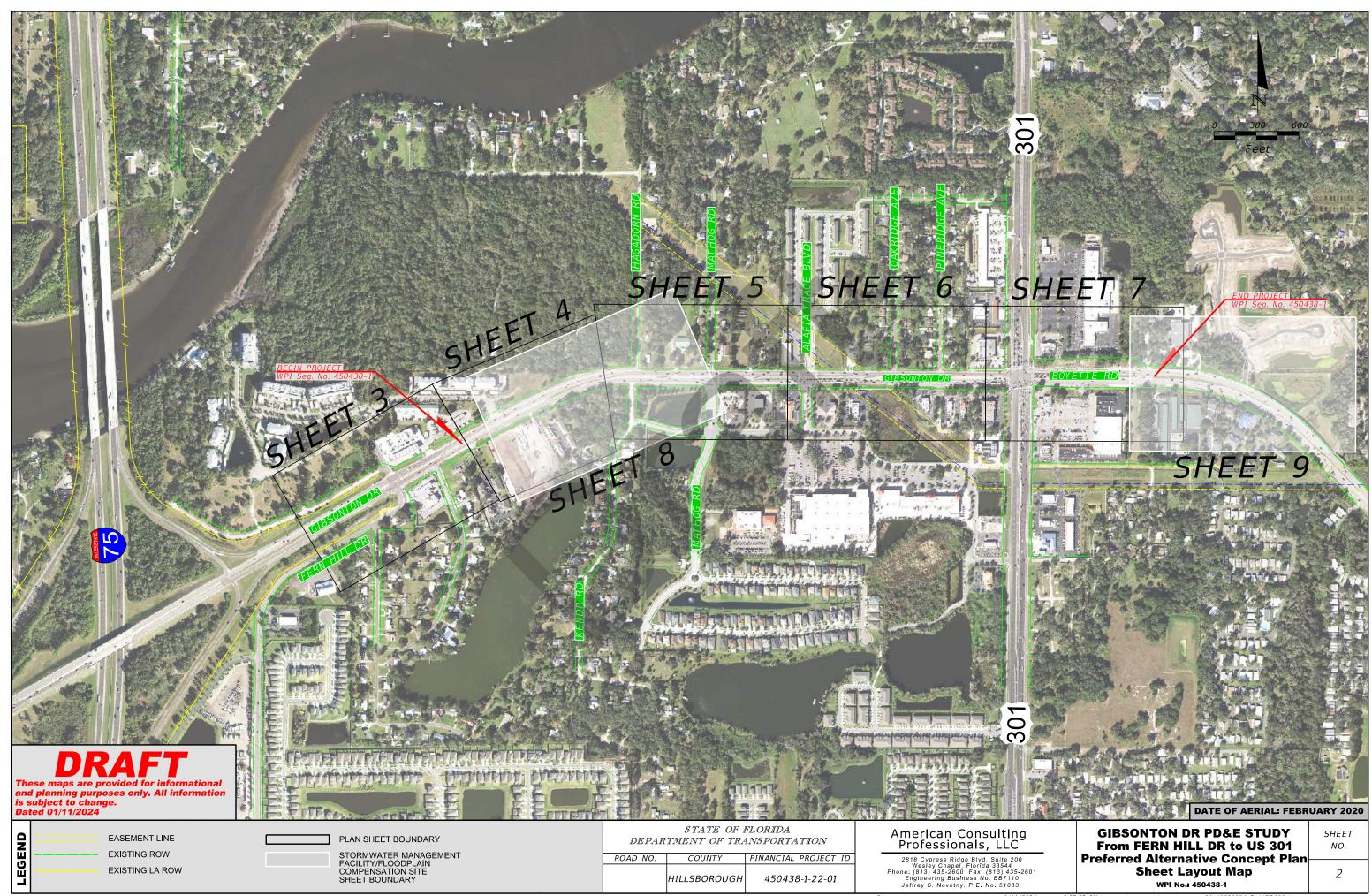
- California Department of Transportation. September 2013. Technical Noise Supplement to the Traffic Noise Analysis Protocol.
- Federal Highway Administration. U.S. Department of Transportation. July 13, 2010. Title 23 CFR, Part772. Procedures for Abatement of Highway Traffic Noise and Construction Noise.
- Federal Highway Administration. February 2004. Traffic Noise Model, Version 2.5.
- Federal Highway Administration. December 2011. Highway Traffic Noise: Analysis and Abatement Guidance.
- Federal Highway Administration. June 1, 2018. Noise Measurement Handbook. FHWA-HEP-18-066.
- Florida Department of Transportation. July 22, 2009. A Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations.
- Florida Department of Transportation, Florida Land Use, Cover and Forms Classification System, January 1999, Third Edition, FDOT Surveying and Mapping Office Geographic Mapping Section.
- Florida Department of Transportation. July 1, 2023. Project Development and Environment Manual, Part 2, Chapter 18 – Highway Traffic Noise.
- Florida Department of Transportation. January 1, 2023. FDOT Design Manual. Section 264 Noise Walls and Perimeter Walls.
- Florida Department of Transportation. January 2023. Standard Specifications for Road and Bridge Construction.
- Florida Department of Transportation. Environmental Management Office. December 31, 2016. Traffic Noise Modeling and Analysis Practitioners Handbook.
- Google. Accessed June 2023. Google Earth Pro, Aerial Maps and Elevation Data

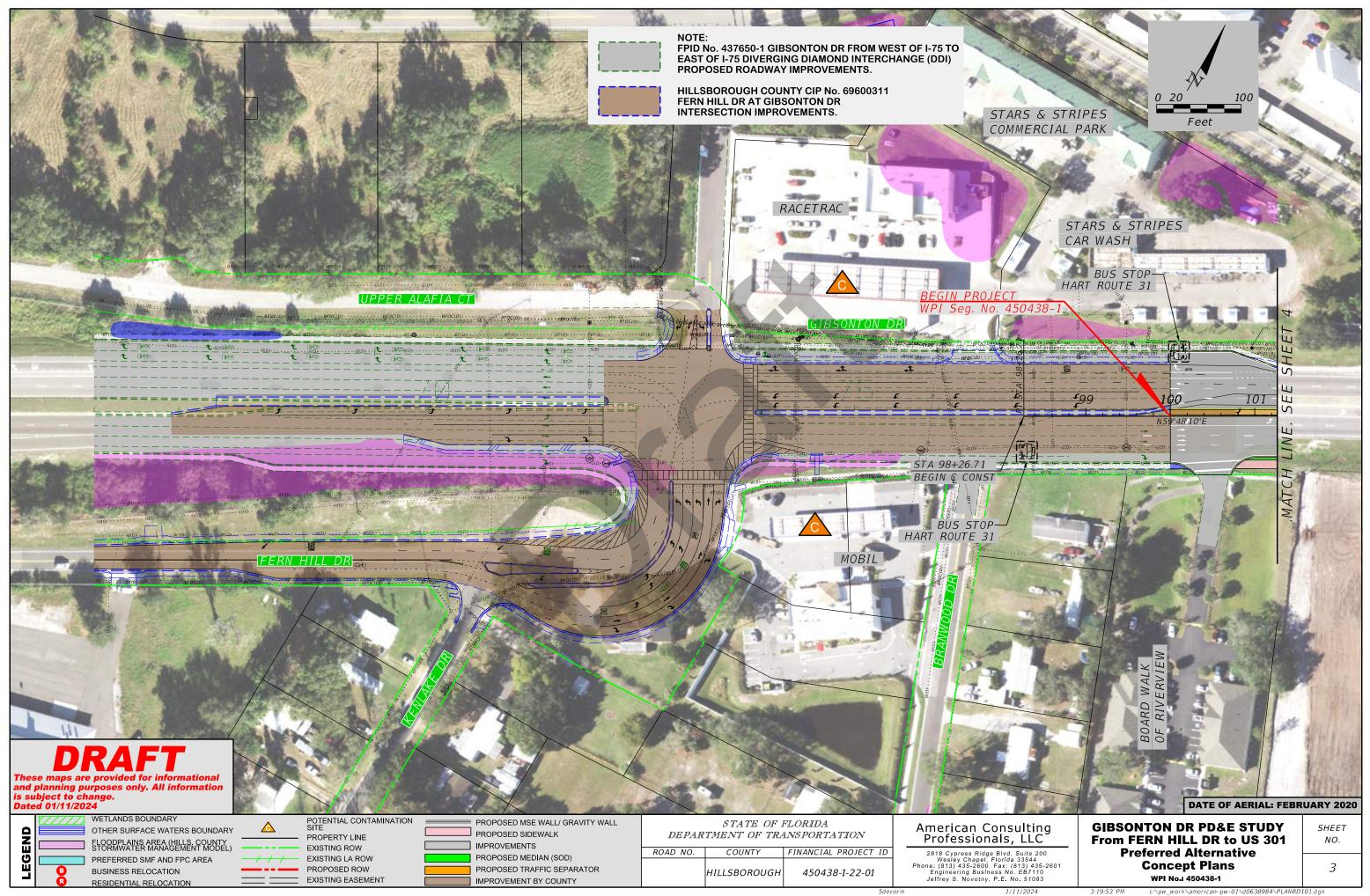

APPENDICES

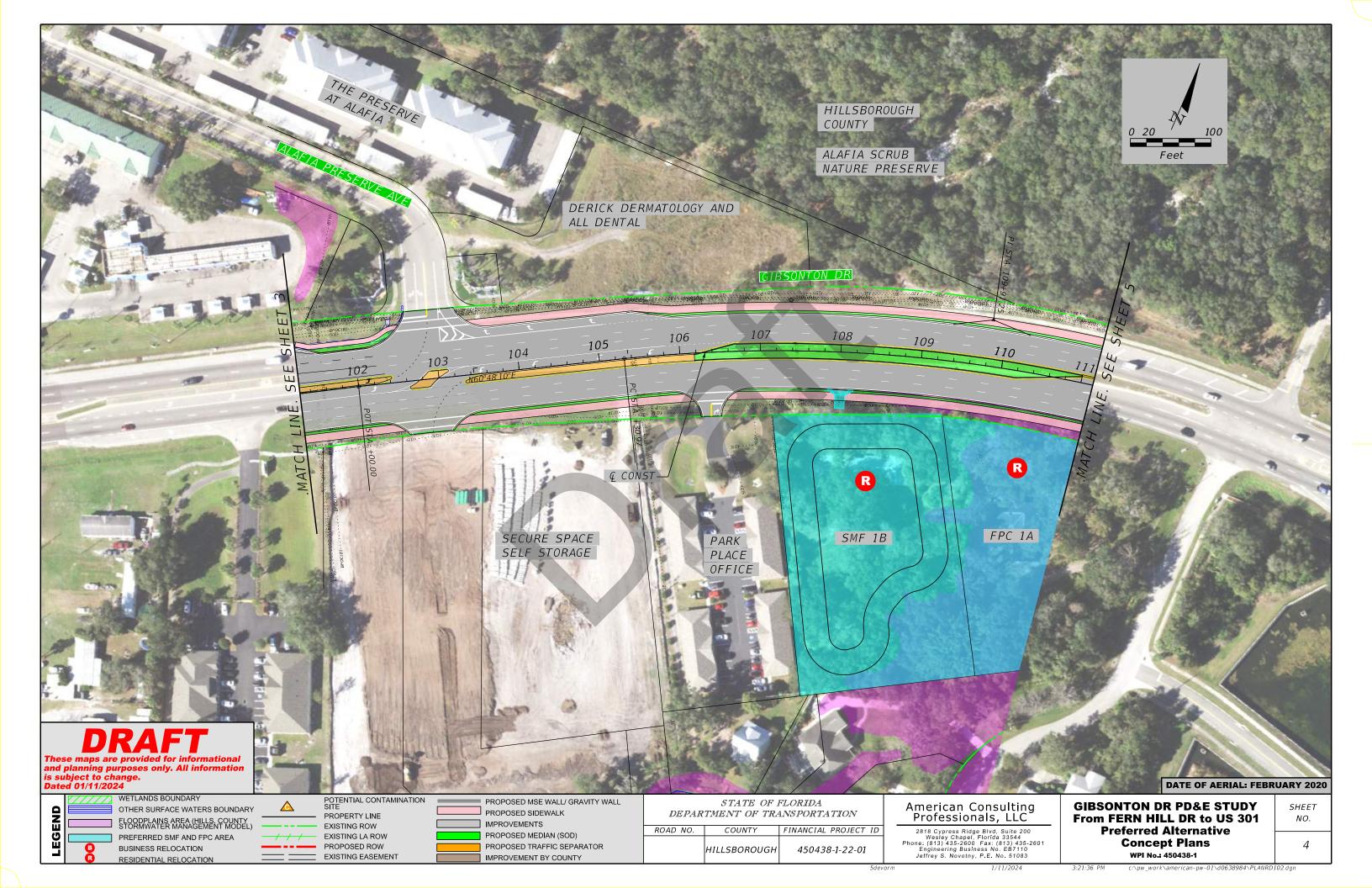
- APPENDIX A Concept Plans
- APPENDIX B Noise Model Traffic Data
- APPENDIX C Noise-Sensitive Receptor Sites
- APPENDIX D Noise Model Validation Data
- APPENDIX E TNM Data
- APPENDIX F Barrier Analysis

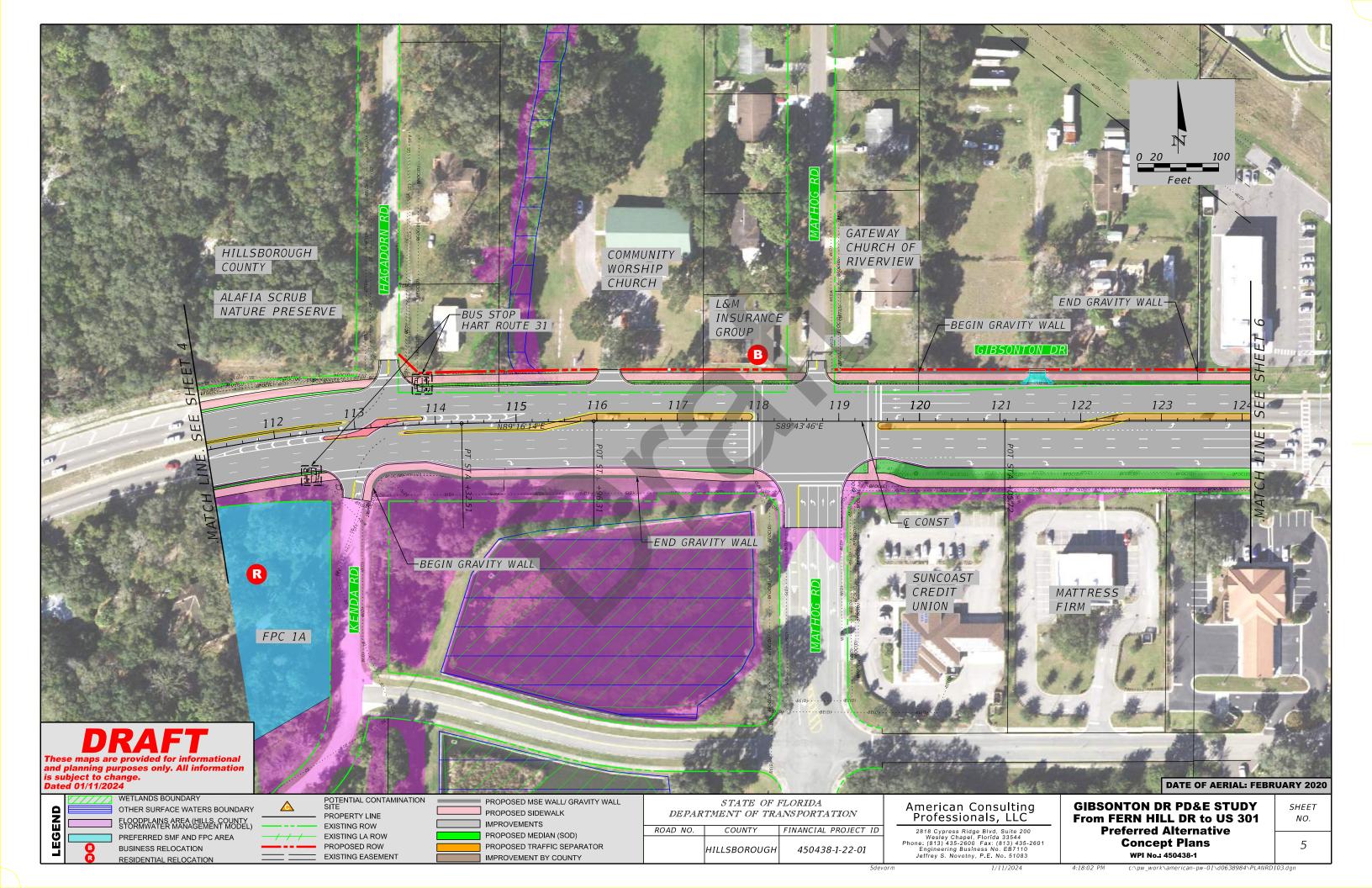
APPENDIX A Concept Plans

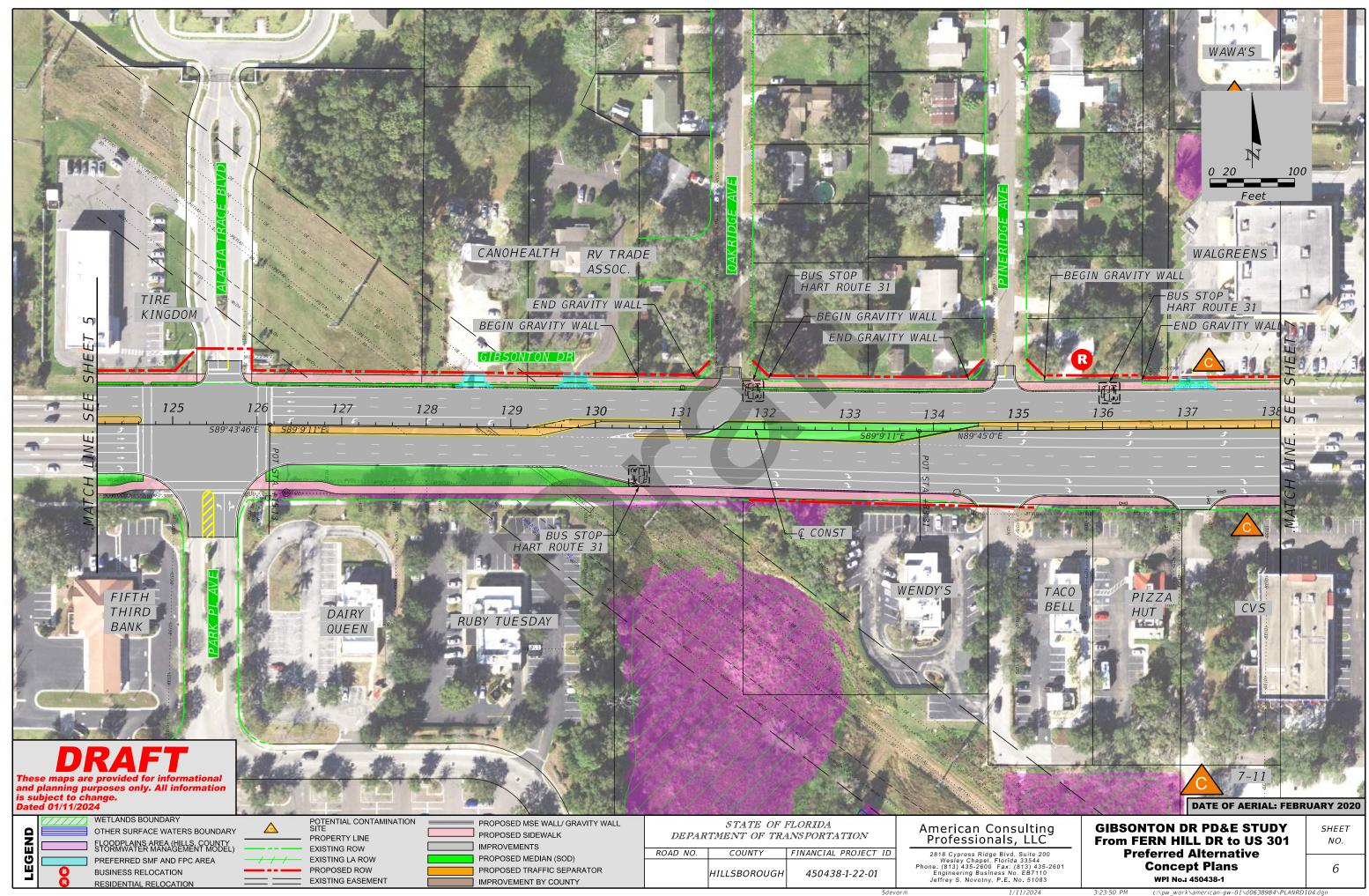

•

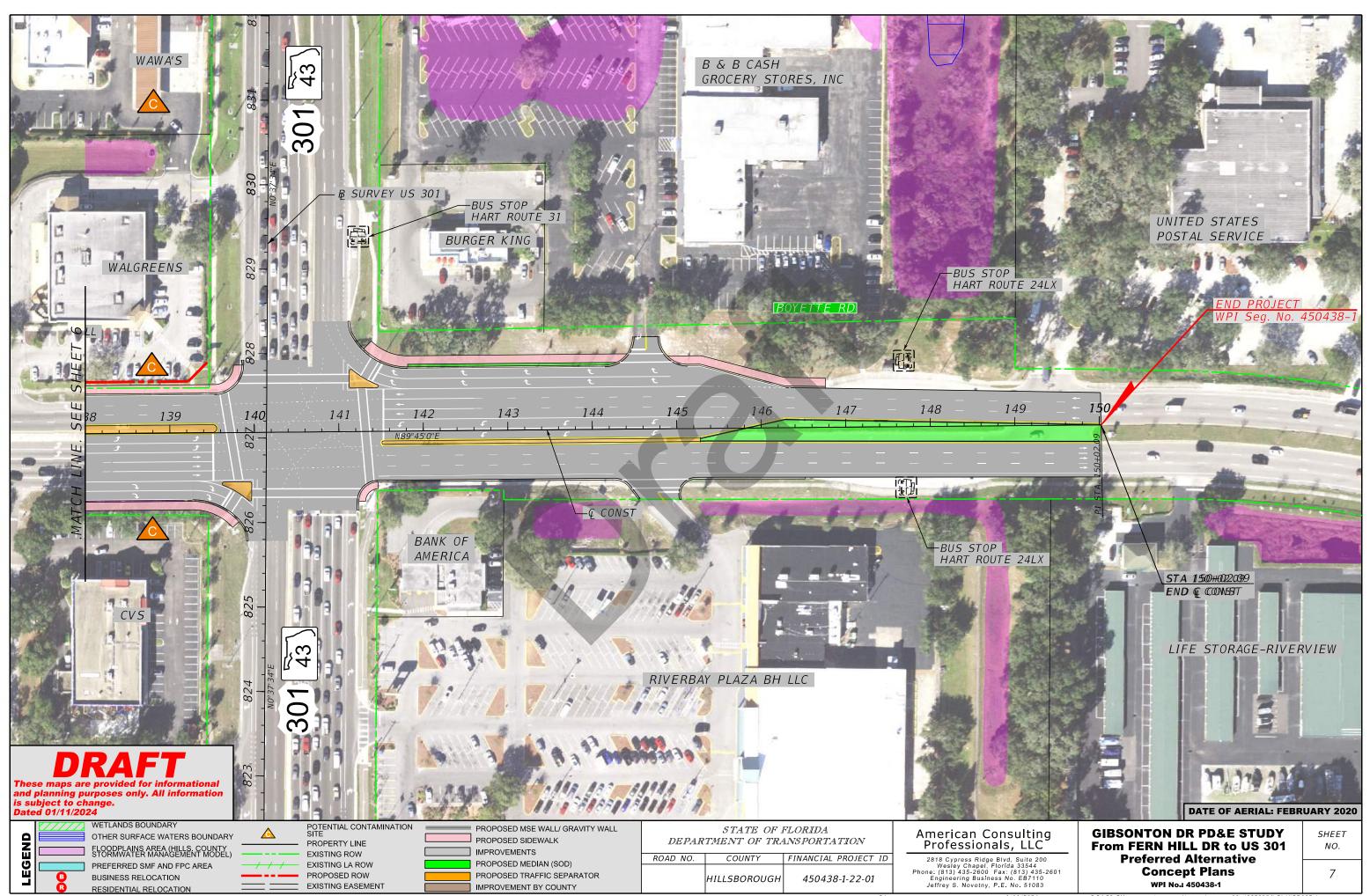

WHISKY STUMP KEY


STA 98+26.71 Q CONST






<u>R-31-E</u>



c:\pw_work\american-pw-01\d0638984\PLANRD104.dgn

3:24:50 PM

PM c:\pw_work\american-pw-01\d0638984\PLANRD105.dgn

APPENDIX B Noise Model Traffic Data

Federal Aid Number(s):			
FPID Number(s):	450438-1-22-01		-
State/Federal Route No.:			
Road Name:	Gibsonton Drive		-
Project Description:	PD&E Studies Gibsonton Dr fr	om Fern Hill Dr to US 301	-
Segment Description:	Begin Project to Fern Hill Dr		_
Section Number:			
Mile Post To/From:			
			-
Existing Facility:		D =	52.5 %
		T24 =	8.0 % of 24 Hour Volume
Year:	2022	Tpeak =	4.0 % of Design Hour Volume
		MT =	3.2 % of Design Hour Volume
LOS C Peak Hour Directional V	olume: 1791	HT =	2.6 % of Design Hour Volume
Demand Peak Hour Volume:	2674	B =	0.5 % of Design Hour Volume
Posted Speed:	45	MC =	0.2 % of Design Hour Volume
No Build Alternative (Design Y	ear):	D =	52.5 %
		T24 =	8.0 % of 24 Hour Volume
Year:	2045	Tpeak =	4.0 % of Design Hour Volume
		MT =	3.2 % of Design Hour Volume
LOS C Peak Hour Directional V	olume: 1791	HT =	2.6 % of Design Hour Volume
Demand Peak Hour Volume:	3341	B =	0.5 % of Design Hour Volume
Posted Speed:	45	MC =	0.2 % of Design Hour Volume
Build Alternative (Design Year)	:	D =	52.5 %
		T24 =	8.0 % of 24 Hour Volume
Year:	2045	Tpeak =	4.0 % of Design Hour Volume
		MT =	3.2 % of Design Hour Volume
LOS C Peak Hour Directional V	olume: 2759	HT =	2.6 % of Design Hour Volume
Demand Peak Hour Volume:	3341	B =	0.5 % of Design Hour Volume
Posted Speed:	45	MC =	0.2 % of Design Hour Volume
I certify that the above inform	mation is accurate and appropriate		analysis.
1-11	C Neveter DE ALOD DODA	DocuSigned by:	40/05/0000
Prepared By: Jeffrey	S. Novotny, PE, AICP, RSP1	Jeffrey Novotny	Date: 10/25/2023

Print Name Signature

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

Print Name

Signature

Federal Aid Number(s):			
FPID Number(s):	450438-1-22-01		
State/Federal Route No.:			
Road Name:	Gibsonton Drive		
Project Description:	PD&E Studies Gibsonton Dr from Fe	rn Hill Dr to US 301	
Segment Description:	Fern Hill to Mathog Rd		
Section Number:			
Mile Post To/From:			
Existing Facility:		D = 52.5%	
Y	2022	T24 = 8.0 % of 24 Hour Volu Tpeak = 4.0 % of Design Hour V	
Year:	2022		
	4704	MT = 3.2 % of Design Hour	
LOS C Peak Hour Directional Vo Demand Peak Hour Volume:		HT = 2.6 % of Design Hour	
	<u>2164</u> 45	B = 0.5 % of Design Hour $MC = 0.2 % of Design Hour$	
Posted Speed:	45	MC = 0.2 % of Design Hour	olume
No Build Alternative (Design Ye	ear):	D = 52.5 %	
		T24 = 8.0 % of 24 Hour Volu	me
Year:	2045	Tpeak = 4.0 % of Design Hour	/olume
		MT = 3.2 % of Design Hour	/olume
LOS C Peak Hour Directional Vo	olume: 1791		
		HI = 2.0 % of Design Hour	
Demand Peak Hour Volume:	3241		/olume
Demand Peak Hour Volume: Posted Speed:			
	3241	B = 0.5 % of Design Hour	
	3241	B = 0.5 % of Design Hour	
	3241	B = 0.5 % of Design Hour	
	3241 45	B = 0.5 % of Design Hour MC = 0.2 % of Design Hour MC = 0.2 % of Design Hour MC = 52.5 %	
Posted Speed:	3241 45	B = 0.5 % of Design Hour V $MC = 0.2 % of Design Hour V$ $D = 52.5 %$ $T24 = 8.0 % of 24 Hour Volume$	/olume me
Posted Speed:	3241 45	B = 0.5 % of Design Hour MC = 0.2 % of Design Hour MC = 0.2 % of Design Hour MC = 52.5 %	/olume me
Posted Speed: Build Alternative (Design Year)	3241 45): 2045	B = 0.5 % of Design Hour M $MC = 0.2 % of Design Hour M$ $D = 52.5 %$ $T24 = 8.0 % of 24 Hour Volu$ $Tpeak = 4.0 % of Design Hour M$ $MT = 3.2 % of Design Hour M$	/olume me /olume /olume
Posted Speed: Build Alternative (Design Year)	3241 45): 2045	B = 0.5 % of Design Hour M $MC = 0.2 % of Design Hour M$ $D = 52.5 %$ $T24 = 8.0 % of 24 Hour Volu$ $Tpeak = 4.0 % of Design Hour M$ $MT = 3.2 % of Design Hour M$ $HT = 2.6 % of Design Hour M$	/olume me /olume /olume
Posted Speed: Build Alternative (Design Year) Year:	3241 45): 2045	$B = 0.5 \ \% \text{ of Design Hour M} $ $MC = 0.2 \ \% \text{ of Design Hour M} $ $D = 52.5 \ \% \text{ of 24 Hour Volu} $ $Tpeak = 4.0 \ \% \text{ of 24 Hour Volu} $ $MT = 3.2 \ \% \text{ of Design Hour M} $ $HT = 2.6 \ \% \text{ of Design Hour M} $ $B = 0.5 \ \% \text{ of Design Hour M} $	/olume /olume /olume /olume
Posted Speed: Build Alternative (Design Year) Year: LOS C Peak Hour Directional Vo	3241 45): 2045 olume: 2759	B = 0.5 % of Design Hour M MC = 0.2 % of Design Hour M D = 52.5 % T24 = 8.0 % of 24 Hour Volu Tpeak = 4.0 % of Design Hour M MT = 3.2 % of Design Hour M HT = 2.6 % of Design Hour M	/olume /olume /olume /olume /olume
Posted Speed: Build Alternative (Design Year) Year: LOS C Peak Hour Directional Vo Demand Peak Hour Volume:	3241 45): 2045 olume: 2759 3241	$B = 0.5 \ \% \text{ of Design Hour V}$ $MC = 0.2 \ \% \text{ of Design Hour V}$ $D = 52.5 \ \% \text{ of 24 Hour Volu}$ $Tpeak = 4.0 \ \% \text{ of 24 Hour Volu}$ $MT = 3.2 \ \% \text{ of Design Hour V}$ $HT = 2.6 \ \% \text{ of Design Hour V}$ $B = 0.5 \ \% \text{ of Design Hour V}$	/olume /olume /olume /olume /olume
Posted Speed: Build Alternative (Design Year) Year: LOS C Peak Hour Directional Vo Demand Peak Hour Volume:	3241 45): 2045 olume: 2759 3241	$B = 0.5 \ \% \text{ of Design Hour V}$ $MC = 0.2 \ \% \text{ of Design Hour V}$ $D = 52.5 \ \% \text{ of 24 Hour Volu}$ $Tpeak = 4.0 \ \% \text{ of 24 Hour Volu}$ $MT = 3.2 \ \% \text{ of Design Hour V}$ $HT = 2.6 \ \% \text{ of Design Hour V}$ $B = 0.5 \ \% \text{ of Design Hour V}$	/olume /olume /olume /olume /olume

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:	Jeffrey S. Novotny, PE, AICP, RSP1	Docusigned by: Juffry Nowstry	Data	10/25/2023
Prepared By:	Jenney S. Novouny, I L, AIGE, KOFT		Date:	10/23/2023
	Print Name	Signature		

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

Print Name

Signature

Federal Aid Number(s):			
FPID Number(s):	450438-1-22-01		
State/Federal Route No.:			
Road Name:	Gibsonton Drive		
Project Description:	PD&E Studies Gibsonton Dr from F	ern Hill Dr to US 301	
Segment Description:	Mathog Rd to Park Place Ave		
Section Number:			
Mile Post To/From:			
Existing Facility:		D = 52.5 %	
		T24 = 8.0 % of 24 Hour Volume	
Year:	2022	Tpeak = 4.0 % of Design Hour Volu	
		MT = <u>3.2</u> % of Design Hour Volu	
LOS C Peak Hour Directional Vo		HT = 2.6 % of Design Hour Volu	
Demand Peak Hour Volume:	2036	B = 0.5 % of Design Hour Volu	
Posted Speed:	45	MC = 0.2 % of Design Hour Volu	ume
No Duild Alternative (Design Ve		D= 52.5 %	
No Build Alternative (Design Ye	ar):	D = 52.5 % T24 = 8.0 % of 24 Hour Volume	
Vaam	2045		
Year:	2045	,	
LOS C Peak Hour Directional Vo			
Demand Peak Hour Volume: Posted Speed:	2788		
Posted Speed:	43	MC = 0.2 % of Design Hour Volu	ime
Build Alternative (Design Year):		D = 52.5 %	
		T24 = 8.0 % of 24 Hour Volume	
Year:	2045	Tpeak = 4.0 % of Design Hour Volu	ume
		MT = 3.2 % of Design Hour Volu	ume
		HT = 2.6 % of Design Hour Volu	ume
LOS C Peak Hour Directional Vo	lume: 2759		
LOS C Peak Hour Directional Vo Demand Peak Hour Volume:	2759 2788	B = 0.5 % of Design Hour Volu	ume

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

		DocuSigned by:			
Prepared By:	Jeffrey S. Novotny, PE, AICP, RSP1	Jeffrey Novotny	Date:	10/25/2023	
	Print Name	Signature			

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

Print Name

Signature

Federal Aid Number(s):			
FPID Number(s):	450438-1-22-01		
State/Federal Route No.:			
Road Name:	Gibsonton Drive		
Project Description:	PD&E Studies Gibsonton Dr from	Fern Hill Dr to US 301	
Segment Description:	Park Place Ave to US 301		
Section Number:			
Mile Post To/From:			
Existing Facility:		D = 52.5 %	
		T24 = 8.0 % of 24 Hour Volu	ime
Year:	2022	Tpeak = 4.0 % of Design Hour	Volume
		MT = 3.2 % of Design Hour	
LOS C Peak Hour Directional Volu	ume: 1791	HT = 2.6 % of Design Hour	
Demand Peak Hour Volume:	2112	B = 0.5 % of Design Hour	
Posted Speed:	45	MC = 0.2 % of Design Hour	Volume
No Build Alternative (Design Yea	r):	D = 52.5%	
		T24 = 8.0 % of 24 Hour Volu	
Year:	2045	Tpeak = 4.0 % of Design Hour	
		MT = 3.2 % of Design Hour	
LOS C Peak Hour Directional Volu		HT = 2.6 % of Design Hour	
Demand Peak Hour Volume:	2887	B = 0.5 % of Design Hour	
Posted Speed:	45	MC = 0.2 % of Design Hour	volume
Build Alternative (Design Year):		D = 52.5 %	
		T24 = 8.0 % of 24 Hour Volu	ime
Year:	2045	Tpeak = 4.0 % of Design Hour	Volume
		MT = 3.2 % of Design Hour	
LOS C Peak Hour Directional Volu	ume: 2759	HT = 2.6 % of Design Hour	
Demand Peak Hour Volume:	2887	B = 0.5 % of Design Hour	
		MC = 0.2 % of Design Hour	
Posted Speed:	45	NG - 0.2 7001 Design 1001	v oronne

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:	Jeffrey S. Novotny, PE, AICP, RSP1	Jeffrey Novotny	Date:	10/25/2023
	Print Name	D3BTAEF135FB48A Signature		

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

Print Name

Signature

Federal Aid Number(s):			
FPID Number(s):	450438-1-22-01		
State/Federal Route No.:			
Road Name:	Gibsonton Drive		
Project Description:	PD&E Studies Gibsonton Dr from F	Fern Hill Dr to US 301	
Segment Description:	US 301 to End of Project		
Section Number:			
Mile Post To/From:			
Existing Facility:		D = 59.0 %	
. .		T24 = 8.0 % of 24 Hour Volume	
Year:	2022	Tpeak = 4.0 % of Design Hour Volum	ne
		MT = 3.2 % of Design Hour Volum	ne
LOS C Peak Hour Directional Vo	lume: 2012	HT = 2.6 % of Design Hour Volum	ne
Demand Peak Hour Volume:	2039	B = 0.5 % of Design Hour Volum	
Posted Speed:	45	MC = 0.2 % of Design Hour Volum	ne
No Build Alternative (Design Yea	ar):	D = 59.0 %	
no bulla Alternative (besign re-		T24 = 8.0 % of 24 Hour Volume	
Year:	2045	Tpeak = 4.0 % of Design Hour Volum	ne
		MT = 3.2 % of Design Hour Volum	
LOS C Peak Hour Directional Vo	lume: 2012	HT = 2.6 % of Design Hour Volum	
Demand Peak Hour Volume:	2788	B = 0.5 % of Design Hour Volum	
Posted Speed:	45	MC = 0.2 % of Design Hour Volum	
Duild Alternative (Design Verse)		D = 59.0 %	
Build Alternative (Design Year):		D = 59.0 % T24 = 8.0 % of 24 Hour Volume	
Voore	0045		
Year:	2045		
		MT = 3.2 % of Design Hour Volum HT = 2.6 % of Design Hour Volum	
LOS C Peak Hour Directional Vo			
Damage of Data I I area Maleria	2788		
Demand Peak Hour Volume:			
Demand Peak Hour Volume: Posted Speed:	45	MC = 0.2 % of Design Hour Volum	ne

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:	Jeffrey S. Novotny, PE, AICP, RSP1	Jeffrey Novotny	Date:	10/25/2023
	Print Name	Signature		

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

Print Name

Signature

Federal Aid Number(s):			
FPID Number(s):	450438-1-22-01		
State/Federal Route No.:			
Road Name:	Alafia Trace Blvd		
Project Description:	PD&E Studies Gibsonton Dr from F	Fern Hill Dr to US 301	
Segment Description:	Alafia Trace Blvd, north of Gibsonte	on Dr	
Section Number:			
Mile Post To/From:			
Existing Facility:		D = 52.5 %	
Existing Facility.		T24 = 4.0 % of 24 Hour Volume	
Year:	2022	Tpeak = 2.0 % of Design Hour Vol	
ical.	2022	MT = 3.2 % of Design Hour Vol	
LOS C Peak Hour Directional Vo	lume: 345	HT = 2.6 % of Design Hour Vol	
Demand Peak Hour Volume:	33	B = 0.5 % of Design Hour Vol	
Posted Speed:	25	MC = 0.2 % of Design Hour Vol	
osted speed.	23		unic
No Build Alternative (Design Ye	ar):	D = 52.5 %	
		T24 = 4.0 % of 24 Hour Volume	1
Year:	2045	Tpeak = 2.0 % of Design Hour Vol	ume
		MT = 3.2 % of Design Hour Vol	ume
LOS C Peak Hour Directional Vo	lume: 345	HT = 2.6 % of Design Hour Vol	ume
Demand Peak Hour Volume:	41	B = 0.5 % of Design Hour Vol	
Posted Speed:	25	MC = 0.2 % of Design Hour Vol	ume
Build Alternative (Design Year):		D = 52.5 %	
		T24 = 4.0 % of 24 Hour Volume	
Year:	2045	Tpeak = 2.0 % of Design Hour Vol	ume
		MT = 3.2 % of Design Hour Vol	ume
	lume: 345	HT = 2.6 % of Design Hour Vol	ume
OS C Peak Hour Directional Vo		B = 0.5 % of Design Hour Vol	ume
	41		
LOS C Peak Hour Directional Vo Demand Peak Hour Volume: Posted Speed:	<u>41</u> 25	MC = 0.2 % of Design Hour Vol	ume

 Prepared By:
 Jeffrey S. Novotny, PE, AICP, RSP1
 Juffrey Novotny
 Date:
 10/25/2023

 Print Name
 Signature

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

Print Name

Signature

Federal Aid Number(s):			
FPID Number(s):	450438-1-22-01		
State/Federal Route No.:			
Road Name:	Mathog Rd		
Project Description:	PD&E Studies Gibsonton Dr fror	n Fern Hill Dr to US 301	
Segment Description:	Mathog Rd, south of Gibsonton	Dr	
Section Number:			
Mile Post To/From:			
Existing Facility:		D = 52.5 %	
		T24 = 4.0 % of 24 Hour Volume	
Year:	2022	Tpeak = 2.0 % of Design Hour Vol	ume
		MT = <u>3.2</u> % of Design Hour Vol	
LOS C Peak Hour Directional Vo		HT = 2.6 % of Design Hour Vol	
Demand Peak Hour Volume:	184	B = 0.5 % of Design Hour Vol	
Posted Speed:	30	MC = 0.2 % of Design Hour Vol	ume
No Build Alternative (Design Ye	ar):	D = 52.5 %	
		T24 = 4.0 % of 24 Hour Volume	
Year:	2045	Tpeak = 2.0 % of Design Hour Vol	ume
		MT = 3.2 % of Design Hour Vol	ume
LOS C Peak Hour Directional Vo	lume: 345	HT = 2.6 % of Design Hour Vol	ume
Demand Peak Hour Volume:	227	B = 0.5 % of Design Hour Vol	
Posted Speed:	30	MC = 0.2 % of Design Hour Vol	ume
Build Alternative (Design Year):		D = 52.5 %	
build Alternative (Design rear):		T24 = 4.0 % of 24 Hour Volume	
Year:	2045	Tpeak = 2.0 % of Design Hour Volume	
reur.	2043	MT = 3.2 % of Design Hour Vol	
LOS C Book Hour Directional Ve	Jume: 345	HT = 2 b % of Design Hour Vol	
		HT = 2.6 % of Design Hour Vol B = 0.5 % of Design Hour Vol	
LOS C Peak Hour Directional Vo Demand Peak Hour Volume: Posted Speed:	lume: 345 227 30	HT = 2.6 % of Design Hour Vol B = 0.5 % of Design Hour Vol MC = 0.2 % of Design Hour Vol	ume

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:	Jeffrey S. Novotny, PE, AICP, RSP1	Seffrey Novotny	Date:	10/25/2023
	Print Name	Signature		

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

Print Name

Signature

Federal Aid Number(s):			
FPID Number(s):	450438-1-22-01		
State/Federal Route No.:			
Road Name:	Park Place Ave		
Project Description:	PD&E Studies Gibsonton Dr fro	om Fern Hill Dr to US 301	
Segment Description:	Park Place Ave, south of Gibson	nton Dr	
Section Number:			
Mile Post To/From:			
Existing Facility:		D = 52.5 %	
Existing ruency.		T24 = 4.0 % of 24 Hour Volum	e
Year:	2022	Tpeak = 2.0 % of Design Hour Vo	
		MT = 3.2 % of Design Hour Vo	
LOS C Peak Hour Directional Vo	olume: 345	HT = 2.6 % of Design Hour Ve	
Demand Peak Hour Volume:	217	B = 0.5 % of Design Hour Ve	
Posted Speed:	25	MC = 0.2 % of Design Hour Ve	
No Build Alternative (Design Ye	ar).	D = 52.5 %	
		T24 = 4.0 % of 24 Hour Volum	e
Year:	2045	Tpeak = 2.0 % of Design Hour Vo	
		MT = 3.2 % of Design Hour Ve	
LOS C Peak Hour Directional Vo	olume: 345	HT = 2.6 % of Design Hour Vol	
Demand Peak Hour Volume:	269	B = 0.5 % of Design Hour Vertex	
Posted Speed:	25	MC = 0.2 % of Design Hour Vo	
Build Alternative (Design Year):		D = 52.5 %	
, , , , , , , , , , , , , , , , , , , ,		T24 = 4.0 % of 24 Hour Volum	e
Year:	2045	Tpeak = 2.0 % of Design Hour Vo	
		MT = 3.2 % of Design Hour Vo	
		HT = 2.6 % of Design Hour Vo	
LOS C Peak Hour Directional Vo	lume: 345		
	269	B = 0.5 % of Design Hour Ve	olume
LOS C Peak Hour Directional Vo Demand Peak Hour Volume: Posted Speed:			

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:	Jeffrey S. Novotny, PE, AICP, RSP1	Jeffrey Nowotny	Date:	10/25/2023
	Print Name	Signature		

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

Print Name

Signature

	450438-1-22-01 US 301		
Road Name:	US 301		
	US 301		
Project Description:			
	PD&E Studies Gibsonton Dr from	n Fern Hill Dr to US 301	
Segment Description:	US 301, north of Gibsonton Dr		
Section Number:			
Mile Post To/From:			
Existing Facility:		D = 60.0 %	
		T24 = 5.0 % of 24 Hour	
Year:	2022	Tpeak = 3.0 % of Design He	
		MT = 3.2 % of Design He	
LOS C Peak Hour Directional Volu		HT = 2.6 % of Design He	
Demand Peak Hour Volume:	2824	B = 0.5 % of Design He	
Posted Speed:	45	MC = 0.2 % of Design He	our Volume
No Build Alternative (Design Year	r):	D = 60.0%	
		T24 = 5.0 % of 24 Hour	
Year:	2045	Tpeak = 3.0 % of Design He	
		MT = 3.2 % of Design He	
LOS C Peak Hour Directional Volu		HT = 2.6 % of Design He	
Demand Peak Hour Volume:	3343	B = 0.5 % of Design He	
Posted Speed:	45	MC = 0.2 % of Design He	our Volume
Duild Alternative (Design Verse)			
Build Alternative (Design Year):		$D = \frac{60.0 \%}{724} = 5.0 \% \text{ of } 24 \text{ Hour } 10\%$	Volumo
Vear	2045		
Year:	2045		
LOS C Peak Hour Directional Volu	2154		
LOS C Peak Hour Directional Volu Demand Peak Hour Volume:			
	3343		
Posted Speed:	45	MC = 0.2 % of Design He	our volume

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:	Jeffrey S. Novotny, PE, AICP, RSP1	Jeffrey Novotny	Date:	10/25/2023
	Print Name	Signature		

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

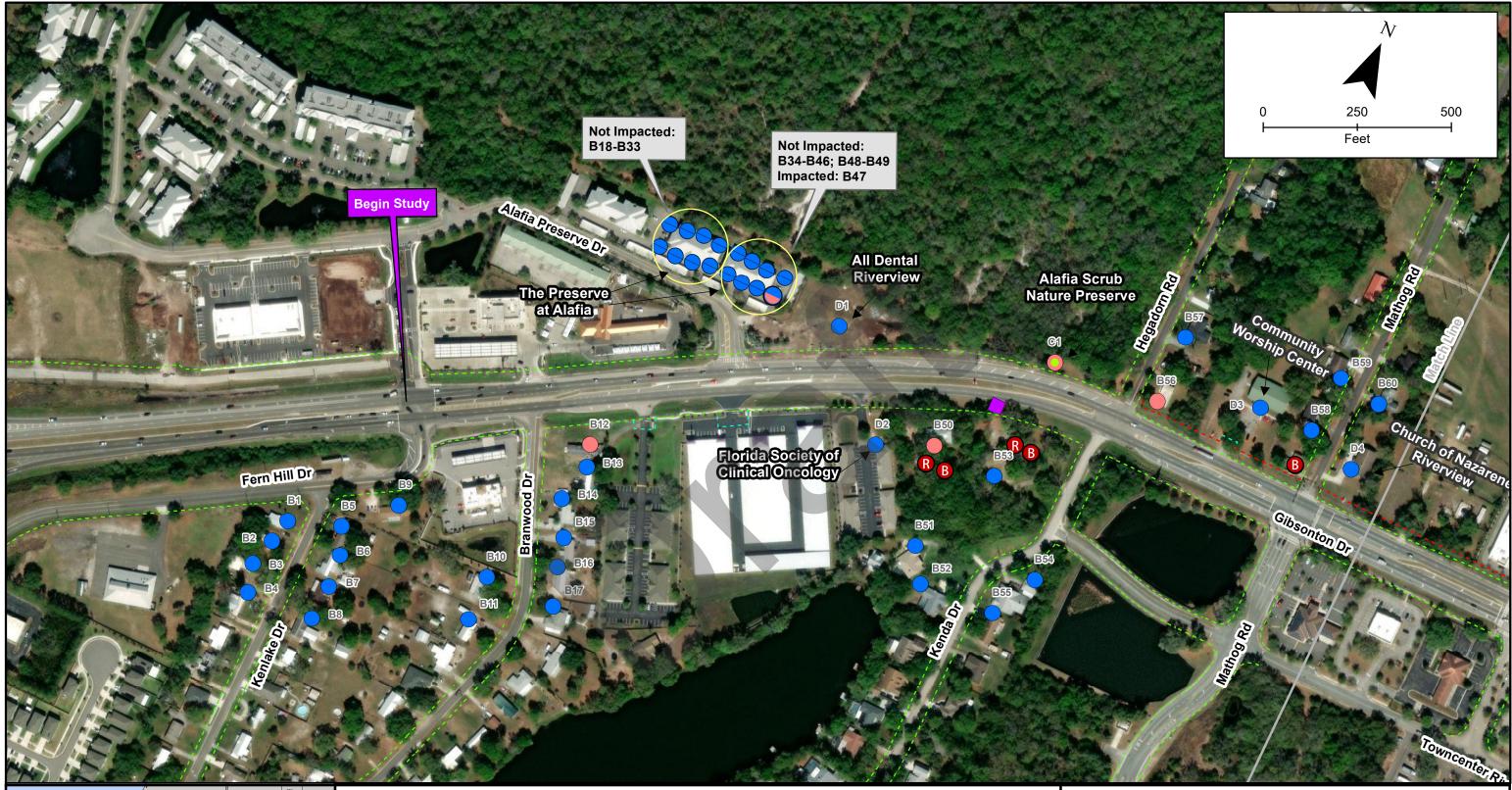
Print Name

Signature

Federal Aid Number(s):		
FPID Number(s):	450438-1-22-01	
State/Federal Route No.:		
Road Name:	US 301	
Project Description:	PD&E Studies Gibsonton Dr from Fe	rn Hill Dr to US 301
Segment Description:	US 301, south of Gibsonton Dr	
Section Number:		
Mile Post To/From:		
Existing Facility:		D = 60.0 %
		T24 = 5.0 % of 24 Hour Volume
Year:	2022	Tpeak = 3.0 % of Design Hour Volume
		MT = 3.2 % of Design Hour Volume
LOS C Peak Hour Directional Vol	ume: 3154	HT = 2.6 % of Design Hour Volume
Demand Peak Hour Volume:	2878	B = 0.5 % of Design Hour Volume
Posted Speed:	45	MC = 0.2 % of Design Hour Volume
No Duild Alternative (Design Ver		
No Build Alternative (Design Yea	irj:	$D = \frac{60.0 \%}{5.0 \% \text{ of } 24 \text{ Hour Volume}}$
Year:	2045	Tpeak = 3.0 % of Design Hour Volume
real.	2043	MT = 3.2 % of Design Hour Volume
LOS C Peak Hour Directional Vol	ume: 3154	HT = 2.6 % of Design Hour Volume
Demand Peak Hour Volume:	3672	B = 0.5 % of Design Hour Volume
Posted Speed:	45	MC = 0.2 % of Design Hour Volume
i osteu opeeu.		
Build Alternative (Design Year):		D = 60.0 %
		T24 = 5.0 % of 24 Hour Volume
Year:	2045	Tpeak = 3.0 % of Design Hour Volume
		MT = 3.2 % of Design Hour Volume
		HT = 2.6 % of Design Hour Volume
LOS C Peak Hour Directional Vol		
Demand Peak Hour Volume:	ume: 3154 3672	B = 0.5 % of Design Hour Volume
	the second se	
Demand Peak Hour Volume:	3672	B = 0.5 % of Design Hour Volume

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:	Jeffrey S. Novotny, PE, AICP, RSP1	Jeffrey Novotny	Date:	10/25/2023
	Print Name	Signature		


I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

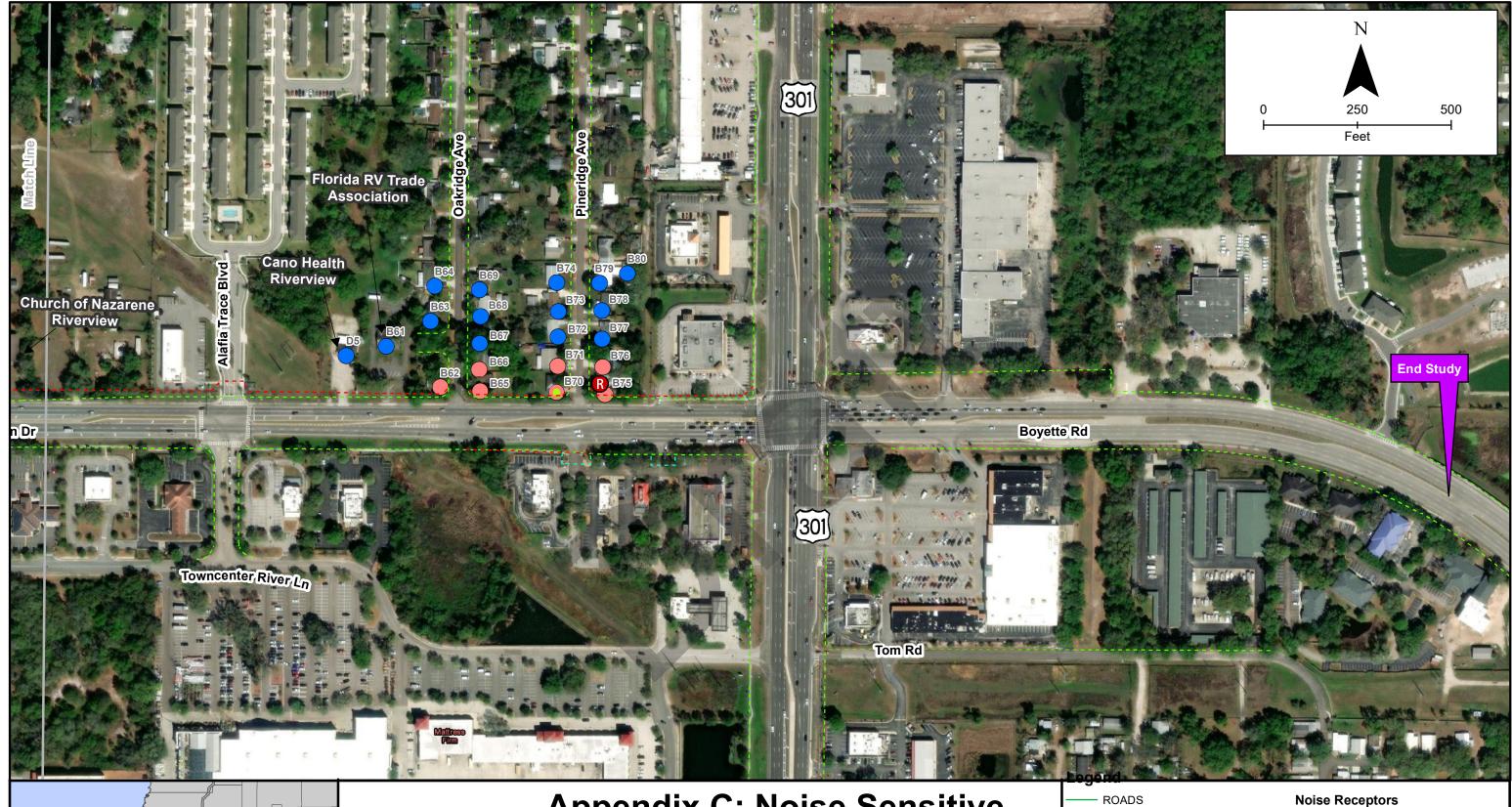
Print Name

Signature

APPENDIX C Noise-Sensitive Receptor Sites

Appendix C: Noise Sensitive Receptor Map Gibstonton Drive PD&E Study From Fern Hill Drive to US 301

FPID: 450438-1 Hillsborough County Legend **Relocation - Type** B Business R Residential . _ _ _ ----- - -

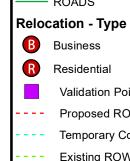

- Proposed ROW
- Temporary Construction Easement
- Existing ROW
- Validation Point

Noise Receptors

\bigcirc	
\bigcirc	
\bigcirc	

Not Impacted Impacted

- Impacted, Benefited
- Not Impacted, Two-Story Building
- Impacted, Two-Story Building



Appendix C: Noise Sensitive Receptor Map Gibstonton Drive PD&E Study From Fern Hill Drive to US 301

FPID: 450438-1 Hillsborough County

- Validation Point
- Proposed ROW
- Temporary Construction Easement
- Existing ROW

Not Impacted

- Impacted
- Impacted, Benefited
- Not Impacted, Two-Story Building
- Impacted, Two-Story Building

APPENDIX D Noise Model Validation Data

Noise Validation Data

Location (Address and County)/Site Identification		Survey
		No.
Busstep	700	1
Gibsonton Drive @ Kenda Drive (Hillsborrough County)	789	1

Date	Calibration Begin	Calibration End	Time Begin	Time End	Measured dB(A)
08/04/23	(0:17	10:18	11:0)	10:34	76.2

	Weather Data						
Temperature	Precipitation/ Humidity	Wind Speed Direction					
85	20	72%	Omph_				

Traffic Classification - NB SB 🔞 EB

Cars	Med Trucks	Heavy Trucks	Buses	Motorcycles
231	7	5	1	-

Traffic Classifications - NB SB WB 🔞

Cars	Med Trucks	Heavy Trucks	Buses	Motorcycles
142	5	6		

Measurements Taken By:

Tom Daniel, Juan Martinez, Cameron Jones

Other Comments:

Noise Validation Vehicle Speeds

Location (Address and County)/Site Identification	Station Number	Survey No.
Cribsonton Drive @ Kenda Drive - Bus Stop (Hillsborough County)	789	1
Speed Counts - NB SB WB FB		

			Sp	eed Counts	- NB SB 🕅	B EB			
Cars	Cars	Cars	Cars	M. Trucks	M. Trucks	H. Trucks	H. Trucks	Buses	M. Cycles
35	47	43		46		37			
47	45	40		40		32			
45	44			36		38			
41	43			44		45			
49	47					46			
45	41								
41	42								
79	41								
55	44								
47	43								
48	40								
46	45								

Speed	Counts	- NB	SB	WB	B	
				_		_

Cars	Cars	Cars	Cars	M. Trucks	H. Trucks	H. Trucks	Buses	M. Cycles
35	53			44	36	N		
49	35			41	42			
51	50			35	40			
41	47			41	39			
46	50				50			
42	SI				40			
46	49							
50	48							
49	44							
50	35							
52								
44								

Noise Validation Data

Location (Address and County)/Site Identification	Station Number	Survey No.
Gibsonton Drive @ Kenda Drive - Bus Stop (Hillsborough County)	789	2

Date	Calibration Begin	Calibration End	Time Begin Time End		Measured dB(A)	
08/04/23			10:39	10:49	15.3	

 Weather Data

 Temperature
 Cloud/Sun Cover
 Precipitation/ Humidity
 Wind Speed Direction

 86
 20%
 69%
 Omph

Traffic Classification - NB SB W EB

Cars	Med Trucks	Heavy Trucks	Buses	Motorcycles
240	7	2	L	-

Traffic Classifications - NB SB WB

Cars	Med Trucks	Heavy Trucks	Buses	Motorcycles				
151	7	Ч	1	_				
Measurements Taken By: Tom Daniel, Juan Martinez, Cameron Jones								
Other Comments:	loud acce	leration by	car half way	that				

Noise Validation Vehicle Speeds

Location (Address and County)/Site Identification	Station Number	Survey No.
Gibsonton Drive @ Kenda Drive - Bus Stop (Hillsborough County)	789	2

i			34	eed Counts	- IND SD VA	HO ED			,
Cars	Cars	Cars	Cars	M. Trucks	M. Trucks	H. Trucks	H. Trucks	Buses	M. Cycles
41	45			40		38			
48	42			40		35			
37	78			40		36			
48	39					5			
40	34					42			
46	42								
47	47								
49	41								
44	46								
46									
45									
41									

Speed Counts - NB SB

Speed	Counts	- NR	SR	W/R	F R	
Speed	counts	- IND	30	AAD		

Cars	Cars	Cars	Cars	M. Trucks	M. Trucks	H. Trucks	H. Trucks	Buses	M. Cycles
49	34	47		44		22			
48	38	45		48		32			
46	46	48		37		¥			
47	45	51		44		-			
48	46			45		44			
44	54			SS		42			
48	42			41					
40	30								
40	39								
41	42								
45	51								
42	46								

Noise Validation Data

Location (Address and County)/Site Identification	Station Number	Survey No.
Gibsonton Drive @ Kenda Drive - Bus Stop (Hillsborough)	789	3

Date	Calibration Begin	Calibration End	Time Begin	Time End	Measured dB(A)
08/04/23			10:53	11:03	75.4

Weather Data

Temperature	Cloud/Sun Cover	Precipitation/ Humidity	Wind Speed Direction
87	20'1.	67 %	ZWB

Traffic Classification - NB SB WB EB

Cars	Med Trucks	Heavy Trucks	Buses	Motorcycles
235	9	E .	Ο	6

Traffic Classifications - NB SB WB

Cars	Med Trucks	Heavy Trucks	Buses	Motorcycles
165	Ч	S	0	l

Tom Daniel, Juan Martinez and Cameron Jones

Other Comments:

Noise Validation Vehicle Speeds

Location (Address and County)/Site Identification	Station	Survey
	Number	No.
Gibsonton Drive @ Kenda Drive - Bus Stop (Hills borough County)	789	3

Cars	Cars	Cars	Cars		M. Trucks		H. Trucks	Buses	M. Cycles
45	41	Guid		37		38	The fraction	Duses	
46	44			42		45			
44	.51			43		41			
45	44			45		45			
34	43			46		35			
42	47			46		45			
43	44			40					
42	45								
79									
51									
41									
46									

Speed Counts - NB SB WB EB

			Sp	eed Counts	- NB SB W	/B (EB)			
Cars	Cars	Cars	Cars	M. Trucks	M. Trucks	H. Trucks	H. Trucks	Buses	M. Cycles
48	40	42		38		42			47
41	46	27		31		37			
37	42	20		38		39			
91	38	38		44		46			
42	50			44					
52	56								
45	49								
42	45								
46	48								
44	46								
45	47								
43	44								

American Consulting							5 October	2023				
S. Connor							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		521772	2_002									
RUN:		Gibson	ton Dr PD8	E Study Vali	dation 1							
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	pavement type	e shall be use	ed unless	
								a State hi	ghway agenc	y substantiat	es the use	•
ATMOSPHERICS:		68 deg	F, 50% RH	l				of a differ	ent type with	approval of I	HWA.	
Receiver		-										
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase ove	r existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculate
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
Receiver1	1	1	0.0	73.3	66	<u> </u>	3 10	Snd Lvl	73.3	3 0.0)	8
Dwelling Units		# DUs	Noise Re	duction								
_			Min	Avg	Max							
			dB	dB	dB							
			ав	чв				1				
All Selected		1	ав 0.0									
All Selected All Impacted		1		0.0	0.0							

American Consulting							5 October	2023				
S. Connor							TNM 2.5					
							Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		521772	2_002									
RUN:		Gibsor	nton Dr PD8	E Study vali	dation 2							
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	pavement typ	e shall be us	ed unless	
								a State hi	ghway agenc	y substantiat	es the us	е
ATMOSPHERICS:		68 deg	g F, 50% RH	l				of a differ	ent type with	approval of	FHWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier	,		
			LAeq1h	LAeq1h		Increase o	ver existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculat
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
Receiver1		1 1	1 0.0	73.2	2 6	6 7	3.2 10	Snd Lvl	73.2	2 0.0	C	8
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		1	1 0.0	0.0) 0.	0						
All Impacted		1	1 0.0	0.0) 0.	0						
All that meet NR Goal		(0.0	0.0) 0.	0						
All that meet NR Goal		(0.0	0.0	0, 0,	0		<u> </u>				

ent type shall be used unless agency substantiates the use with approval of FHWA.
agency substantiates the use e with approval of FHWA.
agency substantiates the use e with approval of FHWA.
agency substantiates the use e with approval of FHWA.
agency substantiates the use e with approval of FHWA.
agency substantiates the use e with approval of FHWA.
agency substantiates the use e with approval of FHWA.
e with approval of FHWA.
Barrier
lated Noise Reduction
1h Calculated Goal Calculated
minus
Goal
dB dB dB
72.5 0.0 8 -

APPENDIX E TNM Data

Available for review at the District Office

APPENDIX F Barrier Analysis

Available for review at the District Office