FINAL

POND SITING REPORT

I-275 (State Road 93)
 Project Development \& Environment Study

From north of Dr. Martin Luther King, Jr. Boulevard (SR 574) to north of Bearss Avenue (SR 678/CR 582)

Hillsborough County, Florida

ETDM Number: 13854

Florida Department of Transportation District Seven
Tampa, Florida

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by Florida Department of Transportation (FDOT) pursuant to 23 U.S.C. §327 and a Memorandum of Understanding (MOU) dated December 14, 2016 and executed by Federal Highway Administration (FHWA) and FDOT.

January 2019

FINAL

POND SITING REPORT

I-275 (State Road 93)
 Project Development \& Environment Study

From north of Dr. Martin Luther King, Jr. Boulevard (SR 574) to north of Bearss Avenue (SR 678/CR 582)

Hillsborough County, Florida
ETDM Number: 13854
Work Program Item Segment Number: 431821-1

This project evaluates capacity and operational improvements along Interstate 275 including the addition of a general purpose lane in each direction and accommodates transit on the inside shoulders.

Florida Department of Transportation
District Seven
Tampa, Florida

Prepared By:
WSP, Inc.
Tampa, Florida

EXECUTIVE SUMMARY

The Florida Department of Transportation (FDOT), District Seven, is conducting a Project Development and Environment (PD\&E) Study to evaluate the need for capacity and operational improvements along 7.70 miles of State Road 93 (SR 93)/Interstate 275 (I-275) from north of Dr. Martin Luther King, Jr. Boulevard/SR 574 (MLK Boulevard) to north of Bearss Avenue/SR 678/County Road (CR) 582 in Hillsborough County, Florida.

The objective of the PD\&E Study is to assist FDOT in reaching a decision on the type, location, and conceptual design of the l-275 improvements to safely and efficiently accommodate future travel demand. This PD\&E Study documents the need for the improvements and the steps taken to develop and evaluate improvement alternatives along with proposed typical sections, and provision of general purpose lanes with transit accommodations. The anticipated social, physical, and natural environmental effects and costs of these improvements are identified, and the alternatives are compared on a variety of factors to identify the alternative that best balances the benefits (such as improved traffic operations and safety) with the impacts (such as environmental effects and construction costs).

The PD\&E Study satisfies applicable state and federal requirements, including the National Environmental Policy Act, to qualify this project for federal-aid funding of future phases (design, right of way, and construction). The project was evaluated through FDOT's Efficient Transportation Decision Making (ETDM) process. This project was designated as ETDM Project \#13854. An ETDM Final Programming Screen Summary Report was republished on February 7, 2014, containing comments from the Environmental Technical Advisory Team (ETAT) on the project's effects on various natural, physical, and social resources. The lead agency determined the Class of Action to be a Type 2 Categorical Exclusion.

The purpose of this report is to identify and evaluate potential stormwater management facilities (SMF's). Within the project study limits there are 13 roadway drainage basins that will be affected from the proposed improvements. One or two stormwater management facility has been identified for each of the drainage basins. The stormwater management facilities have been designed to treat and attenuate the new impervious area per the Southwest Florida Water Management District criteria. There are 17 proposed stormwater management facilities (swale treatment facilities and/or ponds) for this project. Except for SMF 14B and SMF 15B, all stormwater management facilities are located within the existing right of way. The required right of way for SMF 14B and SMF 15B is 1.40 acres and 2.00 acres respectively. A summary of the preferred pond alternatives for each basin is provided in Table 1 and Table 2.

Table 1: Onsite Storm Water Management Facility’s Summary

Basin Name	Pond Name	Pond Size (Ac)	Outfall Location
Basin 1	Swale 1	1.46	Hillsborough River via an existing 54" storm sewer
	Swale 1A	1.49	
Basin 2	Pond 2	2.49	Hillsborough River via an existing 30" pipe
	Swale 2	1.57	
Basin 3	Swale 3A	1.67	Hillsborough River via an existing inlet / pipe
	Swale 3B	1.46	
Basin 4/5	Swale 4/5	1.84	Hillsborough River via an existing 24 " pipe
Basin 6/7	Swale 6/7	2.48	Exist. Storage Basin No. 1
Basin 8	Pond 8	5.64	FDOT ROW via Exist. Pond A2
Basin 9	Swale 9	4.96	Exist. Storage Basin No. 2
	Swale 9-1		
Basin 10	Swale 10	3.06	FDOT ROW to existing storm sewer along west side of l-275
Basin 11	Swale 11	1.38	FDOT ROW to existing storm sewer along west side of l-275
Basin 12	Swale 12	1.54	FDOT ditch discharging to Curiosity Creek
Basin 13	SMF 13	3.44	Existing control structure in Exist. Pond No. 1 discharging to Curiosity Creek

Table 2: Recommended Offsite Storm Water Management Facility's Summary

Basin Name	Pond Name	Pond ROW Size $(A c)$	Total Pond Cost	Outfall Location
Basin 14	SMF 14B	1.4	$\$ 696,900$	Cypress Creek
Basin 15	SMF 15B	2.0	$\$ 1,913,200$	Cypress Creek
Basin 16	No proposed ponds in Basin 16			
Basin 17	No proposed ponds in Basin 17			

It is estimated the project will have minor floodplain encroachment in Basin 14. Compensation for the floodplain encroachment in Basin 14 will be provided on-site within existing right of way. The floodplain impacts and compensation are shown in Table 3

Table 3: Summary of Floodplain Impacts and Compensation

Basin	100-Year Floodplain Elevation (Ft)	Estimated Impact Volume (acre-feet)	Compensation Volume (acre-feet)	Compensation Site
Basin 14	50.1	1.00	1.00	On-Site within ROW

Table of Contents

EXECUTIVE SUMMARY -i
1.0 SUMMARY OF PROJECT -1
1.1 Description of Proposed Action -1
1.2 Existing Facility -3
1.3 Project Purpose and Need -3
2.0 BUILD ALTERNATIVE -5
2.1 Mainline I-275 -5
2.2 Interchange Build Alternatives -5
3.0 LAND USE -8
4.0 EXISTING ROADWAY DRAINAGE SYSTEM INVESTIGATION -8
4.1 Existing Drainage Conditions 11
4.2 Existing Ponds 11
4.3 Floodplains 12
4.4 Existing Cross Drains and Bridges 12
4.4.1 Existing Cross Drains 12
4.5 Existing Bridges over Water Bodies 13
4.6 Flooding Issues 13
5.0 FLOODPLAINS AND REGULATORY FLOODWAYS 14
6.0 REGULATORY ISSUES AND DESIGN CRITERIA 14
6.1 Water Management 14
6.2 Florida Department of Transportation 15
6.3 Outstanding Florida Water 15
6.4 FDEP Impaired Water Bodies 15
7.0 PROPOSED DRAINAGE BASINS \& PONDS 16
7.1 Basin 1, Swale 1, \& Swale 1A 16
7.1.1 Basin 1 16
7.1.2 Swale 1 16
7.1.3 Swale 1A 17
7.2 Basin 2, Pond 2, \& Swale 2 17
7.2.1 Basin 2 17
7.2.2 Pond 2 17
7.2.3 Swale 2 18
7.3 Basin 3, Swale 3A, \& Swale 3B 18
7.3.1 Basin 3 18
7.3.2 Swale 3A 18
7.3.3 Swale 3B 18
7.4 Basin $4 / 5$ \& Swale $4 / 5$ 19
7.4.1 Basin $4 / 5$ 19
7.4.2 Swale 4/5 19
7.5 Basin 6/7 \& Swale 6/7 19
7.5.1 Basin 6/7 19
7.5.2 Swale 6/7 20
7.6 Basin 8 \& Pond 8 20
7.6.1 Basin 8 20
7.6.2 Pond 8 20
7.7 Basin 9, Swale 9, \& Swale 9-1 21
7.7.1 Basin 9 21
7.7.2 Swale 9 \& Swale 9-1 21
7.8 Basin 10 \& Swale 10 21
7.8.1 Basin 10 21
7.8.2 Swale 10 22
7.9 Basin 11 \& Swale 11 22
7.9.1 Basin 11 22
7.9.2 Swale 11 23
7.10 Basin 12 \& Swale 12 23
7.10.1 Basin 12 23
7.10.2 Swale 12 23
7.11 Basin 13 \& SMF 13 24
7.11.1 Basin 13 24
7.11.2 SMF 13 24
7.12 Basin 14 \& SMF 14B 24
7.12.1 Basin 14 24
7.12.2 SMF 14B 25
7.13 Basin 15 \& SMF 15B 25
7.13.1 Basin 15 25
7.13.2 SMF 15B 26
7.14 Basin 16 26
7.14.1 Basin 16 26
7.14.2 Pond Discussion 27
7.15 Basin 17 27
8.0 FLOODPLAIN COMPENSATION SITE 27
9.0 CONCLUSION 31
List of Appendices
Appendix A: Existing Bridge Data
Appendix B: Existing Conditions Data Collection
Appendix C: FEMA Maps
Appendix D: SWFWMD Pre-Application Meeting Minutes
Appendix E: FDEP WBID Map \& Impaired List
Appendix F: Pond Sizing, 100-Year Floodplain Calculations, and Bridge Cost Estimate
Appendix G: Drainage Maps
Appendix H: Environmental Assessments
Appendix I: Right of Way Cost Estimates
List of Figures
Figure 1: Project Location Map 2
Figure 2: I-275 Existing Typical Sections 4
Figure 3: I-275 Proposed Typical Section 7
Figure 4: Existing Land Use 9
Figure 5: Future Land Use. 10
List of Tables
Table 1: Onsite Storm Water Management Facility's Summary ii
Table 2: Recommended Offsite Storm Water Management Facility's Summary iii
Table 3: Summary of Floodplain Impacts and Compensation iii
Table 4: Summary of Existing Pond Names and Associated Projects 11
Table 5: I-275 Main Storm and Cross Drains 12
Table 6: Verified Impaired Waters 16
Table 7: Pond Engineering Data \& Analysis Summary 28
Table 8: Basin 14 Pond Alternatives Matrix 29
Table 9: Basin 15 Pond Alternatives Matrix 30

List of Appendices

Appendix A: Existing Bridge Data
Appendix B: Existing Conditions Data Collection
Appendix C: FEMA Maps
Appendix D: SWFWMD Pre-Application Meeting Minutes
Appendix E: FDEP WBID Map \& Impaired List
Appendix F: Pond Sizing, 100-Year Floodplain Calculations, and Bridge Cost Estimate
Appendix G: Drainage Maps
Appendix H: Environmental Assessments
Appendix I: Right of Way Cost Estimates

1.0 SUMMARY OF PROJECT

The Florida Department of Transportation (FDOT), District Seven, is conducting a Project Development and Environment (PD\&E) Study to evaluate the need for capacity and operational improvements along 7.70 miles of State Road 93 (SR 93)/Interstate 275 (I-275) from north of Dr. Martin Luther King, Jr. Boulevard/SR 574 (MLK Boulevard) to north of Bearss Avenue/SR 678/County Road (CR) 582 in Hillsborough County, Florida.

The objective of the PD\&E Study is to assist FDOT in reaching a decision on the type, location, and conceptual design of the l-275 improvements to safely and efficiently accommodate future travel demand. This PD\&E Study documents the need for the improvements and the steps taken to develop and evaluate improvement alternatives along with proposed typical sections and interchange enhancement alternatives.

1.1 Description of Proposed Action

The proposed action evaluates the need to provide capacity and operational improvements along 7.70 miles of State Road 93 (SR 93)/Interstate 275 (I-275) from north of MLK Boulevard to north of Bearss Avenue in Hillsborough County, Florida (see Figure 1). This evaluation considers the operational and highway safety benefits of implementing capacity improvements and compares them to the cost savings and minimization of adverse impacts associated with a No-Build Alternative. An evaluation matrix compares the No-Build and Build Alternative on a variety of factors. This process identifies the alternative that best balances the benefits (such as improved traffic operations and safety) with the impacts (such as environmental effects and construction costs).

The Build Alternative includes one additional travel lane in each direction of I-275. The proposed typical section contains four 12-foot general purpose lanes in each direction and accommodates transit on the inside shoulders. The improvements would be constructed on the existing alignment with the same existing horizontal and vertical geometries. All the proposed improvements within the I-275 project corridor would be accomplished within the existing right of way. Minimal right of way may be required at the Bearss Avenue interchange for storm water ponds.

Planning for the Tampa Bay area interstates began in the late 1980s with the Tampa Interstate Study (TIS) Master Plan being approved in late 1980s with improvements outlined to relieve congestion and improve mobility. The TIS Master Plan included additional travel lanes on the Tampa Bay area interstates and included a transit envelope for the east-west movement but not along this segment of l-275.

Figure 1: Project Location Map

In 2013, building upon the original TIS Master Plan, the Tampa Bay Express (TBX) program was developed to provide guidance for improvements to the Tampa Bay interstate system and identified freeway segments (including this segment of I-275) for the addition of tolled express lanes. In 2017, FDOT District Seven reset TBX to Tampa Bay Next (TBNext) to demonstrate its commitment to comprehensive, integrated transportation planning and development. As part of TBNext, FDOT District Seven committed to remove the express lanes from this segment of I-275 and allow the l-75 corridor to provide the north/south express lanes movement. Providing express lanes on I-75 is more regionally focused.

The improvements proposed for this segment of I-275, from north of MLK Boulevard to north of Bearss Avenue, will include one additional general purpose lane in each direction and improvements to the inside shoulder that will allow for the integration of infrastructure for transit.

1.2 Existing Facility

I-275 is a limited access freeway that runs in a north-south direction within the project limits. I-275 is part of the Federal Highway System (National Highway System) Interstate System, Florida's State Highway System, and the Strategic Intermodal System (SIS). Within the project limits there are seven interchanges:

- Hillsborough Avenue
- Sligh Avenue
- Bird Street
- Busch Boulevard

The existing l-275 is a six-lane divided typical section which varies slightly throughout the project limits (see Figure 2). The posted speed varies from 55 mph to 65 mph . The existing right of way along l-275 ranges from approximately 220 feet between Linebaugh Avenue and Bougainvillea Avenue to approximately 1,400 feet at the Busch Boulevard interchange.

The l-275 corridor contains 18 bridges. Fourteen bridges span roadways, two bridges span both a roadway and railroad tracks, and two bridges span waterways. The 14 bridges over roadways do not meet the required minimum vertical clearance of 16.5 feet. The bridges over Busch Boulevard and US 41/Nebraska Avenue that span both a roadway and a railroad meet the minimum vertical clearance of 16.5 feet over roadways, but do not meet the required minimum vertical clearance of 23.5 feet over railroads.

1.3 Project Purpose and Need

The purpose of the project is to evaluate additional lanes along l-275 from north of MLK Boulevard to north of Bearss Avenue to increase capacity and relieve congestion. These improvements are expected to enhance the overall safety and improve the operating conditions of the facility within the project limits.

Statewide and regional transportation plans and studies by FDOT and the Hillsborough County Metropolitan Planning Organization (MPO) identify the need for interstate improvements.

Figure 2: I-275 Existing Typical Sections

This segment of l-275 provides a vital connection to area tourist and recreational destinations, major employment/activity centers, and the University of South Florida; and is a convenient route for commuters and other work-related travel both north and south of the area. The corridor is also critical to the transport of goods and services. The capacity improvements are needed to accommodate projected future traffic and enhance corridor mobility and safety.

The need for improvements on this segment of l-275 is based on several factors. These factors include plan consistency, regional connectivity, improving safety and capacity, enhancing emergency evacuation, accommodating projected population and employment growth, supporting multi-modal service, and providing access to intermodal and freight centers.

2.0 BUILD ALTERNATIVE

2.1 Mainline I-275

The Build Alternative includes widening l-275 from an existing six-lane divided interstate to an eight-lane divided interstate, plus accommodating transit on the inside shoulder. The Bearss Avenue interchange will be reconfigured and operational improvements will be implemented at Hillsborough Avenue; no other interchange configurations will change with the improvements.

The proposed typical section includes eight 12-foot wide general purpose lanes (four in each direction), two 15-foot wide inside shoulders which accommodate transit, 12-foot wide outside shoulders, and a 2 -foot wide concrete barrier separating the two directions of travel. The proposed I-275 mainline typical section is shown Figure 3.

The existing horizontal and vertical alignment will be maintained in the Build Alternative to avoid right of way impacts. The proposed improvements for mainline $\mathrm{I}-275$ will take place within the existing right of way. Minimal right of way may be required at the Bearss Avenue interchange for storm water ponds.

2.2 Interchange Build Alternatives

The interchange ramps along the corridor will accommodate the mainline widening of I-275, but the interchange configurations will not change, with the exception of Hillsborough Avenue and Bearss Avenue interchanges. Operational improvements will be included at these two interchanges.

On Hillsborough Avenue, east of I-275, a signal is proposed for the on-ramp for I-275 northbound. An eastbound to northbound dual left will be constructed at this intersection by widening Hillsborough Avenue to accommodate more vehicles entering I-275. Also, the I-275 northbound loop off-ramp will be reconstructed to direct traffic to this proposed signalized intersection.

The vertical and horizontal constraints at the existing bridges at the Bearss Avenue interchange cannot accommodate the proposed improvements; thus, the Bearss Avenue interchange will be reconstructed as a single point urban interchange (SPUI). The design
includes reconstructing the l-275 bridge over Bearss Avenue and reconstructing the on- and off-ramps from the l-275 gores to approximately halfway to the Bearss Avenue intersection. The bridge design will accommodate potential future widening of Bearss Avenue.

The future configuration would have one traffic signal underneath the l-275 bridge to control through traffic on Bearss Avenue and left-turning traffic entering or exiting l-275 at the intersection.

Figure 3: l-275 Proposed Typical Section

3.0 LAND USE

Within 500 feet of the corridor, there are four major existing land uses: high density residential, transportation, commercial/services, medium density residential, and public/semi-public. Future land-use maps from the City of Tampa (effective July 6, 2014) and Unincorporated Hillsborough County (effective October 4, 2014) indicate most the land use along the project corridor is planned to be residential, office/commercial, community commercial, urban mixed use, and public/semi-public. The existing and future land uses are shown in Figure 4 and Figure 5.

4.0 EXISTING ROADWAY DRAINAGE SYSTEM INVESTIGATION

Existing drainage characteristics in the study area were determined from reviewing FDOT construction plans, FDOT Drainage Complaint History, the Straight-Line Diagrams of Road Inventory, Southwest Florida Water Management District (SWFWMD) permitted plans and documentation, Natural Resources Conservation Service (NRCS) Soils data, and Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM). Field reviews were conducted to verify existing drainage structures, identify potential pond sites, and determine drainage boundaries.

Figure 4: Existing Land Use

Figure 5: Future Land Use

4.1 Existing Drainage Conditions

The project is located mainly within the Hillsborough Bay Watershed which encompasses 1,282 square miles. The remaining area of the I-275 project lies within the Coastal Old Tampa Bay Watershed which spans 338 square miles. Both watersheds ultimately drain to Tampa Bay. Both Hillsborough Bay and Coastal Old Tampa Bay Watersheds are part of the larger regional Tampa Bay Watershed which encompasses 2,200 square miles. The drainage basins in the study area as delineated by the Southwest Florida Water Management District (SWFWMD) include the Hillsborough River, Sulphur Springs, Curiosity Creek, Chapman Lake Outlet, and Cypress Creek. The only major water body within the project limits is the Hillsborough River.

4.2 Existing Ponds

Within the project limits there are several existing ponds that were either built during the original construction of I-275 or during subsequent improvement projects. Table 4 summarizes the existing ponds within the project limits.

Table 4: Summary of Existing Pond Names and Associated Projects

Basin Name	Pond Name	Purpose for Existing Stormwater Facility	Proposed Modification
7	Exist. Storage Basin No. 1	Design during the original construction of I275 to provide attenuation	No Modification
8	Exist. Pond A2	Designed to provide treatment \& attenuation for improvements along l-275 at Busch Blvd	No Modification
8	Exist. Pond A3	Designed to provide treatment \& attenuation for improvements along l-275 at Busch Blvd	No Modification
9	Exist. Storage Basin No. 2	Design during the original construction of I275 to provide attenuation	No Modification
9	Exist. Storage Basin No. 3	Historical attenuation site	No Modification
10	Exist. Pond No. 1 East	Designed to provide treatment \& attenuation for I-275 improvements between Fowler Ave and Fletcher Ave	Modify to provide additional treatment \& attenuation for currently proposed improvements
10	Exist. Pond No. 1 West	Designed to provide treatment \& attenuation for I-275 improvements between Fowler Ave and Fletcher Ave	Modify to provide additional treatment \& attenuation for currently proposed improvements
13	Exist. Pond No. 1	Designed to provide treatment \& attenuation for I-275 improvements between Fowler Ave and Fletcher Ave	Proposed Pond Expansion
14	Exist. Pond No. 2	Designed to provide treatment \& attenuation for I-275 improvements between Fowler Ave and Fletcher Ave	Proposed Pond Expansion
16	$\begin{aligned} & \text { Exist. Pond No. } \\ & 3 \end{aligned}$	Designed to provide treatment \& attenuation for l-275 north of Bearss Ave	No Modification

4.3 Floodplains

Information obtained from the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs) shows the project crosses through the limits of the 100-year floodplain at several locations along the project corridor. Segments where potential impacts to the 100-year floodplain could occur are shown on FEMA Map No. 12057C0214H and 12057 C 0204 H . The FEMA maps are provided in Appendix C.

According to FEMA, the Hillsborough River is a regulated floodway at the I-275 bridge crossing. The base flood elevation North American Vertical Datum of 1988 (NAVD 88) for the Hillsborough River at the bridge crossing is 10.0 feet. There are minor floodplain impacts anticipated at the River due to proposed piles being placed in the River.

4.4 Existing Cross Drains and Bridges

4.4.1 Existing Cross Drains

The Location Hydraulics Memorandum (LHM) for this project identified 16 cross drains that traverse I-275 within the study limits. The cross drain sizes and locations were determined using existing drainage maps, Straight Line Diagrams (SLD's), SWFWMD permit research, and field investigations. Additional information on the existing cross drains is provided in the LHM. Table 5 summarizes the existing cross drain data.

Table 5: I-275 Main Storm and Cross Drains

Basin No.	Station (CL of Const.)	Size (inch)	Comment
1	1810+50	(2) 54	Closed Storm Sewer
2	1827+25	30	Closed Storm Sewer
3	1867+60	24	Closed Storm Sewer
4/5	1887+70	24	Closed Storm Sewer
7	1940+00	48	Closed Storm Sewer
8	1974+28	36	Closed Storm Sewer
9	1988+41	42	Closed Storm Sewer
9	1994+71	42	Closed Storm Sewer
9	2016+31	42	Closed Storm Sewer
9	2021+46	36	Closed Storm Sewer
10	2047+95	24	Open Cross Drain
11	2060+69	30	Discharges to Sink Hole
12	2070+46	30	Open Cross Drain
13	2094+70	24	Open Cross Drain
14	2136+24	36	Open Cross Drain
15	2157+27	36	Open Cross Drain

4.5 Existing Bridges over Water Bodies

Within the project corridor, I-275 crosses the Hillsborough River which is the only major water body in the project area. The existing bridge (Bridge No. 100218) over the Hillsborough River was originally constructed in 1967 and later widened in 2011. The current bridge consists of five 60 -foot spans with an overall bridge length of 300 feet as measured along the centerline of I-275. The overall out-to-out bridge width is 163 feet 1 inch. The Plan and Elevation Sheet and the Bridge Hydraulics Recommendations Sheet from the existing bridge plans are included in Appendix A.

4.6 Flooding Issues

According to the FDOT District Seven Drainage Flood Inventory, there are five documented drainage complaints within the project limits. It is recommended that the flooding complaints within and adjacent to the project area be researched during the design phase of the project. The five drainage complaints are summarized in this section.

During storm events in 2003, Central Avenue (near the l-275 southbound exit ramp) experienced roadway flooding; and, as a result, residential yards and areas adjacent to a house near Fowler Avenue flooded. A recommendation was made to re-grade and lower the ditch to help relieve flooding during storm events. This work was completed and the flooding complaint (\#1002042009547) was closed.

In another area on 122nd Avenue adjacent to I-275, a residential property located at 702 E 122nd Avenue is experiencing flooding in the front and back side of the house. Based on the flooding complaint (\#1006172010814), Taliaferro Avenue (which intersects with $122^{\text {nd }}$ Avenue) is an area predisposed to flooding. Due to right of way constraints, maintaining this ditch along I-275 is very difficult. Improving the I-275 ditch maintainability may alleviate some of the runoff being sent offsite during heavy rainfall events. This area is likely to be evaluated in more detail during the design phase.

The area at the end of 126th Street, near the noise wall on the east side of I-275 is subject to local roadway flooding. A local resident that lives on the south side of 126th Street was interviewed. According to this resident the roadway area fills with water, then seeps into the ground after the rain stops. FDOT coordinated with Hillsborough County who agreed to survey the area to get a better idea of the existing conditions. Roadway flooding was also reported along 127th Avenue; however, it was addressed by the County. Modification of existing soundwall panel at end of 126th St may still need to be incorporated into this project's design, and design coordination with District Drainage is recommended during design phase. These flooding complaints are referenced as \#1003282013398 and \#1007022010774 in the District Seven flooding inventory system

There is a flooding complaint (\#1012242009952) associated with April Lane and Garland Court west of I-275. It is reported that the construction of a FDOT I-275 stormwater pond has worsened flooding problems in the receiving wetland system and the surrounding residential area. An alternative analysis was performed and the recommendation was to modify the existing control structure to decrease discharge. This flooding complaint is likely to be verified and analyzed during the design phase of this project.

A flooding complaint located south of the intersection of I-275 and Nebraska Avenue was submitted to the FDOT in August 2015. The complaint states that a FDOT pond overtops and floods adjacent properties including Clear Lane. The stormwater pond was created by enlarging an existing surface water to accommodate the stormwater requirements for the widening of l-275 from four to six lanes. An investigation report of the flooding was performed and submitted to FDOT District Seven titled "Pond 3 Drainage Design (I-275/US 41 Apex)". Based on the report's preliminary recommendation, the flooding of the adjacent proprieties is attributed to the fact that the historical overtopping elevation is higher than surrounding properties. Therefore, no action is recommended.

5.0 FLOODPLAINS AND REGULATORY FLOODWAYS

Information obtained from the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs) shows the project crosses through the limits of the 100-year floodplain at several locations along the project corridor. Segments where potential impacts to the 100-year floodplain could occur are shown on FEMA Map No. 12057C0214H and 12057 C 0204 H . The FEMA maps are provided in the Appendix C.

According to FEMA, the Hillsborough River is a regulated floodway at the I-275 bridge crossing. The base flood elevation North American Vertical Datum of 1988 (NAVD 88) for the Hillsborough River at the bridge crossing is 10.0 feet. There are minor floodplain impacts anticipated at the River due to proposed piles being placed in the River.

6.0 REGULATORY ISSUES AND DESIGN CRITERIA

The design of the SMF's is governed by the rules and criteria set forth by the SWFWMD and FDOT. The criteria are established in the State Wide Environmental Resource Permit (ERP) Applicants Handbook (2018) Volumes I and II, the FDOT Drainage Manual (January 2018) and the FDOT Stormwater Management Facility Handbook (January 2004). The criteria as it pertains to the regulatory agency are discussed in the following sections.

A pre-application meeting was conducted with SWFWMD on Tuesday, July $21^{\text {st }}, 2015$. Based on the meeting, the project will be required to provide water quality treatment per Section 4.8 of the ERP Applicant's Handbook Volume II. The meeting minutes from the pre-application are provided in Appendix D.

6.1 Water Management

Water Quality

- Wet Detention
- Treatment - One inch of rainfall from the new impervious area
- Dry Retention
- Treatment - The first one inch of rainfall from the new impervious area

Note: The existing dry ponds within the study limits treat one inch of rainfall from their basin areas. Therefore, the proposed dry ponds were designed to treat one inch of rainfall from the new impervious area.

Water Quantity

- Open Basin
- Detention of the post-development peak discharge rate to the predevelopment peak discharge rate for the SWFWMD 25-year/24-hour storm event.
- Volume Sensitive (Curiosity Creek and Hillsborough Reservoir)

Retain the post-development runoff volume less the pre-development runoff volume for the SWFWMD 100-year/24-hour storm event.

6.2 Florida Department of Transportation

The stormwater ponds were sized based on criteria established in the FDOT Drainage Manual 2018. The criteria used in the pond sizing are:

- A minimum 15-foot wide maintenance berm with at least $1: 8$ slope or flatter.
- Pond side slopes shall be at least 1:4 from the top of bank to the seasonal high water elevation. A slope of $1: 2$ shall be used from two feet below the seasonal high water elevation to the pond bottom.
- The radii of the inside edge of the maintenance berm shall be at least 30 feet.

A coordination meeting with FDOT District Seven Drainage staff was conducted on July $1^{\text {st }}$, 2015 to present the pond locations and their configurations. During the coordination meeting, the exceptions to the above criteria were discussed. The pond typical sections, which include the exceptions, were presented to District Seven Drainage and Maintenance staff for their review. The exceptions to the typical sections were approved by FDOT staff. Any exceptions to the pond typical sections are noted in Section 7.0.

6.3 Outstanding Florida Water

Based on the ETDM Programming Screen, portions of the Hillsborough River are an Outstanding Florida Water (OFW). However, these portions of the Hillsborough River are not within the vicinity of this project.

6.4 FDEP Impaired Water Bodies

The project limits were evaluated for impairment as identified by the Florida Department of Environmental Protection (FDEP). FDEP has identified three basins within the project limits that are impaired according to their Water Body Identification Numbers (WBIDs). A map showing the WBIDs and the verified impairment list is provided in Appendix E. The WBIDs and the impairments are summarized in Table 6. The pollutant loading calculations will be performed during the design phase of the project.

Table 6: Verified Impaired Waters

Planning Unit	Water Body Identification	Water Segment Name	Impairment
Hillsborough River	1523	Curiosity Creek	Fecal Coliform
Hillsborough River	1443 H	Hillsborough Reservoir	Nutrients (Total Phosphorus)
Hillsborough River	1402	Cypress Creek	Fecal Coliform

7.0 PROPOSED DRAINAGE BASINS \& PONDS

The study area contains 13 separate roadway drainage basins. Stormwater runoff from each basin will be collected by a stormsewer system and conveyed to a proposed pond. The ponds are numbered from south to north with one or two recommended alternatives per drainage basin. All existing basin outfalls will be maintained following the construction of the roadway improvements. The pond sizing calculations and drainage maps are provided in Appendix F and Appendix G, respectively. The engineering used in the pond sizing is show in Table 7, Table 8, and Table 9.

7.1 Basin 1, Swale 1, \& Swale 1A

7.1.1 Basin 1

Roadway drainage Basin 1 begins at East Osbourne Avenue at station 3787+30 and extends north to East Hillsborough Avenue at station 3814+78. Recent safety improvements along this segment of I-275 began at approximately station 3800+00 and continued to north of Yukon Street. The improvements included an inside shoulder for both the northbound and southbound travel lanes separated by a concrete median barrier wall. The improvements were permitted in February 2011 under SWFWMD Application Number 644130. Based on this permit, the safety improvements were exempt from stormwater treatment. Under the proposed improvements, 2.02 acres of additional pavement will be added to the basin. Treatment and attenuation for the additional runoff will be provide in two proposed roadside swales referred to as Swale 1 and Swale 1A.

7.1.2 Swale 1

Swale 1 is a 0.45 -acre dry retention swale located along the east side of l-275 between station 3800+51 and station 3805+62. The United States Department of Agriculture (USDA) Natural Resources Conversation Service (NRCS) has classified the soils at the pond site as Tavares Urban land with Hydrologic Soil Group A. The NRCS estimates the depth to the seasonal high water elevation at 4.75 feet. The swale will provide treatment and attenuation for 0.98 acres of new pavement. The required treatment volume for the additional pavement is 0.08 acre-feet which will be accomplished in 0.32 feet of pond depth. The pond will outfall to a 54 -
inch storm sewer located at station 3810+51. The 54-inch storm sewer ultimately discharges to the Hillsborough River.

7.1.3 Swale 1A

Swale 1 A is a 0.46 -acre dry retention swale located along the west side of I-275 between station $3800+69$ and station $3806+44$. The NRCS has classified the soils at the pond site as Tavares Urban land with Hydrologic Soil Group A. The NRCS estimates the depth to the seasonal high water elevation at 4.75 feet. The swale will provide treatment and attenuation for 1.04 acres of new pavement. The required treatment volume for the additional pavement is 0.09 acre-feet which will be accomplished in 0.34 feet of pond depth. The pond will outfall to a 54 -inch cross drain located at station $3810+51$. The 54 -inch cross drain ultimately discharges to the Hillsborough River.

Due to right of constraints, the swales were sized with 10-foot maintenance berms and 1:4 side slopes. Construction of Swale 1 and Swale 1A will not require additional right of way.

7.2 Basin 2, Pond 2, \& Swale 2

7.2.1 Basin 2

Roadway drainage Basin 2 begins at East Hillsborough Avenue at station 3814+78 and extends to south of East Hanna Avenue at station 3835+00. Recent safety improvements along this segment of l-275 include an inside shoulder for both the northbound and southbound travel lanes that are separated by a concrete median barrier wall. The improvements were permitted in February 2011 under SWFWMD Application Number 644130. Based on this permit, the safety improvements were exempt from stormwater treatment. Under the proposed improvements, 1.03 acres of additional pavement will be added to the basins. Treatment and attenuation for the additional runoff will be provided in an infield pond and roadside swale referred to as Pond 2 and Swale 2, respectively.

7.2.2 Pond 2

Pond 2 is a 1.27 -acre dry retention pond located within the loop for the off-ramp interchange from northbound I-275 to westbound East Hillsborough Avenue. According to the NRCS, the soils at the pond site are classified as Tavares Urban land with Hydrologic Soil Group A. The NRCS estimates the depth to the seasonal high water elevation at 4.75 feet. The pond will provide treatment for 0.05 acres of pavement that is currently not treated. The required treatment volume for the additional pavement is 0.004 acre-feet which will be accomplished in 0.10 feet of pond depth. The pond will outfall to a roadside ditch along the northbound onramp that discharges to a 30 -inch cross drain located at station $3827+26$. The 30 -inch cross drain ultimately discharges to the Hillsborough River.

The pond was sized with a 15-foot maintenance berm and 1:4 side slopes. Construction of the pond will not require additional right of way.

7.2.3 Swale 2

Swale 2 is a 0.37 -acre dry retention pond located along the west side of I-275 from station $3823+72$ to station 3827+02. According to the NRCS, the soils at the pond site are classified as Tavares Urban land with Hydrologic Soil Group A. The NRCS estimates the depth to the seasonal high water elevation at 4.75 feet. The swale will provide treatment and attenuation for 0.98 acres of new pavement. The required treatment volume for the additional pavement is 0.08 acre-feet which will be accomplished in 0.39 feet of pond depth. The pond will outfall to a 30 -inch cross drain located at station 3827+27. The cross drain ultimately discharges to the Hillsborough River.

Due to right of way constraints, the swale was sized with a 10-foot maintenance berm and 1:4 side slopes. Construction of the swale will not require additional right of way.

7.3 Basin 3, Swale 3A, \& Swale 3B

7.3.1 Basin 3

Roadway drainage Basin 3 begins south of East Hanna Avenue at station 3835+00 and extends north to Sligh Avenue at station 3867+55. Recent safety improvements along this segment of I-275 include an inside shoulder for both the northbound and southbound travel lanes that are separated by a concrete median barrier wall. The improvements were permitted in February 2011 under SWFWMD Application Number 644130. Based on this permit, the safety improvements were exempt from stormwater treatment. Under the proposed improvements, 1.33 acres of additional pavement will be added to the basin. Treatment and attenuation for the additional runoff will be provided in two roadside swales referred to as Swale 3A and Swale 3B.

7.3.2 Swale 3A

Swale 3A is a 0.66 -acre dry retention facility located south of East Hanna Avenue along the east side of I-275. According to the NRCS, the soils at the swale are classified as Candler Urban land and Tavares Urban land both with Hydrologic Soil Group A. The NRCS estimates the depth to the seasonal high water elevation between 4.75 feet to greater than 6.56 feet. The required treatment volume for the additional pavement is 0.07 acre-feet which will be accomplished in 0.15 feet of pond depth.

7.3.3 Swale 3B

Swale 3B is a 0.34 -acre dry retention facility located south of East Hanna Avenue along the west side of I-275. According to the NRCS, the soils at the swale are classified as Candler Urban land and Tavares Urban land both with Hydrologic Soil Group A. The NRCS estimates the depth to the seasonal high water elevation between 4.75 feet to greater than 6.56 feet. The required treatment volume for the additional pavement is 0.04 acre-feet which will be accomplished in 0.19 feet of pond depth.

Due to right of way constraints, both swales were sized with 10 -foot maintenance berms and $1: 4$ side slopes. Construction of the swales will not require additional right of way.

7.4 Basin 4/5 \& Swale 4/5

7.4.1 Basin 4/5

Roadway drainage Basin 4/5 begins at Sligh Avenue at station 3867+55 and extends north over the Hillsborough River to station 3905+00. Recent safety improvements along this segment of I-275 include an inside shoulder for both the northbound and southbound travel lanes that are separated by a concrete median barrier wall. The improvements were permitted in February 2011 under ERP Application ID 644130. Based on the permit, the safety improvements were exempt from stormwater treatment. Under the proposed improvements, approximately 1.08 acres of additional pavement will be added to the basin. The additional pavement, or an equivalent amount of previously untreated pavement, will be collected by a proposed storm sewer system and conveyed to a proposed swale referred to as Swale 4/5.

7.4.2 Swale 4/5

Swale $4 / 5$ is a 0.91 -acre dry retention facility located south of East Broad Street along the east side of l-275. According to the NRCS, the soils at the swale are classified as Millhopper Urban land with Hydrologic Soil Group A. The NRCS estimates the depth to the seasonal high water elevation at 4.75 feet. The required treatment volume for the additional pavement is 0.09 acre-feet which will be accomplished in approximately 0.32 feet of pond depth.

Due to right of way constraints, the swale was sized with a 10-foot maintenance berm and 1:4 side slopes. Construction of the swale will not require additional right of way.

7.5 Basin 6/7 \& Swale 6/7

7.5.1 Basin 6/7

Roadway drainage Basin 6/7 begins north of the bridge over the Hillsborough River at station $3905+00$ and extends north to south of East Busch Boulevard at station 3947+57. The basin includes a historical stormwater attenuation facility referred to as Exist. Storage Basin No. 1. The storage basin is located north of East Yukon Street on the east side of I-275 and is hydraulically connected to the storm sewer system that discharges to the Hillsborough River on the west side of I-275. Additional information regarding the storage basin could not be located.

Recent safety improvements along this segment of I-275 include an inside shoulder for both the northbound and southbound travel lanes that are separated by a concrete median barrier wall. The improvements were permitted in February 2011 under ERP Application ID 644130. Based on the permit, the safety improvements were exempt from stormwater treatment. Under the proposed improvements, approximately 1.50 acres of additional pavement will be added on I-275 within the basin limits. A proposed storm sewer system will collect and convey an equivalent amount of untreated roadway runoff to a proposed stormwater management facility referred to as Swale 6/7.

7.5.2 Swale 6/7

Swale $6 / 7$ is a 0.88 -acre dry retention facility located southeast of I-275 and East Busch Boulevard. According to the NRCS, the soils at the pond site are classified as Tavares Urban land with Hydrologic Soil Group A. The NRCS estimates the depth to the seasonal high water elevation at 4.75 feet. The swale will treat an equivalent amount of pavement that is currently untreated. The treatment will be accomplished in 0.13 acre-feet of pond volume with a treatment depth of 0.39 feet. The proposed swale will outfall to the existing storage basin located immediately to the south.

The swale was sized using 15 -foot maintenance berms and 1:4 side slopes. Construction of the swale will not require additional right of way.

7.6 Basin 8 \& Pond 8

7.6.1 Basin 8

Roadway drainage Basin 8 begins south of East Busch Boulevard at station 3947+57 and extends north to East Linebaugh Avenue at station 3988+15. The basin includes two existing stormwater ponds referred to as Exist. Pond A2 and Exist. Pond A3. The ponds are located in the infield area immediately north of East Busch Boulevard on the west and east side of I275. The existing ponds were constructed during the improvements to $\mathrm{l}-275$ that included the widening of the interstate from four lanes to six lanes, modifying the ramps at the East Busch Boulevard interchange, and modifying the median openings on East Busch Boulevard at the interchange. The total amount of pavement draining to Ponds A2 and A3 is 6.70 acres and 4.71 acres, respectively. The treatment volume required is 1.04 acre-feet while the treatment volume provided is 1.42 acre-feet. These improvements were approved under Application Number 38397 in April 1998. It is not anticipated that the proposed roadway widening will impact the pond volumes which will allow the ponds to continue to treat the same amount of pavement.

The proposed widening in Basin 8 will add approximately 2.78 acres of pavement to I-275. An equivalent amount of untreated pavement will be collected and conveyed to a proposed pond referred to as Pond 8.

7.6.2 Pond 8

Pond 8 is a 1.17 -acre dry retention pond located between southbound I-275 and the southbound exit ramp. According to the NRCS, the soils at the pond site are classified as Myakka Urban land and Tavares Urban land with Hydrologic Soil Group B/D and A, respectively. Based on NRCS, the depth to the seasonal high water elevation is at 4.75 feet. The proposed pond will outfall to Exist. Pond A2 through an existing culvert beneath the southbound on-ramp to l-275. The proposed pond will treat an equivalent amount of additional pavement which will be accomplished in 0.23 acre-feet with a treatment depth of 0.39 feet.

The pond was sized using 15 -foot maintenance berms and 1:4 side slopes. Construction of the pond will not require additional right of way.

7.7 Basin 9, Swale 9, \& Swale 9-1

7.7.1 Basin 9

Roadway drainage Basin 9 begins at East Bougainvillea at station 3988+15 and extends north to East Fowler Avenue at station $4028+50$. The basin includes a 9.2 -acre historical stormwater attenuation facility referred to as Exist. Storage Basin No. 2. The storage basin is located northeast of East Bougainvillea Avenue and I-275 and was built during the original construction of the interstate. The storage basin is hydraulically connected to the existing storm sewer system on the west side of I-275 that discharges south to the Hillsborough River. Drainage maps for the original interstate construction indicate the high water elevation for the storage basin is 27.0 feet while the low water elevation is 23.0 feet. The seasonal high water elevation is estimated at approximately 25.0 feet. Recent safety improvements along this segment of I-275 include an additional turn lane for the northbound I-275 exist ramp for Fowler Avenue. The additional turn lane is approximately 1,320 feet and was exempt from permitting since the turn lane is less than 0.25 miles. The permit exemption for the safety improvements was approved in March of 2011 under ERP Application ID 645900.

Under the proposed improvements, approximately 2.78 acres of pavement will be added to the basin due to the roadway widening. Treatment and attenuation for the additional pavement will be accomplished from conveying an equivalent amount of untreated pavement to a series of ponds referred to as Swale 9 and Swale 9-1.

7.7.2 Swale 9 \& Swale 9-1

Swale 9 is a 0.44 -acre dry retention pond located north of East Bougainvillea Avenue along northbound I-275. Swale $9-1$ is a 0.60 -acre wet detention pond located immediately north of Swale 9. A wall will be required along the east side of I-275 from East Bougainvillea Avenue to approximately station $4001+75$ to construct Swale 9 and Swale 9-1. According to the NRCS, a majority of the soil at the pond sites is classified as Zolfo fine sand with Hydrologic Soil Group C. The NRCS estimates the depth to the seasonal high water elevation at 2.75 feet. The proposed swales will outfall to the existing storage basin located at the northeast intersection of East Bougainvillea Avenue and I-275. The proposed swales will treat 1.0 inch of rainfall which will be accomplished in 0.23 acre-feet of pond volume with a treatment depth of 0.49 feet and 0.36 feet for Swale 9 and Swale $9-1$, respectively.

The swales were sized using a 10-foot maintenance berm and 1:3 side slopes. Construction of the swales will not require additional right of way.

7.8 Basin 10 \& Swale 10

7.8.1 Basin 10

Roadway drainage Basin 10 begins at East Fowler Avenue at station 4028+50 and extends north to $127^{\text {th }}$ Avenue at station $4054+85$. The basin includes an existing treatment facility referred to as Exist. Pond No. 1 East. The existing pond is located northeast of I-275 and East Fowler Avenue adjacent to the northbound on-ramp. The pond was constructed to provide treatment for the improvements on I-275 between East Fowler Avenue and East

Fletcher Avenue. The improvements included an additional travel lane in each direction and modification to two acceleration lanes and two deceleration lanes for the access ramps at East Fowler Avenue. The improvements in Basin 10 added approximately 5.76 acres of pavement that required treatment and attenuation. Exist Pond No. 1 East was designed to treat 1.0 inch of rainfall using dry retention. The facility was permitted in October 1998 under ERP Application ID 38398.

Under the proposed improvements, approximately 2.26 acres of pavement will be added to the basin. A proposed storm sewer system will collect and convey an equivalent amount of untreated runoff to a roadside swale referred to as Swale 10.

7.8.2 Swale 10

Swale 10 is a 0.80 -acre wet detention facility located southwest of southbound I-275 and $127^{\text {th }}$ Avenue. According to the NRCS, the soils at the pond site are classified as Zolfo fine sand with a Hydrologic Soil Group C. The NRCS estimates the depth to the seasonal high water elevation between 2.0 feet and 3.5 feet. The proposed pond will treat an equivalent amount of untreated pavement. The treatment will be accomplished in 0.19 acre-feet of pond volume with a treatment depth of 0.38 feet. The outfall for the pond is the FDOT right of way and ultimately to the existing stormsewer system along the west side of l-275.

Due to right of way constraints, Swale 10 was sized with a 10 -foot wide maintenance berm and $1: 4$ side slopes. Construction of Swale 10 will not require additional right of way.

7.9 Basin 11 \& Swale 11

7.9.1 Basin 11

Roadway drainage Basin 11 begins at $127^{\text {th }}$ Avenue at station $4054+85$ and extends north to $131^{\text {st }}$ Avenue at station 4068+00. The basin includes an existing facility located at the southwest corner of Hoffman Boulevard and Central Avenue referred to as Exist. Pond No. 1 West. The existing pond was constructed to provide stormwater management for the improvements on I-275 between East Fowler Avenue and East Fletcher Avenue. The improvements included an additional travel lane in each direction and modification to two acceleration lanes and two deceleration lanes for the access ramps at East Fowler Avenue. The improvements in Basin 11 added approximately 2.32 acres of additional pavement that required treatment and attenuation. The pond was designed to treat 1.0 inch of rainfall from the additional pavement using dry retention. The pond also has the capacity to treat an additional 0.5 acres of pavement. The existing pond was permitted in October 1998 under Application Number 38398.

Under the current widening project, approximately 1.06 acres of pavement will be added to the basin. A storm sewer system will collect and convey an equivalent amount of untreated roadway runoff to a proposed pond referred to as Swale 11.

7.9.2 Swale 11

Swale 11 is a 0.41 -acre wet detention facility located adjacent to southbound I-275 between station 4062+00 and station 4064+77. According to the NRCS, the soils at the pond site are classified as Zolfo fine sand with Hydrologic Soil Group C. The estimated depth to the seasonal high water elevation between 2.0 and 3.5 feet. The proposed swale will treat an equivalent amount of untreated pavement that is not currently treated. The treatment for the additional pavement will be accomplished in 0.09 acre-feet of pond volume with a treatment depth of 0.52 feet. The swale will discharge to the FDOT right of way and ultimately to the stormsewer system along the west side of I-275.

Due to right of way constraints, Swale 11 was sized with a 2.5 -foot maintenance berm behind the guardrail, a 5 -foot maintenance berm adjacent to the noise wall, and 1:4 side slopes. Construction of Swale 11 will not require additional right of way.

7.10 Basin 12 \& Swale 12

7.10.1 Basin 12

Roadway drainage Basin 12 begins at station 4068+00 and extends north to Fletcher Avenue at station $4081+44$. Previous improvements within the basin include two-lane widening to the inside median, minor shoulder reconstruction, and northbound exit ramp improvements. Based on the permit, there are no existing ponds in this basin since an equivalent amount of water quality, attenuation and volume sensitive storage is provided in the basin north of Fletcher Avenue. The permit also indicates that the roadway improvements should not have a significant impact on the peak rate of runoff discharging off-site nor should it increase the peak stages within roadside areas. The facility was permitted in October 1998 under Application Number 38398.

Under the proposed improvements, approximately 0.96 acres of pavement will be added to the basin. A proposed storm sewer system will collect and convey roadway runoff to a proposed roadside facility referred to as Swale 12.

7.10.2 Swale 12

Swale 12 is a 0.55 -acre wet detention facility located adjacent to southbound I-275 between Station 4065+00 and Station 4070+00. According to the NRCS, the soils at the pond site are classified as Zolfo and Myakka fine sand with Hydrologic Soil Group C and B/D, respectively. The estimated depth to the seasonal high water elevation is 2.75 feet. The swale will treat an equivalent amount of pavement that is not currently treated. The treatment will be accomplished in 0.08 acre-feet of pond volume with a treatment depth of 0.34 feet. The proposed swale will outfall to the FDOT right of way and ultimately to Curiosity Creek through a stormsewer system located northwest of I-275 and Fletcher Avenue.

Due to right of way constraints, Swale 12 was sized with a 2.5 -foot maintenance berm behind the guard rail, a 5 -foot maintenance berm adjacent to the noise wall, and 1:4 side slopes. Construction of Swale 12 will not require additional right of way.

7.11 Basin 13 \& SMF 13

7.11.1 Basin 13

Roadway drainage Basin 13 begins at Fletcher Avenue at station 4081+44 and extends north to station $4112+00$. The basin includes an existing treatment facility located southwest of $138^{\text {th }}$ Avenue and Central Avenue referred to as Exist. Pond No. 1. The pond was constructed to provide treatment for the I-275 improvements north of East Fletcher Avenue. The improvements included two-lane widening to the inside median, minor shoulder reconstruction, and minor improvements to the southbound off-ramp at East Fletcher Avenue. The improvements added approximately 3.58 acres of pavement which is treated in the existing wet detention facility designed to treat 1.0 inch of rainfall. The pond was also designed to meet volume sensitive requirements since it discharges directly to Curiosity Creek. The facility was permitted in January 1999 under Permit Number 17978.

Under the proposed improvements, approximately 2.57 acres of pavement will be added to the basin. A storm sewer system will collect and convey an equivalent amount of untreated roadway runoff to a proposed facility referred to as SMF 13.

7.11.2 SMF 13

SMF 13 is a 0.87-acre wet detention facility that expands on Exist. Pond No. 1. Modifying the existing pond will not require additional right of way since the expansion will occur on property currently owned by FDOT. The existing pond was designed and permitted as a wet detention pond with a seasonal high water elevation of 38.49 feet and a control structure (weir) elevation of 39.82 feet. Under the proposed improvements, treatment for the additional pavement will be accomplished in 0.21 acre-feet of pond volume with a treatment depth of 0.31 feet.

According to the FIRM's, the existing pond is located in the FEMA 100-year floodplain with an established elevation of 42 feet. The adjacent property where the expansion is proposed is also at elevation 42 feet based on GIS contour elevations. Construction of the pond will not impact the 100-year floodplain since any proposed fill will occur above elevation 42 feet. During the design phase, professional survey will be required to confirm the adjacent property is at elevation 42 feet or higher. If the adjacent property is below elevation 42 feet, compensation for the 100-year floodplain impacts will be required.

The modified pond was sized using a 20 -foot maintenance berm and $1: 4$ side slopes from the top of bank to two feet below the seasonal high water elevation. Construction of SMF 13 will not require additional right of way.

7.12 Basin 14 \& SMF 14B

7.12.1 Basin 14

Roadway drainage Basin 14 begins at station $4112+00$ and extends north to Bearss Avenue at station 4149+49. The basin includes an existing treatment facility referred to as Exist. Pond No. 2 located southwest of April Lane and the Christian Growth Fellowship property. The pond is a wet detention facility that provides treatment and attenuation for 5.51 acres of
pavement. The additional pavement resulted from roadway improvements that included two additional lanes in the median, minor shoulder reconstruction and improvements to the northbound off-ramp onto Bearss Avenue. The pond discharges directly to the borrow pit located to the southeast. Based on the original drainage design documentation, the pond was designed to reduce the maximum peak discharge rate for the FDOT 100-year and the SWFWMD 25 -year storm events by 15 percent and 25 percent, respectively. The facility was permitted in January 1999 under Permit Number 17978.

Under the proposed improvements, approximately 3.76 acres of pavement will be added to the basin. A storm sewer system will collect and convey an equivalent amount of untreated roadway runoff to a proposed facility referred to as SMF 14B.

7.12.2 SMF 14B

Three storm water management facilities were evaluated for Basin 14 and are referred to as SMF14A, SMF14B, and SMF14C. SMF14A will require acquisition of a single parcel northwest of April Lane and I-275. SMF14B proposes to expand the existing pond to the north on a parcel that is currently vacant. SMF 14C proposes extending the I-275 bridge over Bearss Avenue to accommodate a proposed pond. SMF 14B is the preferred due to cost. The three alternatives are summarized in Table 8.

SMF 14B is a proposed wet detention facility that expands on Exist. Pond No. 2. The existing pond was designed and permitted as a wet detention pond with a seasonal high water elevation of 48.21 feet and a control structure (weir) elevation of 49.21 feet. Under the proposed improvements, treatment for the additional pavement will be accomplished in 0.31 acre-feet of pond volume with a treatment depth of 0.41 feet. The proposed pond will continue to meet the current treatment and attenuation requirements from the previous improvements project. The environmental assessments and right of way cost estimates for the three alternatives are included in Appendix H and Appendix I, respectively.

SMF 14B was sized using a 15 -foot maintenance berm and 1:4 side slopes from the top of bank to two feet below the seasonal high water elevation. A storm sewer system will collect and convey an equivalent amount of untreated roadway runoff to SMF 14B.

7.13 Basin 15 \& SMF 15B

7.13.1 Basin 15

Roadway drainage Basin 15 begins at Bearss Avenue at station 4149+49 and extends north to station $4169+00$. Previous roadway improvements within this basin include two-lane widening in the median, minor shoulder reconstruction, and minor improvements to the northbound on-ramp and the southbound off-ramp at the Bearss Avenue interchange. The basin drains to the east side of the interstate where roadside swales convey the runoff to an existing wetland system at the northeast corner of I-275 and Bearss Avenue. No stormwater facilities were constructed in this basin since all required stormwater quality and attenuation was provided in Exist. Pond No. 2. The improvements were permitted in January 1999 under Permit Number 17978.

Under the proposed improvements, approximately 2.29 acres of pavement will be added to the basin. A storm sewer system will collect and convey an equivalent amount of untreated roadway runoff to a proposed facility referred to as SMF 15B.

7.13.2 SMF 15B

Three storm water management facilities were evaluated for Basin 15 and are referred to as SMF 15A, SMF 15B, and SMF 15C. SMF 15A will require acquisition of a single vacant parcel located immediately north of IHOP at the northwest intersection of I-275 and Bearss Avenue. SMF 15B is one potential pond site that was selected from eight available parcels. All eight parcels are owned by the same property owner who is a willing seller of each parcel. The parcel selected for SMF 15B is located northeast of Nebraska Avenue and Sinclair Hills Road. The third option proposes extending the I-275 bridge over Bears Avenue to accommodate a pond beneath the bridge. SMF 15B is the preferred option due to cost and the option for a willing seller.

SMF 15 is a 1.65 -acre wet detention facility. According to the NRCS, the soils at the pond site are classified as Basinger and Zolfo fine sand with a Hydrologic Soil Group of D and C respectively. Based on NRCS, the estimated seasonal high water elevation is 2.75 feet below ground. The pond has been sized to provide treatment for the first 1.0 inch of rainfall which will be accomplished in 0.29 acre-feet of pond volume with a treatment depth of 0.38 feet. The pond was sized using a 20 -foot maintenance berm and 1:4 side slopes from the top of bank to two feet below the seasonal high water elevation. A storm sewer system will collect and convey an equivalent amount of untreated roadway runoff to SMF 15B. The pond will outfall to Burrell Lake which is located immediately to the east of SMF 15B. The three alternatives are summarized in Table 9. The environmental assessments and right of way cost estimates are included in Appendix H and Appendix I, respectively.

Due to right of way constraints in Basin 16, the additional 1.09 acres of pavement added to Basin 16 will be diverted to Basin 15. SMF 15B has been sized to treat the 1.09 acres of diverted pavement and will retain the 100-year runoff volume. Additional discussion is provided in Section 7.14.

7.14 Basin 16

7.14.1 Basin 16

Roadway drainage Basin 16 begins at station 4169+00 and extends north to Nebraska Avenue at station 4183+60. Historically, roadway runoff was directed to a swale along the east side of I-275 that discharged to a wetland system connected to a Hillsborough County borrow pit. The original wetland/borrow pit system did not have a positive outfall and would overtop the northeast berm. The runoff that overtopped the berm would discharge to the east and into the Nebraska Avenue stormsewer system.

Recent improvements within this basin include two additional lanes in the median and shoulder reconstruction. The original wetland/borrow pit system was modified as a stormwater management facility to provide treatment and attenuation for the recent roadway improvements. The stormwater facility was designed using closed basin criteria since the original system did not have a positive outfall. To minimize the amount of discharge over the
pond banks, a control structure was installed with the grate set at the overtopping elevation. The control structure discharges directly to the storm sewer system on Nebraska Avenue. The modified system is referred to as Exist. Pond No. 3 and was permitted in January 1999 under Permit Number 17978.

Under the proposed improvements, approximately 1.09 acres of pavement will be added to Basin 16. An equivalent amount of untreated pavement will be collected and diverted to Basin 15. The intent is to not increase the amount of runoff discharging to Exist. Pond No. 3 due to its limited capacity.

7.14.2 Pond Discussion

There are no proposed stormwater management facilities in Basin 16 or proposed modification to the existing facility. As discussed in previous sections, 1.09 acres of pavement will be diverted to Basin 15 due to the limited capacity of Exist Pond No. 3. The intent is to not increase the amount of runoff discharging to the existing pond or the stormsewer system on Nebraska Avenue. SMF 15B will treat 1.0 inch of rainfall from the diverted pavement and will retain the 100-year runoff volume.

There are no proposed right of way requirements in Basin16.

7.15 Basin 17

Roadway drainage Basin 17 begins at station $4183+60$ and continues north to station $4193+70$. The proposed improvements consist primarily of tapering the proposed roadway to the existing roadway. The proposed taper will add approximately 0.08 acres of additional pavement in the basin. Due to right of way constraints, a proposed stormwater treatment and attenuation facility within the existing right of way is not a viable option. Other options to treat and attenuate are cost prohibitive based on the minimal amount of pavement added to the basin. Therefore, the runoff from the additional 0.08 acres of pavement will discharge offsite as in the existing condition.

8.0 FLOODPLAIN COMPENSATION SITE

The proposed roadway improvements have potential for impacts to the 100-year floodplain from widening the roadway. A preliminary analysis indicates that 1.00 acre-feet of floodplain will be impacted in Basin 14. The impact is proposed to be compensated by grading a linear swale within the existing right of way between station $4110+00$ and station $4120+33$ on the east side of the roadway. The linear swale created for floodplain compensation is referred to as Floodplain Compensation 14 (FPC-14). The calculations for the estimated floodplain impact and compensation are included in Appendix F.

Table 7: Pond Engineering Data \& Analysis Summary

Basin Name	Pond Name	Pond Offset Lt / Rt	Estimated SHWT ${ }^{1}$ Elevation (Ft)	Low Edge Pavement (Ft)	10 Year HGL² (Ft)	10 Year Pond Stage (Ft)	Outfall Location	Roadway Drainage Basin Area (Ac)	Pond Area at Top of Berm (Ac)	Method of Treatment	Required Treatment / Attenuation Volume (Ac-Ft)	Provided Treatment/ Attenuation Volume (Ac-Ft)	Comments
Basin 1	Swale1	Rt	39.25	46.9	45.71	45.07	Hillsborough River via an existing 54 " pipe	1.46	0.45	Dry Ret.	$0.08 / 0.45$	$0.08 / 0.46$	
	Swale 1A	Lt	39.25	47.0	45.84	45.60	Hillsborough River via an existing 54 " pipe	1.51	0.46	Dry Ret.	0.09 / 0.48	0.09 / 0.49	
Basin 2	Pond 2	Rt	32.25	37.0	35.98	34.19	Hillsborough River via Hillsborough Ave. storm sewer	2.49	1.27	Dry Ret.	0.004 / 0.02	$0.08 / 1.62$	
	Swale 2	Lt	29.50	39.0	37.51	34.00	Hillsborough River via an existing 30 " pipe	1.57	0.37	Dry Ret.	$0.08 / 0.45$	0.08 / 0.49	
Basin 3	Swale 3A	Rt	36.10	47.3	46.28	38.65	Hillsborough River via an existing inlet / pipe	1.67	0.66	Dry Ret.	$0.07 / 0.37$	$0.07 / 0.39$	
	Swale 3B	Lt	32.6	48.1	47.08	38.45	Hillsborough River via an existing inlet / pipe	1.46	0.34	Dry Ret.	0.04 / 0.23	0.04 / 0.28	
Basin 4/5	Swale 4/5	Rt	24.8	39.3	38.27	29.50	Hillsborough River via an existing 24 " pipe	1.84	0.91	Dry Ret.	0.09 / 0.44	0.09 / 0.45	
Basin 6/7	Swale 6/7	Rt	15.45	51.0	49.98	18.77	Exist. Storage Basin No. 1	2.48	0.88	Dry Ret.	0.13 / 0.69	0.13 / 0.70	
Basin 8	Pond 8	Lt	19.00	27.0	25.70	21.94	FDOT ROW via Exist. Pond A2	5.64	1.17	Dry Ret.	$0.23 / 1.09$	0.23 / 1.09	
Basin 9	Swale 9	Rt	23.50	33.0	31.36	26.92	Exist. Storage Basin No. 2	4.96	0.44	Dry Ret.	$0.23 / 0.73$	0.12 / 0.25	
	Swale 9-1	Rt	25.25	33.0	31.36	26.92	Exist. Storage Basin No. 2		0.60	Wet Det.		$0.11 / 0.49$	
Basin 10	Swale 10	Lt	30.25	35.0	33.98	32.10	FDOT ROW to existing storm sewer along west side of l-275	3.06	0.80	Wet Det.	0.19 / 0.85	0.19 / 0.85	
Basin 11	Swale 11	Lt	36.25	40.0	38.98	38.06	FDOT ROW to existing storm sewer along west side of l-275	1.38	0.41	Wet Det.	0.09 / 0.30	0.09 / 0.30	
Basin 12	Swale 12	Lt	36.25	40.0	38.98	37.90	FDOT ditch discharging to Curiosity Creek	1.54	0.55	Wet Det.	$0.08 / 0.47$	0.08 / 0.76	
Basin 13	SMF 13	Lt	38.49	45.0	43.84	39.9	Existing control structure in Exist. Pond No. 1 discharging to Curiosity Creek	3.44	0.87	Wet Det.	0.21 / 0.86	0.21 / 1.86	Expand on existing pond referred to as Exist. Pond No. 1.

Note: ${ }^{1}$ Seasonal High Water Table (SHWT)
${ }^{2}$ Hydraulic Grade Line (HGL)

Table 8: Basin 14 Pond Alternatives Matrix

Description	Basin 14 Pond Site Alternatives		
	SMF 14A	SMF 14B	SMF 14C
Side (Lt, Rt)	Lt	Lt	Cl
Pond Area (Ac) (Excluding Easements)	1.24	1.4	1.04
Est. Ground Elevation (Ft) @ Pond Site	50.5	52.0	52.0
Proposed Low Edge of Pavement (LEOP) Within Basin	53.0	53.0	53.0
Est. SHW Elevation/Control Elevation	47.75	48.21	49.25
10 Yr HGL	51.42	51.42	51.42
10 Yr Pond Stage	49.94	49.63	50.88
Treatment System Type	Wet Detention	Wet Detention	Wet Detention
Roadway Drainage Basin Area	4.49	4.76	3.76
Pond Outfall Location	Cypress Creek	Cypress Creek	Cypress Creek
Required Treatment/Attenuation Volume (Ac-Ft)	0.31 / 0.80	0.31 / 0.92	0.31 / 0.89
Provided Treatment/Attenuation Volume $(\mathrm{Ac}-\mathrm{Ft})$	0.31 / 1.19	0.31 / 2.23	0.31 / 0.89
FEMA Flood Zone	N/A	N/A	N/A
Land Use	Single Family	Vacant	Roadway
Archaeological Site Potential	N/A	No Involvement	N/A
Est. Wetland Mitigation Cost (\$100K/Ac)	\$6,180	0	0
Impact to Federal/State Listed Animal Species	Low	Low	N/A
Potential Contamination Impacts	High	High	N/A
Inflow Pipe Length (Ft)	150	500	N/A
Approximate Inflow Pipe Cost (\$120/ Lf)	\$18,000	\$60,000	N/A
Outfall Pipe Length (Ft)	300	0	N/A
Approximate Outfall Pipe Cost (\$60/ Lf)	\$18,000	0	N/A
Other Miscellaneous Cost (Pond Liner, Etc.) ${ }^{(3)}$	0	0	N/A
Potential Utility Impacts	Medium	Medium	Low
Pond Easement Required (Ac)	None	None	None
Number of Parcels	1	1	N/A
Partial (P) or Whole Take (WT)	W	P	N/A
Bridge Cost	N/A	N/A	\$3,908,250
ROW Cost Estimate (Includes Easements)	\$704,500	\$636,900	N/A
Total Estimated Costs (All Costs)	\$746,680	\$696,900	\$3,908,250

Recommended pond site SMF 14B.

Table 9: Basin 15 Pond Alternatives Matrix

Description	Basin 15 Pond Site Alternatives		
	SMF 15A	SMF 15B	SMF 15C
Side (Lt, Rt)	Lt	Rt	Cl
Pond Area (Ac) (Excluding Easements)	1.31	2.00	1.47
Est. Ground Elevation (Ft) @ Pond Site	56.5	51.0	54.0
Proposed Low Edge of Pavement (LEOP) Within Basin	57.0	57.0	57.0
Est. SHW Elevation/Control Elevation	53.75	48.25	50.50
10 Yr HGL	55.92	54.80	54.80
10 Yr Pond Stage	55.42	49.51	51.62
Treatment System Type	Wet Detention	Wet Detention	Wet Detention
Roadway Drainage Basin Area	4.44	5.03	3.38
Pond Outfall Location	Cypress Creek	Cypress Creek	Cypress Creek
Required Treatment/Attenuation Volume (Ac-Ft)	0.29 / 1.71	0.29 / 1.72	0.29 / 1.77
Provided Treatment/Attenuation Volume (Ac-Ft)	0.29 / 1.84	0.29 / 2.16	0.29 / 2.25
FEMA Flood Zone	N/A	N/A	N/A
Land Use	Vacant	Vacant	Roadway
Archaeological Site Potential	N/A	No Involvement	N/A
Est. Wetland Mitigation Cost (\$100K/Ac)	0	0	N/A
Impact to Federal/State Listed Animal Species	Low	Low	N/A
Potential Contamination Impacts	Medium	Medium	N/A
Inflow Pipe Length (Ft)	40	1,350	N/A
Approximate Inflow Pipe Cost (\$120/ Lf)	\$4,800	\$62,000	N/A
Outfall Pipe Length (Ft)	40	50	N/A
Approximate Outfall Pipe Cost (\$60/ Lf)	\$2,400	\$3,000	N/A
Other Miscellaneous Cost (Pond Liner, Etc.) ${ }^{(1)}$	0	\$100,000	N/A
Potential Utility Impacts	Low	High	Low
Pond Easement Required (Ac)	None	None	None
Number of Parcels	1	1	N/A
Partial (P) or Whole Take (WT)	P	W	N/A
Bridge Cost	N/A	N/A	\$5,163,750
ROW Cost Estimate (Includes Easements)	\$3,580,000	\$1,648,200	N/A
Total Estimated Costs (All Costs)	\$3,652,000	\$1,913,200	\$5,163,750

${ }^{1}$ Includes cost for jack and bore under CSX RR

Recommended pond site SMF 15B.

9.0 CONCLUSION

The intent of this report is to identify one or two pond site alternatives per drainage basin. All stormwater management will be maintained within the existing right of way from Basin 1 through Basin 13. Due to right of way constraints, offsite stormwater management facilities will be required for Basin 14 and Basin 15. For Basin 14 and 15, three alternatives were analyzed for each basin. The recommended pond sites for Basin 14 and 15 are SMF 14B and SMF 15B, respectively. The recommend pond sites are based on the right of way cost for each pond site.

It is estimated that the project will impact the 100-year floodplain in Basin 14. The impacts are estimated at 1.00 acre-feet and will be compensated within the existing right of way.

Appendix A: Existing Bridge Data

TRAFFIC DATA						
ROADWAY	$\begin{gathered} A A D T \\ Y E A R \quad 2012 \end{gathered}$	$\begin{gathered} A A D T \\ \text { YEAR } 2032 \end{gathered}$	$\begin{aligned} & \hline \text { DESIGN } \\ & \text { SPEED } \end{aligned}$	K	D	T
SR 93	170,800	204,200	60 MPH	8.44\%	7.92\%	6.0\%

LEGEND
(1) APPROACH SLAB -
LENGTH VARIES (SEE PLANS)
E- EXPANSION BEARING
F - FIXED BEARING
EJ - EXPANSION JOINT

NOTES:

1. for vertical profile, see saw-cut line elevations on "FINISH GRADE ELEVATIONS" SHEETS.

F - fixed bearing
EJ - Expansion joint

Appendix B: Existing Conditions Data Collection

Entry Date: 2/4/2009 11:02:04 AM
Revised Date: 8/13/2010 1:39:47 PM
Completed By: Stephanie Bernard, HDR

SECTION I: LOCATION

County - Hillsborough
State Road - SR 93
Road Description - 2 lane(s), Local Road, Roadside Ditches
Roadway Separation - Undivided
Direction of Travel - Two-Way
Functional System of Road - Rural
Specific Classification of Road - Local Road
Roadway Drainage - Roadside Ditches
Flooding Condition - Off-System

Local Road Subject to Flooding - Central Ave

 Business Name:Business/ Private Property Address Subject to Flooding -

Location:

Latitude: 28.05636333333
Longitude: -82.45536666667
Section/ Township/ Range - 12 / 28S / 18E
Project is Active - No

SECTION II: PROBLEM DESCRIPTION

Date of Original Complaint -
Complainant Name - Amos Castillo
Problem Description - Multiple
Details of the Problem - During recent storm events the roadway floods and floods yards along Central Avenue (SB exit ramp of I-275). Flooding may be due to the elevation differences along the ditch.
Occurred several times in 2003. During the storm events in 2003 the roadway floods and as a result floods yards and parts of tile adjacent to a house on Central Avenue near Fowler Avenue.

Frequency of Flooding - Several times per year
Source for Frequency Data - County Maintenance
Historic High Water - No historic high water data was available.
Flooding Event High Water - No event high water was recorded.
History of Problem - From work order 9999-021-09 "Reason: During episodes of heavy rains, water pools along Central Avenue and floods private property owners. Currently, there is no effective means of
draining this water. Therefore the contractor shall construct a swale and install a mitered end setion and 450 mm RCP to channel water to S -222, the existing inlet in this area, and alleviate the flooding problem on Central Avenue."

The contractor was David Nelson Construction Company.

Other Communications

Communication Date	Type	Communication From	Communication To	Communication Attachment Name
$1 / 14 / 2004$	Communication Memo	Megan Arasteh, FDOT Drainage	Bud Nabong, FDOT Maintenance	memo central ave.pdf

SECTION III: PROBLEM ANALYSIS

Remedy Efforts

Date	Remedy by	Remedy Effort	Attachment
$7 / 12 / 2002$	Contract	Install or Modify Structure or Pipe	$\underline{27282434}$ _Work Order.pdf

Current Problem Analysis

Current Problem Analysis:

During recent storm events the roadway floods and ends up flooding a yard adjacent to a house.

Outfall Description: Unknown
Responsible Entity for Maintenance of Outfall: FDOT

Attachments

Attachment	Attachment Type	Attachment Description
27285145_Correspondence.pdf	Other Data	Complaint Inventory sheet, e-mails
27211209_Calculations.pdf	Engineering Calculations	Storm tabs, check slopes
27211299_aerials1.pdf	Aerial Photo	Aerial, SWFWMD contours
272115846_Field Book.pdf	Other Data	Field Book

Drainage Complaint Inventory Sheet

| $\underline{\text { 27212049_Field Book }}$ |
| :--- | :--- | :--- |
| Markups.pdf |\quad Other Data \quad Field Book containing markups

SECTION IV: CONCLUSI ONS AND RECOMMENDATIONS

Recommendation: Re-grading and lowering the ditch should somewhat alleviate the water approaching the home during storm events. Recommendations included lowering MES flowline at station 204+56.34, regrading the ditch to below the inlet grate, and clean the fence area.

Recommendation Date:

Project Ranking:

ROADWAY FLOODING MATRIX

Ranking of the roadway hazard level based on accident data, ADT, depth and location of water, and site specific factors.
(Weight Factor =10)
Ranking of the operational impacts (i.e. magnitude of vehicle speed reduction, ADT, frequency of flooding, availability of detour route, and cost to FDOT to handle problem, etc.)
(Weight Factor =7)
Ranking of the nuisance factor to the public and FDOT.
(Weight Factor = 3)
Ranking of the length of time before scheduled roadway improvements that will also provide remedy, are to be let to contract.
(Weight Factor $=5$)
Ranking of the costs to cure the problem, if any.
(Weight Factor = 5)
0
Total Score 0

Ranking of the potential financial impacts versus the flooding frequency that impacts the private property.
(Weight Factor = 10) 0

Ranking of the hazard level versus the flooding frequency that impacts the private property.
(Weight Factor = 10)
Ranking of the nuisance factor to the private property as well as FDOT.
(Weight Factor $=5$)
0
Ranking of the costs to FDOT to cure the problem versus the financial impact to the private property if not cured.
(Weight Factor $=10$)
Ranking of the length of time before scheduled roadway improvements that will also provide remedy, are to be let to contract.
(Weight Factor $=5$)

Total Score

FLOOD I NVESTI GATI ON I NVENTORY SHEET

Flood Investigation \# 1006172010814

Entry Date: 6/17/2010 7:20:09 AM
Revised Date: 7/16/2010 7:55:35 AM
Completed By: Stephanie Hildreth, HDR

SECTION I: LOCATION

County - Hillsborough
State Road - SR 93
Road Description - 6 lane(s), Arterial Interstate, Multiple
Roadway Separation - Divided w/Non-Traversable Median
Direction of Travel - Two-Way
Functional System of Road - Urban
Specific Classification of Road - Arterial Interstate
Roadway Drainage - Multiple
Flooding Condition - Off-System
Local Road Subject to Flooding - 122nd Avenue Business Name:
Business/ Private Property Address Subject to Flooding 702 E 122nd Avenue
Tampa, FL 33612

Location:

Latitude: 28.05846
Longitude: -82.454166
Section/ Township/ Range - 12 / 28S / 18E
Project is Active - Yes

SECTION II: PROBLEM DESCRIPTION

Date of Original Complaint - 7/1/2003
Complainant Name - Ed Browder
Problem Description - Property Flooding
Details of the Problem - Property owner is experiencing flooding in front and back side of his house and the septic tank is not functioning properly due to a high water table.

Frequency of Flooding - Several times per year
Source for Frequency Data - Local Resident/Person Interviewed
Historic High Water - No historic high water data was available.
Flooding Event High Water - No event high water was recorded.
History of Problem - Frequently recurring flooding problem in this low lying area.

Persons Interviewed

Site Visit Date - 7/1/2003
Site Inspection By - Thomas Gaffney, FDOT Maintenance
Interviewee(s) - Ed Browder, Property Owner
Site Visit Conditions - Not Applicable
Observed High Water - No observed high water was observed on the date of the site visit.
Site Visit Details - Thomas Gaffney met Mr. Browder on July 1, 2003. Carlos Lopez (FDOT Engineering) met with Mr. Browder on July 28, 2003 and conducted a site review. Mr. Browder indicated the problem was created after the interstate improvements were done in 2002. He indicated the interstate ditch used to be about 4 feet deep and could store the runoff. He also indicated the existing mild swale does not retain the runoff and drains to his site.

Communication Date	Type	Communication From	Communication To	Communication Attachment Name
$7 / 1 / 2003$	Email	Tom Gaffney, FDOT Maintenance	John Powanda, FDOT Drainage	e-mail 1 bowder. $\overline{\text { badf }}$
$8 / 3 / 2004$	Communication Memo	Richard Griffin, FDOT Drainage	Harvey Hunt, FDOT Maintenance	HHuntMemo bowder.pdf
$7 / 21 / 2003$	Email	Megan Arasteh, FDOT Drainage	Carlos Lopez, HDR Engineering	correspondence bowder.pdf

SECTION III: PROBLEM ANALYSIS

Attachments

Attachment	Attachment Type	Attachment Description
Survey Request7-04.pdf	Other Data	Survey Request Form
Drainage Complaint_ bowder.pdf	Other Data	Drainage Complaint Inventory Sheet
photos_bowder.pdf	Site Photo	Site photos
cross sections_bowder.pdf	Project Plans	Ditch Cross Sections
survey_bowder.pdf	Other Data	Field Survey
final plans_ bowder.pdf	Project Plans	Final plans

SECTION IV: CONCLUSI ONS AND RECOMMENDATIONS

Recommendation:

Area has a long history of flooding, Taliaferro Avenue is a flood prone area. Old FDOT Drainage Maps and SWFWMD aerial maps indicate area is a low-lying area. A summary of our findings is as follows:

Drainage Map (SPN 10320-1460 \& 10290-1505) indicates Mr. Browder’s residence drains to the east to an existing pond west of Taliaferro Avenue. This pond drains to the south to $120^{\text {th }}$ Avenue, which is in a depression. The HW elevation shown in the map is 35.7 ft . Mr. Browder's back yard elevation is approximately 35.43 ft (from SPN 103201466 plans, Sta. 206+00). The maps indicate area is poorly drained, runoff eventually drains to the east to the Nebraska Avenue drainage system.

The Drainage Map (SPN 10320-3466) is consistent with the above map. The construction plans for this project indicate that the I-275 roadside ditch was not filled with the improvements constructed in 2002. The ditch was expanded on the southbound roadside ditch, which is connected by a cross drain (S-233B) at Station 36+50. The low point of the ditch is a Sta. 206+00, which corresponds to Mr. Browder's lot. The ditch has no outfall and sheet flows to the east once it overflows.

Diverting the ditch runoff to the south, to the Fowler Ave. system is not feasible. The existing pipe flow line at this location is above 35.0 ft ., therefore no positive drainage will be provided. This storm sewer system would have to be lowered across Fowler Ave. and to the south.

RECOMMENDATIONS:

1. Improvement of the Taliaferro pond/ outfall would improve the flooding conditions. Contact Hillsborough County, the owner of this system, to perform this work. Mr. Browder stated that the pond overflows and floods his property front, along $122^{\text {nd }}$ Avenue.
2. Investigate if the County has plans to improve the drainage of this area; PBSJ has designed the improvements for an area along Taliaferro Ave. located about eight blocks north of $122^{\text {nd }}$ Ave.
3. Frequent cleaning of the $\mathbf{I}-275$ ditch by the maintenance forces.
4. No solution is recommended within the DOT right-of-way.

Recommendation Date:

Project Ranking:

ROADWAY FLOODI NG MATRIX

Ranking of the roadway hazard level based on accident data, ADT, depth and location of water, and site specific factors.
(Weight Factor = 10)
Ranking of the operational impacts (i.e. magnitude of vehicle speed reduction, ADT, frequency of flooding, availability of detour route, and cost to FDOT to handle problem, etc.)
(Weight Factor $=\mathbf{7}$)
Ranking of the nuisance factor to the public and FDOT. (Weight Factor = 3)
Ranking of the length of time before scheduled roadway
improvements that will also provide remedy, are to be let to
contract.

(Weight Factor = 5)

Ranking of the costs to cure the problem, if any. (Weight Factor = 5)0
Total Score 0

PRIVATE PROPERTY FLOODING MATRIX

Ranking of the potential financial impacts versus the flooding frequency that impacts the private property.
(Weight Factor = 10)
Ranking of the hazard level versus the flooding frequency that impacts the private property.
(Weight Factor =10)
Ranking of the nuisance factor to the private property as well as FDOT.
(Weight Factor =5)
Ranking of the costs to FDOT to cure the problem versus the financial impact to the private property if not cured.
(Weight Factor $=10$)
Ranking of the length of time before scheduled roadway improvements that will also provide remedy, are to be let to contract.
(Weight Factor $=5$) 0
Total Score 0

Entry Date: 3/28/2013 2:23:15 PM
Revised Date: 3/28/2013 2:26:06 PM
Completed By: Richard Griffin, FDOT

SECTION I: LOCATION

County - Hillsborough
State Road - SR 93
Road Description - 8 lane(s), Arterial Interstate, Roadside Ditches
Roadway Separation - Divided w/Non-Traversable Median
Direction of Travel - Two-Way
Functional System of Road - Mixed
Specific Classification of Road - Arterial Interstate
Roadway Drainage - Roadside Ditches
Flooding Condition - Off-System
Local Road Subject to Flooding - 126 th Street
Business Name: NA
Business/ Private Property Address Subject to Flooding NA

FL

Location:

Latitude: 28.061365
Longitude: -82.454567
Section/ Township/ Range - / N / E
Project is Active - Yes

SECTION II: PROBLEM DESCRIPTION

Persons Interviewed

Site Visit Date - 3/27/2013

Site I nspection By - Richard Griffin ,
I nterviewee(s) - Local resident last house on the south side ,
Site Visit Conditions - No Standing Water, previous flooding not apparent
Observed High Water - No observed high water was observed on the date of the site visit.
Site Visit Details - I was asked to meet Walt Williams from Hillsborough County at the end of 126th where it meets the noise wall on the east side of I-275 to look at a local roadway flooding issue.

I talked to the person who lives in the last house on the south side of 126th. When questioned this man told me that he has seen the area hold water since he had lived there; approximately 10 years. He stated that the water fills the roadway area and then the water seeps into the ground once the rain stops. There is
no known flooding of the structures. When promted about the effects of the wall on the flooding he stated that it seems to have added to the problem.

Walt Williams provided no additional information.

SECTION III: PROBLEM ANALYSIS

SECTION IV: CONCLUSI ONS AND RECOMMENDATI ONS

Recommendation: I told Mr. Williams that this was an historical problem but that we would look at any mitigation measures that could help the situation. I recomended that the County survey the area to get a better indication of the existing conditions; Mr. Williams agreed that they would survey. Nothing further will be done until we hear back from the County.

Recommendation Date: 3/28/2013

Project Ranking:

ROADWAY FLOODING MATRIX

Ranking of the roadway hazard level based on accident data, ADT, depth and location of water, and site specific factors.
(Weight Factor $=10$)
1
Ranking of the operational impacts (i.e. magnitude of vehicle speed reduction, ADT, frequency of flooding, availability of detour route, and cost to FDOT to handle problem, etc.)
(Weight Factor =7)
Ranking of the nuisance factor to the public and FDOT.
(Weight Factor = 3)
Ranking of the length of time before scheduled roadway improvements that will also provide remedy, are to be let to contract.
(Weight Factor =5)
Ranking of the costs to cure the problem, if any.
(Weight Factor $=5$)
1
Total Score 30

PRIVATE PROPERTY FLOODI NG MATRIX

Ranking of the potential financial impacts versus the flooding frequency that impacts the private property.
(Weight Factor =10)

Ranking of the hazard level versus the flooding frequency that
impacts the private property.
(Weight Factor = 10)
Ranking of the nuisance factor to the private property as well as FDOT.
(Weight Factor $=5$)
5
Ranking of the costs to FDOT to cure the problem versus the
financial impact to the private property if not cured.
(Weight Factor $=\mathbf{1 0}$)
Ranking of the length of time before scheduled roadway improvements that will also provide remedy, are to be let to contract.
(Weight Factor =5) 1
Total Score 60

SECTION I: LOCATION

County - Hillsborough
State Road - SR 93
Road Description - 6 lane(s), Arterial Interstate, Multiple
Roadway Separation - Divided w/Non-Traversable Median
Direction of Travel - Two-Way
Functional System of Road - Urban
Specific Classification of Road - Arterial Interstate
Roadway Drainage - Multiple
Flooding Condition - Off-System
Local Road Subject to Flooding - 127th Avenue Business Name:
Business/ Private Property Address Subject to Flooding -

Location:

Latitude: 28.061969
Longitude: -82.454716
Section/ Township/ Range - 12 / 28S / 18E
Project is Active - Yes

SECTION II: PROBLEM DESCRIPTION

SECTION III: PROBLEM ANALYSIS

Attachments

Attachment	Attachment Type	Attachment Description
map_ 127th.pdf	Site Map	Location map
Meeting_ 127th.pdf	Other Data	Meeting Attendance List and Site photos

Appendix C: FEMA Maps

(

Appendix D: SWFWMD Pre-Application Meeting Minutes

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT RESOURCE REGULATION DIVISION PRE-APPLICATION MEETING NOTES

FILE NUMBER:

7/21/2015
10:00
FDOT I275 Express Lanes Project Development \& Environmental Study
Richard Alt, Al Gagne, Tom Anderson - Parsons Brinckerhoff andersont@pbworld.com Virginia Creighton, John Littlefield

County:	Hillsborough	Sec/Twp/Rge:	$1 / 29 / 18-36 / 27 / 18$

Total Land Acreage:
Prior On-Site/Off-Site Permit Activity:

- Existing interstate

Project Overview:

- Construct one lane each direction for express lane project with dynamic tolling
- From Hillsborough to Sligh - 2 basins, south basin will treat all to compensate for north basin
- From Busch to Bearss - widen 12 feet to outsides on both sides
- Will provide floodplain comp for Curiosity Creek area
- Reconstruct Bearss interchange to meet FDOT clearance standards

Environmental Discussion: (Wetlands On-Site, Wetlands on Adjacent Properties, Delineation, T\&E species, Easements, Drawdown Issues, Setbacks, Justification, Elimination/Reduction, Permanent/Temporary Impacts, Secondary and Cumulative Impacts, Mitigation Options, SHWL, Upland Habitats, Site Visit, etc.)

- Provide the limits of jurisdictional wetlands and surface waters.
- Provide appropriate mitigation using UMAM for impacts, if applicable.
- Demonstrate elimination and reduction of wetland impacts.
- Maintain minimum 15 foot, average 25 foot wetland conservation area setback or address secondary impacts.
- If the project is located in a county which is listed as a coastal county under the Coastal Zone Management Act (CZM) and the project has wetland impacts, it will require a noticing period once the permit application is deemed complete. Wetland and/or surface waters impacts less than 1 acre in size will require a 10 day noticing period, prior to the issuance of the permit. Wetland and/or surface water impacts greater than 1 acre in size will require a 30 day noticing period, prior to the issuance of the permit. Permits could be issued as early as the 11th or 31st day, but staffs' schedule and workload will determine the actual issuance date.

Site Information Discussion: (SHW Levels, Floodplain, Tailwater Conditions, Adjacent Off-Site Contributing Sources, Receiving Waterbody, etc.)

- Existing roadway/intersections
- WBIDs need to be independently verified by the consultant - WBID - 1523 not impaired, 1443H and others
- Possibly discharging to impaired waters.
- Discharge to one volume sensitive basin area - Curiosity Creek.

Water Quantity Discussions: (Basin Description, Storm Event, Pre/Post Volume, Pre/Post Discharge, etc.)

- Demonstrate that discharges from proposed project area will not cause an adverse impact for a 25-year, 24-hour storm event.
- Demonstrate that project will not impede the conveyance of contributing off-site flows.
- Demonstrate that the project will not increase flood stages up- or down-stream of the project area(s).
- Provide equivalent compensating storage for all 100-year, 24-hour riverine floodplain impacts if applicable.

Water Quality Discussions: (Type of Treatment, Technical Characteristics, Non-presumptive Alternatives, etc.)

- Provide water quality treatment for required project area per Section 4.8 Applicant's Handbook Volume II.
- In addition, if the project discharges to an impaired water body, must provide a net environmental improvement.
- Applicant must demonstrate a net improvement for the parameters of concern by performing a pre/post pollutant loading analysis based on existing land use and the proposed land use.
- Will acknowledge compensatory treatment to offset pollutant loads associated with portions of the project area that cannot be physically treated.

Sovereign Lands Discussion: (Determining Location, Correct Form of Authorization, Content of Application, Assessment of Fees,

 Coordination with FDEP)- N/A

Operation and Maintenance/Legal Information: (Ownership or Perpetual Control, O\&M Entity, O\&M Instructions, Homeowner
Association Documents, Coastal Zone requirements, etc.)

- The permit must be issued to the FDOT.
- Provide proof of ownership in the form of a deed or contract for sale.
- Provide appropriate O\&M instructions.
- Provide detailed construction surface water management plan.

Application Type and Fee Required:

- SWERP - Sections A, C, and E of the ERP Application.
- < 640 acres of project area and less than 50 acres of wetland or surface water impacts - $\$ 3,105.75$

Other: (Future Pre-Application Meetings, Fast Track, Submittal Date, Construction Start Date, Required District Permits - WUP, WOD, Well Construction, etc.)

- In accordance with Rule 40D-1.603(2), F.A.C., no later than 30 days after submittal of an initial application of an Individual surface water management permit the applicant shall publish at the applicant's expense a notice of the District's receipt of the application in a newspaper having general circulation as defined in Chapter 50, F.S., in the county or counties in which the activity is proposed. Please provide documentation that such noticing has been accomplished. Note that the published notices of receipt for an ERP must be in accordance with the language provided in Rule 40D-1.603(10), F.A.C., and receipt of an affidavit establishing proof of this publication will be considered a completeness item of this ERP Application. Per Rule 40D-1.603(12), F.A.C., this must be received before the application will be considered complete and the 60-day timeframe for taking agency action on the application will commence.

40D-1.603(12) - "Applicants required to publish a notice of receipt of application must provide to the District a publisher's affidavit establishing proof of publication pursuant to Sections 50.041 and 50.051 , F.S., before the application will be considered complete and the applicable timeframe for taking agency action on the application will commence."

[^0]
Appendix E:
 FDEP WBID Map \& Impaired List

Verified List WBIDs and TMDLs Map

November 19, 2018

Waterbody IDs (WBIDs) \square Group 3 \square Group 5				
\square	Group 1	\square	Group 4	\square

	1:72,224		
0	0.75	1.5	3
0	1.25	2.5	

FDEP, DEAR, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong
Kong), swisstopo, \odot OpenStreetMap contributors, and the GIS User Community, FDEP, DEAR

Comprehensive Verified List includes updates from the Group 5 - Cycle 3 Adoption (June 27, 2018)

Cycle	Group	$\begin{gathered} \text { OGC } \\ \text { Case } \\ \text { Number } \end{gathered}$	Group Name	Planning Unit	County (-ies)	wBID	Water Segment Name	$\begin{gathered} \text { Water- } \\ \text { body Type } \end{gathered}$	$\begin{aligned} & \text { Water- } \\ & \text { Woody } \\ & \text { Class } \end{aligned}$	$\begin{aligned} & 1998303(\mathrm{~d}) \\ & \text { Parameters of } \\ & \text { Concern } \end{aligned}$	Parameters Assessed Using the Impaired Waters Rule (IWR)	$\begin{gathered} \text { Dissolved } \\ \text { Oxygen/Biology } \\ \text { Pollutant of Concern } \end{gathered}$	Concentration of Criterion or Threshold Not Met	Priority for TMDL Development ${ }^{3}$	Projected Year For TMDL Development ${ }^{3}$	Verified Period Assessment Data ${ }^{8}$	Comments ${ }^{7.8}$
2	2	09-2293	Tampa Bay ributaries	Hillsborough River	Hillsborough, Pasco	1402	Cypress Creek	Stream	${ }^{3 F}$	Coliforms	Fecal Coliform		≤ 400 Counts $/ 100 \mathrm{~mL}$	Low		$11 / 64$	Delisted fiom the $19983033($ d) list in Cycle 1 , re-lisited in Cycle 2 .
3	2	15.0826	Tampa Bay Tributaries	Hillsborough River	Hillsborough	1443H	Hillsborough Reservoir	Lake	1		Nutrients (Total Phosphorus)			Medium		Annual Geometric Mean(s) 2008 (0.09 mg/L) 2009 (0.09 mg/L) 2010 ($0.13 \mathrm{mg} / \mathrm{L}$ 2011 (0.13 mg/L	This waterbody is impaired for this parameter. The annual geometric means exceeded the nutrient theshold more than once in a three year period. This exceeded the nutirint threshold more than once in a three year period. This parameter is being added to the $303(d)$ List. WBID 1443 H was previously assessed as a part of retired WBID 1443 E1 as impaired for Nutrients (TSI) and is retaining the impairment status.
3	2	15.0847	Tampa Bay Tributaries	Hillsborough River	Hillsborough	1523	Curiosity Creek	Stream	${ }^{3 F}$		Fecal Coliform		≤ 400 Counts / 100 mL	Low		$25 / 28$	This waterbody is impaired for this parameter based on the number of exceedances for the sample size and is being added to the 303(d) List

'Florid's waterbody classifications are defined as:
Forida's waterodoy classitie
1- 1 oratele water suppolies
2. Shellish

4- Agriculural water supplies
5- Navigation, utility, and industrial use
2_{n} is equal to the number of samples. When samples are collected at the same location less than 4 days apart, the median of those results represents a single sample for the purpose of determiningn n

Appendix F:

Pond Sizing, 100-Year Floodplain Calculations, and Bridge Cost Estimate

PROJECT TITLE:	SR 93 (l-275) from N. of MLK Blvd. to N. of Bearss Ave.	Nov-18	
PROJECT NUMBER:	$431821-1$	DATE:	JLL
BASIN DESIGNATION:	Basin 1	MADE BY:	TDA

PRE DEVELOPMENT
 RUNOFF CURVE NUMBER (CN) CALCULATIONS
 Basin 1

COMPUTED BASIN AREA (Ac) $\quad 1.46$

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{gathered} \text { SOIL } \\ \text { GROUP } \end{gathered}$	CN	AREA	PRODUCT
Impervious				
Roadway, Shoulder and sidewalk		98	0.00	0.00
Sub-total for Impervious Land Uses			0.00	0.00
Pervious				
Open Space	A	49	1.11	54.39
Sub-total for Pervious Land Uses			1.11	54.39
Swale				
Open Space	A	49	0.35	17.15
Sub-total for Swale Land Uses			0.35	17.15
		TOTAL	1.46	71.54

COMPOSITE CN 49.0

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	10.41	1.58	0.19
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	10.41	2.15	0.26

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	10.41

2) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	2.15

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12$ * AREA

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.26

POST DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 1

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	2.21	4.90	0.60
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	2.21	5.85	0.71

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	5.85

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12$ * AREA

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.71

Hillsborough County Soil Survey			
Avg. Depth to SHWT (Ft)	Depth Used (Ft)	Ground Elevation (Ft)	Estimated SHWT (Ft)
$3.5-6.0$	4.75	44.0	39.25
			39.25

IV

AREA \& ATTENUATION SUMMARY

V SUMMARY OF REQUIRED TREATMENT VOLUME

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=\quad 1.0$ inch of runoff from the New Impervious Area	0.08

VI SWALE VOLUME CALCULATIONS

Swale 1

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	44.00	0.23	0.00
Weir Crest Elevation	44.32	0.24	0.08
Freeboard Elevation	46.00	0.31	0.54
Top of Bank Elevation	47.00	0.35	0.87
Top of Berm	47.01	0.45	0.87

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Swale Bottom and Weir Crest Elevation	0.08
	PROVIDED ATTENUATION VOLUME AC-FT Attenuation Volume Provided = Volume between Weir Crest Elevation and Freeboard Elevation 0.46

VII BASIN HYDRAULICS - VERIFY SWALE DOES NOT ADVERSELY IMPACT BASIN INLETS

Low Edge of Pavement in Basin =	46.9 Ft	Station/Location: Edge of northbound mainline at station 805+50 (Rt).
1.0 ' of Clearance $=$	45.9 Ft	
Distance from EOP to Pond =	243 Ft	
Hydraulic Grade Line (HGL) at EOP =	. 19 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	45.71 Ft	
10 year Pond Stage =	45.07 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 (l-275) from N. of MLK Blvd. to N. of Bearss Ave.	Nov-18	
PROJECT NUMBER:	$431821-1$	DATE:	JLL
BASIN DESIGNATION:	Basin 1	MADE BY:	TDA

PRE DEVELOPMENT
 RUNOFF CURVE NUMBER (CN) CALCULATIONS
 Basin 1

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	SOIL GROUP	CN	AREA	PRODUCT
Impervious				
Roadway, Shoulder and sidewalk		98	0.00	0.00
Sub-total for Impervious Land Uses			0.00	0.00
Pervious				
Open Space	A	49	1.16	56.84
Sub-total for Pervious Land Uses			1.16	56.84
Swale				
Open Space	A	49	0.35	17.15
Sub-total for Swale Land Uses			0.35	17.15
		TOTAL	1.51	73.99

COMPOSITE CN 49.0

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	10.41	1.58	0.20
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	10.41	2.15	0.27

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	2.15

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12$ * AREA

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.27

POST DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 1

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	2.08	5.00	0.63
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	2.08	5.95	0.75

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	5.95

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12$ * AREA

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.75

Hillsborough County Soil Survey			
Avg. Depth to SHWT (Ft)	Depth Used (Ft)	Ground Elevation (Ft)	Estimated SHWT (Ft)
$3.5-6.0$	4.75	43.0	38.25
			38.25

IV

AREA \& ATTENUATION SUMMARY

REQUIRED ATTENUTATION CACULATION				
PRE-DEVELOPED CONDITION			POST-DEVELOPED CONDITION	
AREA (AC):	1.51		AREA (AC):	1.51
CN:	49.0		CN :	82.7
IMPERVIOUS AREA (AC):	0.00		IMPERVIOUS AREA (AC):	1.04
PERVIOUS AREA (AC):	1.51		PERVIOUS AREA (AC):	0.47
			IMPERVIOUS AREA (AC):	1.04
			RUNOFF VOLUME V	
AGENCY	DESIGN STORM	$\begin{gathered} \text { PRE } \\ {[\text { AC-FT] }} \end{gathered}$	$\begin{gathered} \text { POST } \\ {[\text { AC-FT] }} \end{gathered}$	TOTAL RETENTION [AC-FT]
SWFWMD	$10 \mathrm{yr} / 24 \mathrm{hr}$	0.20	0.63	0.43
SWFWMD	$25 \mathrm{yr} / 24 \mathrm{hr}$	0.27	0.75	0.48

V SUMMARY OF REQUIRED TREATMENT VOLUME

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=\quad 1.0$ inch of runoff from the New Impervious Area	0.09

VI SWALE VOLUME CALCULATIONS

Swale 1A

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	44.00	0.25	0.00
Weir Crest Elevation	44.34	0.26	0.09
Freeboard Elevation	46.00	0.32	0.57
Top of Bank Elevation	47.00	0.35	0.90
Top of Berm	47.01	0.46	0.90

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Swale Bottom and Weir Crest Elevation	0.09
	PROVIDED ATTENUATION VOLUME AC-FT Attenuation Volume Provided = Volume between Weir Crest Elevation and Freeboard Elevation 0.48

VII BASIN HYDRAULICS - VERIFY SWALE DOES NOT ADVERSELY IMPACT BASIN INLETS

Low Edge of Pavement in Basin $=$	47.0 Ft	Station/Location: Edge of southbound mainline at station $805+30$ (Lt).
1.0' of Clearance $=$	46.0 Ft	
Distance from EOP to Pond $=$	200 Ft	
Hydraulic Grade Line (HGL) at EOP $=$.16 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft})$
$\mathbf{1 0 ~ y e a r ~ H G L ~}=$	45.84 Ft	
10 year Pond Stage $=$	45.6 Ft	HGL Below EOP

PROJECT TITLE:	SR $93(1-275)$ from N. of MLK Blvd. to N. of Bearss Ave.	Nov-18	
PROJECT NUMBER:	$431821-1$	MATE:	JLL
BASIN DESIGNATION:	Basin 2 A	MADE BY:	CHECKED BY:

I PRE DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS

Basin 2A

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathbf{i n}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[$ ac-ft]
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	5.98	2.86	0.59
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	5.98	3.62	0.75

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	5.98

2) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P=\quad 8.00 \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	3.62

3) DETERMINE RUNOFF VOLUME - V[R]
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.75

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 2A

COMPUTED BASIN AREA (Ac)
2.49

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[$ ac-ft]
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	5.73	2.96	0.61
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	5.73	3.73	0.77

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

2) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	3.73

3) DETERMINE RUNOFF VOLUME - V[R]

$$
\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12 * \text { AREA }
$$

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.77

Hillsborough County Soil Survey			
Avg. Depth to SHWT (Ft)	Depth Used (Ft)	Ground Elevation (Ft)	Estimated SHWT (Ft)
$3.5-6.0$	4.75	37.0	32.25
			32.25

IV AREA \& ATTENUATION SUMMARY

REQUIRED ATTENUTATION CACULATION			
PRE-DEVELOPED CONDITION		POST-DEVELOPED CONDITION	
AREA (AC):	2.49	AREA (AC):	2.49
CN :	62.6	CN :	63.6
IMPERVIOUS AREA (AC):	0.69	IMPERVIOUS AREA (AC):	0.74
PERVIOUS AREA (AC):	1.80	PERVIOUS AREA (AC):	1.75
		NEW IMPERVIOUS AREA (AC):	0.05

AGENCY		RUNOFF VOLUME V[R]		
	DESIGN STORM	PRE [AC-FT]	POST [AC-FT]	TOTAL RETENTION [AC-FT]
	$10 \mathrm{yr} / 24 \mathrm{hr}$	0.59	0.61	$\mathbf{0 . 0 2}$
SWFWMD	$25 \mathrm{yr} / 24 \mathrm{hr}$	0.75	0.77	$\mathbf{0 . 0 2}$

V SUMMARY OF REQUIRED TREATMENT VOLUME

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=\quad 1.0$ inch of runoff from the New Impervious Area	0.004

VI POND VOLUME CALCULATIONS

Pond 2

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Pond Bottom	34.00	0.78	0.00
Weir Crest Elevation	34.10	0.79	0.08
Freeboard Elevation	36.00	0.91	1.69
Top of Bank Elevation	37.00	0.98	2.64
Top of Berm	37.01	1.27	2.65

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Pond Bottom and Weir Crest Elevation	0.08

PROVIDED ATTENUATION VOLUME	AC-FT
Attenuation Volume Provided = Volume between Weir Crest Elevation and Freeboard Elevation	1.62

VII BASIN HYDRAULICS - VERIFY SWALE DOES NOT ADVERSELY IMPACT BASIN INLETS

Low Edge of Pavement in Basin =	37.0 Ft	Station/Location: Northbound exit ramp at Hillsborough Ave. (Rt.)
1.0 ' of Clearance $=$	36.0 Ft	
Distance from EOP to Pond =	30 Ft	
Hydraulic Grade Line (HGL) at EOP =	. 02 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{tt}$)
10 year HGL =	35.98 Ft	
10 year Pond Stage =	34.19 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 (l-275) from N. of MLK Blvd. to N. of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 2 B	CHECKED BY:	TDA

I PRE DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 2B

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{aligned} & \text { SOIL } \\ & \text { GROUP } \end{aligned}$	CN	AREA	PRODUCT
Impervious				
Roadway, Shoulder and sidewalk		98	0.00	0.00
Sub-total for Impervious Land Uses			0.00	0.00
Pervious				
Open Space	A	49	1.29	63.21
Sub-total for Pervious Land Uses			1.29	63.21
Swale				
Open Space	A	49	0.28	13.72
Sub-total for Swale Land Uses			0.28	13.72
		TOTAL	1.57	76.93

COMPOSITE CN	49.0

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathbf{i n}]$	S $[\mathbf{i n}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	10.41	1.58	0.21
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	10.41	2.15	0.28

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	10.41

) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	2.15

3) DETERMINE RUNOFF VOLUME - V[R]
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.28

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 2B

COMPUTED BASIN AREA (Ac)
1.57

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	2.57	4.65	0.61
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	2.57	5.58	0.73

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	2.57

2) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	5.58

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12$ * AREA

RUNOFF (ac-ft)	V[R]	0.73

Hillsborough County Soil Survey			
Avg. Depth to SHWT (Ft)	Depth Used (Ft)	Ground Elevation (Ft)	Estimated SHWT (Ft)
$3.5-6.0$	2.50	32.0	29.50
			29.50

IV

AREA \& ATTENUATION SUMMARY

REQUIRED ATTENUTATION CACULATION			
PRE-DEVELOPED CONDITION		POST-DEVELOPED CONDITION	
AREA (AC):	1.57	AREA (AC):	1.57
CN :	49.0	CN :	79.6
IMPERVIOUS AREA (AC):	0.00	IMPERVIOUS AREA (AC):	0.98
PERVIOUS AREA (AC):	1.57	PERVIOUS AREA (AC):	0.59
		NEW IMPERVIOUS AREA (AC):	0.98

AGENCY	RUNOFF VOLUME V[R]			
		PRE [AC-FT]	POST [AC-FT]	TOTAL RETENTION [AC-FT]
SWFWMD		0.21	0.61	$\mathbf{0 . 4 0}$
SWFWMD	$25 \mathrm{yr} / 24 \mathrm{hr}$	0.28	0.73	$\mathbf{0 . 4 5}$

V SUMMARY OF REQUIRED TREATMENT VOLUME

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=\quad 1.0$ inch of runoff from the New Impervious Area	0.08

VI SWALE VOLUME CALCULATIONS

Swale 2

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	32.00	0.19	0.00
Weir Crest Elevation	32.39	0.20	0.08
Freeboard Elevation	34.50	0.27	0.57
Top of Bank Elevation	35.00	0.28	0.71
Top of Berm	35.01	0.37	0.71

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Swale Bottom and Weir Crest Elevation	0.08

PROVIDED ATTENUATION VOLUME	AC-FT
Attenuation Volume Provided $=$ Volume between Weir Crest Elevation and Freeboard Elevation	0.49

VII BASIN HYDRAULICS - VERIFY SWALE DOES NOT ADVERSELY IMPACT BASIN INLETS

Low Edge of Pavement in Basin =	39.0 Ft	Station/Location: Edge of southbound at station 824+50 (Lt).
1.0 ' of Clearance $=$	38.0 Ft	
Distance from EOP to Pond =	615 Ft	
Hydraulic Grade Line (HGL) at EOP =	. 49 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	37.51 Ft	
10 year Pond Stage =	34.0 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 (l-275) from N. of MLK Blvd. to N. of Bearss Ave.	Nov-18	
PROJECT NUMBER:	$431821-1$	DTE:	JLL
BASIN DESIGNATION:	Basin 3A	MADE BY:	TDA

I PRE DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 3A

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{gathered} \text { SOIL } \\ \text { GROUP } \end{gathered}$	CN	AREA	PRODUCT
Impervious				
Roadway, Shoulder and sidewalk		98	0.00	0.00
Sub-total for Impervious Land Uses			0.00	0.00
Pervious				
Open Space	A	49	1.14	55.86
Sub-total for Pervious Land Uses			1.14	55.86
Swale				
Open Space	A	49	0.53	25.97
Sub-total for Swale Land Uses			0.53	25.97
		TOTAL	1.67	81.83

COMPOSITE CN 49.0

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	10.41	1.58	0.22
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	10.41	2.15	0.30

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	10.41

2) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	2.15

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12$ * AREA

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.30

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 3A

COMPUTED BASIN AREA (Ac)
1.67

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{aligned} & \text { SOIL } \\ & \text { GROUP } \end{aligned}$	CN	AREA	PRODUCT
Impervious (New)				
Roadway, Shoulder and sidewalk		98	0.82	80.36
Sub-total for Impervious Land Uses			0.82	80.36
Pervious				
Open Space	A	49	0.32	15.68
Sub-total for Pervious Land Uses			0.32	15.68
Swale				
Open Space (Swale)	A	49	0.53	25.97
Sub-total for Swale Land Uses			0.53	25.97
		TOTAL	1.67	122.01
		COMPOSITE CN		

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	3.69	3.94	0.55
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	3.69	4.82	0.67

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	3.69

2) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	4.82

3) DETERMINE RUNOFF VOLUME - V[R]
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.67

Hillsborough County Soil Survey			
Avg. Depth to SHWT (Ft)	Depth Used (Ft)	Ground Elevation (Ft)	Estimated SHWT (Ft)
$3.5-6.0$	4.75	41.5	36.75
>6.0	6.0	41.5	35.50
			36.1

IV

AREA \& ATTENUATION SUMMARY

V SUMMARY OF REQUIRED TREATMENT VOLUME

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=\quad 1.0$ inch of runoff from the New Impervious Area	0.07

VI SWALE VOLUME CALCULATIONS

Swale 3A

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	38.00	0.43	0.00
Weir Crest Elevation	38.15	0.44	0.07
Freeboard Elevation	39.00	0.48	0.46
Top of Bank Elevation	40.00	0.53	0.96
Top of Berm	40.01	0.66	0.97

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Swale Bottom and Weir Crest Elevation	0.07
	PROVIDED ATTENUATION VOLUME AC-FT Attenuation Volume Provided = Volume between Weir Crest Elevation and Freeboard Elevation 0.39

VII BASIN HYDRAULICS - VERIFY SWALE DOES NOT ADVERSEL Y IMPACT BASIN INLETS

Low Edge of Pavement in Basin $=$	47.3 Ft	Station/Location: Northbound barrier wall at station $834+95$ (Rt).
1.0' of Clearance $=$	46.3 Ft	
Distance from EOP to Pond $=$	20 Ft	
Hydraulic Grade Line (HGL) at EOP $=$.02 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
$\mathbf{1 0}$ year HGL $=$	46.28 Ft	
10 year Pond Stage $=$	38.65 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 (l-275) from N. of MLK Blvd. to N. of Bearss Ave.	Nov-18		
PROJECT NUMBER:	$431821-1$	DATE:	JLL	
BASIN DESIGNATION:	Basin 3 B		MADE BY:	TDA

I PRE DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 3B

COMPUTED BASIN AREA (Ac)

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{gathered} \text { SOIL } \\ \text { GROUP } \end{gathered}$	CN	AREA	PRODUCT
Impervious				
Roadway, Shoulder and sidewalk		98	0.09	8.82
Sub-total for Impervious Land Uses			0.09	8.82
Pervious				
Open Space	A	49	1.11	54.39
Sub-total for Pervious Land Uses			1.11	54.39
Swale				
Open Space	A	49	0.26	12.74
Sub-total for Swale Land Uses			0.26	12.74
		TOTAL	1.46	75.95

COMPOSITE CN	52.0

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	\mathbf{S} $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	9.22	1.85	0.22
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	9.22	2.46	0.30

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	9.22

2) DETERMINE RUNOFF - R
$P=\quad 8.00$
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)$

RUNOFF (inches)	R	2.46

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12$ * AREA

RUNOFF (ac-ft)	$\mathrm{V}[\mathrm{R}]$	0.30

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 3B

COMPUTED BASIN AREA (Ac)		1.46		
DETERMINE BASIN RUNOFF CURVE-NUMBER-CN				
LAND-USE DESCRIPTION	$\begin{gathered} \text { SOIL } \\ \text { GROUP } \end{gathered}$	CN	AREA	PRODUCT
Impervious (New)				
Roadway, Shoulder and sidewalk		98	0.60	58.80
Sub-total for Impervious Land Uses			0.60	58.80
Pervious				
Open Space	A	49	0.60	29.40
Sub-total for Pervious Land Uses			0.60	29.40
Swale				
Open Space (Swale)	A	49	0.26	12.74
Sub-total for Swale Land Uses			0.26	12.74
		TOTAL	1.46	100.94
		COMPOSITE CN		

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathbf{i n}]$	S $[\mathrm{in}]$	\mathbf{R} $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	4.46	3.53	0.43
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	4.46	4.37	0.53

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	4.46

2) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	4.37

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12$ * AREA

RUNOFF (ac-ft)	V[R]	0.53

Hillsborough County Soil Survey			
Avg. Depth to SHWT (Ft)	Depth Used (Ft)	Ground Elevation (Ft)	Estimated SHWT (Ft)
$3.5-6.0$	4.75	38.0	33.25
>6.0	6.0	38.0	32.00
			32.6

IV

AREA \& ATTENUATION SUMMARY

REQUIRED ATTENUTATION CACULATION			
PRE-DEVELOPED CONDITION		POST-DEVELOPED CONDITION	
AREA (AC):	1.46	AREA (AC):	1.46
CN :	52.0	CN :	69.1
IMPERVIOUS AREA (AC):	0.09	IMPERVIOUS AREA (AC):	0.60
PERVIOUS AREA (AC):	1.37	PERVIOUS AREA (AC):	0.86
		NEW IMPERVIOUS AREA (AC):	0.51

AGENCY		RUNOFF VOLUME V[R]		
	$\begin{array}{c}\text { DESIGN } \\ \text { STORM }\end{array}$	$\begin{array}{c}\text { PRE } \\ \text { [AC-FT] }\end{array}$	$\begin{array}{c}\text { POST } \\ \text { [AC-FT] }\end{array}$	TOTAL RETENTION
[AC-FT]				

V SUMMARY OF REQUIRED TREATMENT VOLUME

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=\quad 1.0$ inch of runoff from the New Impervious Area	0.04

VI SWALE VOLUME CALCULATIONS

Swale 3B

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	37.50	0.19	0.00
Weir Crest Elevation	37.69	0.20	0.04
Freeboard Elevation	39.00	0.23	0.32
Top of Bank Elevation	40.00	0.26	0.56
Top of Berm	40.01	0.34	0.57

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Swale Bottom and Weir Crest Elevation	0.04
	PROVIDED ATTENUATION VOLUME AC-FT Attenuation Volume Provided = Volume between Weir Crest Elevation and Freeboard Elevation 0.28

VII BASIN HYDRAULICS - VERIFY SWALE DOES NOT ADVERSELY IMPACT BASIN INLETS

Low Edge of Pavement in Basin $=$	48.1 Ft	Station/Location: Southbound barrier wall at station $834+95$ (Lt).
1.0' of Clearance $=$	47.1 Ft	
Distance from EOP to Pond $=$	20 Ft	
Hydraulic Grade Line (HGL) at EOP $=$.02 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft})$
10 year HGL $=$	47.08 Ft	
10 year Pond Stage $=$	38.45 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 (l-275) from N. of MLK Blvd. to N. of Bearss Ave.	Nov-18	
PROJECT NUMBER:	$431821-1$	DTE:	JLL
BASIN DESIGNATION:	Basin $4 / 5$	MADE BY:	TDA

I PRE DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 4/5

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P [in]	\mathbf{S} $[\mathbf{i n}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	9.10	1.88	0.29
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	9.10	2.50	0.38

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	9.10

) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	2.50

3) DETERMINE RUNOFF VOLUME - V[R]
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA

RUNOFF (ac-ft)	V[R]	0.38

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 4/5

COMPUTED BASIN AREA (Ac)
1.84

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{aligned} & \text { SOIL } \\ & \text { GROUP } \end{aligned}$	CN	AREA	PRODUCT
Impervious (New)				
Roadway, Shoulder and sidewalk		98	1.08	105.84
Sub-total for Impervious Land Uses			1.08	105.84
Pervious				
Open Space	A	49	0.23	11.27
Sub-total for Pervious Land Uses			0.23	11.27
Swale				
Open Space (Swale)	A	49	0.53	25.97
Sub-total for Swale Land Uses			0.53	25.97
		TOTAL	1.84	143.08
		COMPOSITE CN		77.8

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	\mathbf{S} $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] [ac-ft]
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	2.86	4.45	0.68
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	2.86	5.36	0.82

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	2.86

) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	5.36

3) DETERMINE RUNOFF VOLUME - V[R]
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA

RUNOFF (ac-ft)	V[R]	0.82

Hillsborough County Soil Survey			
Avg. Depth to SHWT (Ft)	Depth Used (Ft)	Ground Elevation (Ft)	Estimated SHWT (Ft)
$3.5-6.0$	4.75	29.5	24.75
			24.8

IV

AREA \& ATTENUATION SUMMARY

REQUIRED ATTENUTATION CACULATION			
PRE-DEVELOPED CONDITION		POST-DEVELOPED CONDITION	
AREA (AC):	1.84	AREA (AC):	1.84
CN :	52.4	CN :	77.8
IMPERVIOUS AREA (AC):	0.00	IMPERVIOUS AREA (AC):	1.08
PERVIOUS AREA (AC):	1.84	PERVIOUS AREA (AC):	0.76
		NEW IMPERVIOUS AREA (AC):	1.08

AGENCY		RUNOFF VOLUME V[R]		
	$\begin{array}{c}\text { DESIGN } \\ \text { STORM }\end{array}$	$\begin{array}{c}\text { PRE } \\ \text { [AC-FT] }\end{array}$	$\begin{array}{c}\text { POST } \\ \text { [AC-FT] }\end{array}$	TOTAL RETENTION

V SUMMARY OF REQUIRED TREATMENT VOLUME

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=\quad 1.0$ inch of runoff from the New Impervious Area	0.09

VI SWALE VOLUME CALCULATIONS

Swale 4/5

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	28.40	0.25	0.00
Weir Crest Elevation	28.72	0.28	0.09
Freeboard Elevation	30.00	0.42	0.54
Top of Bank Elevation	31.00	0.53	1.01
Top of Berm	31.01	0.91	1.02

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Swale Bottom and Weir Crest Elevation	0.09

PROVIDED ATTENUATION VOLUME	AC-FT
Attenuation Volume Provided = Volume between Weir Crest Elevation and Freeboard Elevation	0.45

VII BASIN HYDRAULICS - VERIFY SWALE DOES NOT ADVERSELY IMPACT BASIN INLETS

PROJECT TITLE:	SR $93(l-275)$ from N. of MLK Blvd. to N. of Bearss Ave.	Nov-18	
PROJECT NUMBER:	$431821-1$	DATE:	JLL
BASIN DESIGNATION:	Basin $6 / 7$	MADE BY:	TDA

I PRE DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 6/7

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	9.17	1.86	0.38
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	9.17	2.48	0.51

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	9.17

2) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	2.48

3) DETERMINE RUNOFF VOLUME - V[R]
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA

RUNOFF (ac-ft)	V[R]	0.51

POST DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 6/7

COMPUTED BASIN AREA (Ac)
2.48

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{aligned} & \text { SOIL } \\ & \text { GROUP } \end{aligned}$	CN	AREA	PRODUCT
Impervious (New)				
Roadway, Shoulder and sidewalk		98	1.66	162.68
Sub-total for Impervious Land Uses			1.66	162.68
Pervious				
Open Space	A	49	0.26	12.74
Sub-total for Pervious Land Uses			0.26	12.74
Swale				
Open Space (Swale)	A	49	0.56	27.44
Sub-total for Swale Land Uses			0.56	27.44
		TOTAL	2.48	202.86
		COMPOSITE CN		81.8

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	2.23	4.89	1.01
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	2.23	5.84	1.21

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

2) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P=8.00 \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12$ * AREA
RUNOFF (ac-fi)
V[R

SOIL STORAGE (inches)	S	2.23

SIL STORAGE (inches)

RUNOFF (inches)	R	5.84

Hillsborough County Soil Survey			
Avg. Depth to SHWT (Ft)	Depth Used (Ft)	Ground Elevation (Ft)	Estimated SHWT (Ft)
$3.5-6.0$	4.75	20.2	15.45
			15.45

IV

AREA \& ATTENUATION SUMMARY

V SUMMARY OF REQUIRED TREATMENT VOLUME

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=\quad 1.0$ inch of runoff from the New Impervious Area	0.13

VI SWALE VOLUME CALCULATIONS

Swale 6/7

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	17.50	0.32	0.00
Weir Crest Elevation	17.89	0.36	0.13
Freeboard Elevation	19.50	0.51	0.83
Top of Bank Elevation	20.00	0.56	1.10
Top of Berm	20.01	0.88	1.11

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Swale Bottom and Weir Crest Elevation	0.13

PROVIDED ATTENUATION VOLUME	AC-FT
Attenuation Volume Provided = Volume between Weir Crest Elevation and Freeboard Elevation	0.70

VII BASIN HYDRAULICS - VERIFY SWALE DOES NOT ADVERSELY IMPACT BASIN INLETS

Low Edge of Pavement in Basin $=$	51.0 Ft
1.0' of Clearance $=$	50.0 Ft

$28^{\circ} 1^{\prime} 10^{\prime \prime N}$

PROJECT TITLE:	SR 93 (l-275) from N. of MLK Blvd. to N. of Bearss Ave.	Dov-18	
PROJECT NUMBER:	$431821-1$	MADE:	JLL
BASIN DESIGNATION:	Basin 8	CHECKED BY:	TDA

I PRE DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 8

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{gathered} \text { SOIL } \\ \text { GROUP } \end{gathered}$	CN	AREA	PRODUCT
Impervious				
Roadway, Shoulder and sidewalk		98	0.00	0.00
Sub-total for Impervious Land Uses			0.00	0.00
Pervious				
Open Space	A	49	2.03	99.47
Open Space (Post Imp. Area)	A	49	2.12	103.88
Open Space (Post Imp. Area)	C	79	0.66	52.14
Sub-total for Pervious Land Uses			4.81	255.49
Pond				
Open Space	A	49	0.83	40.67
Sub-total for Pond Land Uses			0.83	40.67
		TOTAL	5.64	296.16

COMPOSITE CN 52.5

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:							
	DESIGN STORM	Agency	$\begin{gathered} \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac-ft}]} \end{gathered}$	
	$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	9.04	1.89	0.89	
	$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	9.04	2.52	1.18	
SAMPLE CALCULATION:							
1) DETERMINE SOIL STORAGE - S							
$S=(1000 / \mathrm{CN})-10$				SOIL STORAGE (inches)		S	9.04
2) DETERMINE RUNOFF - R							
$\mathrm{P}=\quad 8.00$							
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /(P+0.8 * S)$				RUNOFF (inches)		R	2.52
3) DETERMINE RUNOFF VOLUME - V[R]							
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA				RUNOFF (ac-ft)		V [R]	1.18

POST DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 8

COMPUTED BASIN AREA (Ac)
5.64

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{aligned} & \text { SOIL } \\ & \text { GROUP } \end{aligned}$	CN	AREA	PRODUCT
Impervious (New)				
Roadway, Shoulder and sidewalk		98	2.78	272.44
Sub-total for Impervious Land Uses			2.78	272.44
Pervious				
Open Space	A	49	2.03	99.47
Sub-total for Pervious Land Uses			2.03	99.47
Pond				
Open Space (Pond)	A	49	0.83	40.67
Sub-total for Pond Land Uses			0.83	40.67
		TOTAL	5.64	412.58
		COMPOSITE CN		73.2

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:

DESIGN STORM	Agency	P $[\mathrm{in}]$	S $[\mathrm{in}]$	R $[\mathrm{in}]$	V[R] $[\mathrm{ac}-\mathrm{ft}]$
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	3.67	3.95	1.86
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	3.67	4.83	2.27

SAMPLE CALCULATION:

1) DETERMINE SOIL STORAGE - S

$$
S=(1000 / C N)-10
$$

SOIL STORAGE (inches)	S	3.67

) DETERMINE RUNOFF - R

$$
\begin{aligned}
& P= \\
& R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)
\end{aligned}
$$

RUNOFF (inches)	R	4.83

3) DETERMINE RUNOFF VOLUME - V[R]
$V[R]=R / 12 *$ AREA

RUNOFF (ac-ft)	V[R]	2.27

Hillsborough County Soil Survey			
Avg. Depth to SHWT (Ft)	Depth Used (Ft)	Ground Elevation (Ft)	Estimated SHWT (Ft)
$3.5-6.0$	3.50	22.5	19.00
	Permit No. 4417641 00 (Pond A2 \& Pond A3)	16.40	
	Estimated SHWT		

IV AREA \& ATTENUATION SUMMARY

AGENCY		RUNOFF VOLUME V[R]		
	DESIGN	PRE	POST [AC-FT]	TOTAL RETENTION [AC-FT]
	0.89	1.86	$\mathbf{0 . 9 7}$	
SWFWMD	$10 \mathrm{yr} / 24 \mathrm{hr}$	1.18	2.27	$\mathbf{1 . 0 9}$

V

SUMMARY OF REQUIRED TREATMENT VOLUME

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=$	1.0 inch of runoff from the New Impervious Area

VI POND VOLUME CALCULATIONS
Pond 8

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Pond Bottom	21.00	0.57	0.00
Weir Crest Elevation	21.39	0.60	0.23
Freeboard Elevation	23.00	0.74	1.31
Top of Bank Elevation	24.00	0.83	2.10
Top of Berm	24.01	1.17	2.11

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Pond Bottom and Weir Crest Elevation	0.23

PROVIDED ATTENUATION VOLUME	AC-FT
Attenuation Volume Provided = Volume between Weir Crest Elevation and Freeboard Elevation	1.09

VII BASIN HYDRAULICS - VERIFY SWALE DOES NOT ADVERSELY IMPACT BASIN INLETS

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 9	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 9

ESTIMATED RUNOFF VOLUME

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 9	CHECKED BY:	TDA

II post development
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 9

ESTIMATED RUNOFF VOLUME						
SUMMARY TABLE:						
$\begin{aligned} & \text { DESIGN } \\ & \text { STORM } \\ & \hline \end{aligned}$	Agency	$\begin{gathered} \hline \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft]}]} \end{gathered}$	
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	1.23	5.71	2.36	
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	1.23	6.69	2.77	
$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	1.23	9.65	3.99	
SAMPLE CALCULATION:						
1) DETERMINE SOIL STORAGE - S						
$S=(1000 / \mathrm{CN})-10$			SOIL STORAGE (inches)		S	1.23
2) DETERMINE RUNOFF - R						
$\mathrm{P}=\quad 8.00$						
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /(P+0.8 * S)$		RUNOFF (inches)			R	6.69
3) DETERMINE RUNOFF VOLUME - V[R]						
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA		RUNOFF (ac-ft)			V [R]	2.77

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 9	CHECKED BY:	TDA

III GEOTECHNICAL INFORMATION

Estimated SHWT - NRCS SOIL SURVEY			
Facility	Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
SMF 9	3.5	27.0	23.50
SMF 9-1	2.75	28.0	25.25

IV SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 9

REQUIRED ATTENUTATION CACULATION				
PRE-DEVELOPED CONDITION			POST-DEVELOPED CONDITION	
AREA (AC):	4.96	AREA (AC):		4.96
CN :	74	CN :		89
IMPERVIOUS AREA (AC): PERVIOUS AREA (AC):	0.00	IMPERVIOUS AREA (AC):PERVIOUS AREA (AC):		2.78
	3.92			1.88
		NEW IMPERVIOUS AREA (AC):		2.78
SUMMARY OF WATER MANAGEMENT DISTRICT ATTENUATION ESTIMATES				
AGENCY	DESIGN	RUNOFF VOLUME V[R]		
		$\begin{gathered} \mathrm{PRE} \\ \text { [} \mathrm{AC}-\mathrm{FT} \end{gathered}$	$\begin{gathered} \text { POST } \\ \text { [} \mathrm{AC}-\mathrm{FT} \text {] } \\ \hline \end{gathered}$	TOTAL RETENTION [AC-FT]
SWFWMD	$10 \mathrm{yr} / 24 \mathrm{hr}$	1.67	2.36	0.69
SWFWMD	$25 \mathrm{yr} / 24 \mathrm{hr}$	2.04	2.77	0.73

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Dry Retention Treatment $=\quad 1.0$ inch of runoff from New Impervious Area	

V PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS
Basin 9

POND STAGE, AREA \& STORAGE for Swale 9			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	25.60	0.24	0.00
Weir Crest Elevation	26.09	0.26	0.12
DHW 10	26.92	0.30	0.35
DHW 25	27.00	0.30	0.38
Top of Bank Elevation	27.50	0.32	0.53
Top of Berm	27.51	0.44	0.54

$\left\lvert\,$| PROVIDED TREATMENT VOLUME | AC-FT |
| :--- | :---: |
| Treatment Volume Provided = Volume between Swale Bottom and Weir Crest Elevation | 0.12 |
| PROVIDED ATTENUATION VOLUME AC-FT
 DHW 10 Provided between Weir Crest and 10 Year Stage 0.23
 DHW 25 Provided between Weir Crest and 25 Year Stage 0.25 | |$.$\right.

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 9	CHECKED BY:	TDA

Swale 9-1

POND STAGE, AREA \& STORAGE for Swale 9-1
DESCRIPTION STAGE (FT) AREA (AC) CUMMULATIVE STORAGE (AC-FT) Swale Bottom 24.25 0.21 0.00 SHWT 25.25 0.28 0.25 Weir Crest Elevation 25.61 0.30 0.35 DHW 10 26.92 0.39 0.81 DHW 25 27.00 0.40 0.84 Top of Bank Elevation 27.00 0.40 0.84 Top of Berm 28.00 0.60 1.34

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided $=$ Volume between Seasonal High and Weir Crest Elevation	0.11

PROVIDED ATTENUATION VOLUME	AC-FT	
DHW 10	Provided between Weir Crest and 10 Year Stage	0.46
DHW 25	Provided between Weir Crest and 25 Year Stage	0.49

TOTAL PROVIDED ATTENUATION VOLUME	AC-FT	
DHW 10	Provided between Weir Crest and 10 Year Stage	0.69
DHW 25	Provided between Weir Crest and 25 Year Stage	0.74

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS
Basin 9

Low Edge of Pavement in Basin =	33.0 Ft	Station/Location: Edge of existing northbound exit ramp at Sta. 4007+00.
1.0 ' of Clearance =	32.0 Ft	
Distance from EOP to Pond =	800 Ft	
Hydraulic Grade Line (HGL) at EOP =	. 64 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	31.36 Ft	

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 10	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 10

$$
\begin{array}{ll}
\text { COMPUTED BASIN AREA (Ac) } & 3.06 \\
\hline
\end{array}
$$

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:							
	DESIGN STORM	Agency	$\begin{gathered} \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathbf{s} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{R} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft]}]} \end{gathered}$	
	$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	4.78	3.37	0.86	
	$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	4.78	4.19	1.07	
	$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	4.78	6.80	1.73	
SAMPLE CALCULATION:							
1) DETERMINE SOIL STORAGE - S							
$S=(1000 / \mathrm{CN})-10$				SOIL STORAGE (inches)		S	4.78
2) DETERMINE RUNOFF - R							
$\mathrm{P}=\quad 8.00$							
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /(P+0.8 * S)$				RUNOFF (inches)		R	4.19
3) DETERMINE RUNOFF VOLUME - V[R]							
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA				RUNOFF (ac-ft)		$\mathrm{V}[\mathrm{R}]$	1.07

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 10	CHECKED BY:	TDA

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 10

ESTIMATED RUNOFF VOLUME

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 10	CHECKED BY:	TDA

III GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
2.75	33.0	30.25
		30.25

IV SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 10

REQUIRED ATTENUTATION CACULATION				
PRE-DEVELOPED CONDITION		POST-DEVELOPED CONDITION		
$\begin{array}{r} \text { AREA (AC): } \\ \text { CN: } \\ \text { IMPERVIOUS AREA (AC): } \\ \text { PERVIOUS AREA (AC): } \end{array}$	3.06	AREA (AC):		3.06
	68	CN: IMPERVIOUS AREA (AC):		96
	0.00			2.26
	0.80			0.29
		NEW IMPERVIOUS AREA (AC):		2.26
SUMMARY OF WATER MANAGEMENT DISTRICT ATTENUATION ESTIMATES				
AGENCY	DESIGN	RUNOFF VOLUME V[R]		
		PRE	POST	TOTAL RETENTION
	STORM	[AC-FT]	[AC-FT]	[AC-FT]
SWFWMD	$10 \mathrm{yr} / 24 \mathrm{hr}$	0.86	1.66	0.80
SWFWMD	$25 \mathrm{yr} / 24 \mathrm{hr}$	1.07	1.92	0.85

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Requirement $=1.0$ inch of runoff from New Impervious Area	0.19

V PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS
Basin 10

Swale 10

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	29.25	0.44	0.00
SHWT	30.25	0.49	0.47
Weir Crest Elevation	30.63	0.51	0.65
DHW 10	32.10	0.58	1.45
DHW 25	32.19	0.58	1.50
Top of Bank Elevation	34.00	0.67	2.64
Top of Berm	34.01	0.80	2.64

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided $=$ Volume between Seasonal High and Weir Crest Elevation	0.19

PROVIDED ATTENUATION VOLUME	AC-FT	
DHW 10	Provided between Weir Crest and 10 Year Stage	0.80
DHW 25	Provided between Weir Crest and 25 Year Stage	0.85

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 10	CHECKED BY:	TDA

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS
Basin 10

Low Edge of Pavement in Basin $=$	35.0 Ft	Station/Location: Edge of north bound on ramp adjacent to pond
1.0' of Clearance $=$	34.0 Ft	
Distance from EOP to Pond $=$	20 Ft	
Hydraulic Grade Line (HGL) at EOP $=$.02 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{tt})$
10 year HGL $=$	33.98 Ft	
10 year Pond Stage $=$	32.1 Ft	HGL Below EOP

$28^{\circ} 3^{\prime} 14^{\prime \prime} \mathrm{N}$

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 11	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 11

$$
\begin{array}{ll}
\text { COMPUTED BASIN AREA (Ac) } & 1.38 \\
\hline
\end{array}
$$

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{gathered} \text { SOIL } \\ \text { GROUP } \end{gathered}$	CN	AREA	PRODUCT
Impervious				
Roadway, Shoulder and sidewalk		98	0.00	0.00
Sub-total for Impervious Land Uses			0.00	0.00
Pervious				
Open Space, Fair Condition - Urban Land Soil Type	C	74	0.97	71.78
Sub-total for Pervious Land Uses			0.97	71.78
Pond				
1/8 acre residential lots	C	74	0.41	30.34
Sub-total for Pervious Land Uses			0.41	30.34
		TOTAL	1.38	102.12

COMPOSITE CN
74
ESTIMATED RUNOFF VOLUME

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 11	CHECKED BY:	TDA

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 11

ESTIMATED RUNOFF VOLUME

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 11	CHECKED BY:	TDA

III GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
2.75	39.0	36.25
		36.25

IV SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 11

REQUIRED ATTENUTATION CACULATION				
PRE-DEVELOPED CONDITION		POST-DEVELOPED CONDITION		
AREA (AC):\square		AREA (AC):		1.38
CN:IMPERVIOUS AREA (AC):PERVIOUS AREA (AC):	74	$\begin{array}{r} \text { CN: } \\ \text { IMPERVIOUS AREA (AC): } \\ \text { PERVIOUS AREA (AC): } \end{array}$		96
	0.00	IMPERVIOUS AREA (AC): PERVIOUS AREA (AC):		1.06
	0.97			0.14
		NEW IMPERVIOUS AREA (AC):		1.06
SUMMARY OF WATER MANAGEMENT DISTRICT ATTENUATION ESTIMATES				
AGENCY	DESIGN	RUNOFF VOLUME V[R]		
		PRE	POST	TOTAL RETENTION
	STORM	[AC-FT]	[AC-FT]	[AC-FT]
SWFWMD	$10 \mathrm{yr} / 24 \mathrm{hr}$	0.46	0.75	0.28
SWFWMD	$25 \mathrm{yr} / 24 \mathrm{hr}$	0.57	0.86	0.30

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Requirement $=1.0$ inch of runoff from New Impervious Area	0.09

V PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS
Basin 11

Swale 11

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Swale Bottom	35.25	0.10	0.00
SHWT	36.25	0.15	0.13
Weir Crest Elevation	36.77	0.18	0.21
DHW 10	38.06	0.25	0.49
DHW 25	38.14	0.25	0.51
Top of Bank Elevation	40.00	0.35	1.07
Top of Berm	40.01	0.41	1.07

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided = Volume between Seasonal High and Weir Crest Elevation	0.09

PROVIDED ATTENUATION VOLUME	AC-FT	
DHW 10	Provided between Weir Crest and 10 Year Stage	0.28
DHW 25	Provided between Weir Crest and 25 Year Stage	0.30

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 11	CHECKED BY:	TDA

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS
Basin 11

Low Edge of Pavement in Basin $=$	40.0 Ft	Station/Location: Edge of southbound I-275 at Sta. 4064+50.
1.0' of Clearance $=$	39.0 Ft	
Distance from EOP to Pond $=$	30 Ft	
Hydraulic Grade Line (HGL) at EOP $=$.02 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft})$
$\mathbf{1 0}$ year HGL $=$	38.98 Ft	
10 year Pond Stage $=$	38.06 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 from MLK Jr. Blva. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 12	CHECKED BY:	TDA

I PRE DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 12

COMPUTED BASIN AREA (Ac)		1.54	AREA	
DETERMINE BASIN RUNOFF CURVE-NUMBER-CN				
LAND-USE DESCRIPTION	SOIL GROUP	CN		PRODUCT
Impervious				
Roadway, Shoulder and sidewalk		98	0.00	0.00
Sub-total for Impervious Land Uses			0.00	0.00
Pervious				
Open Space, Fair Condition - Urban Land Soil Type	C	74	0.78	57.72
Open Space, Fair Condition - Urban Land Soil Type	B/D	80	0.21	
Sub-total for Pervious Land Uses			0.99	57.72
Pond				
Open Space, Fair Condition - Urban Land Soil Type	B/D	80	0.55	44.08
Sub-total for Pervious Land Uses			0.55	44.08
		TOTAL	1.54	101.80
		COMPOSITE CN		

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:							
	DESIGN STORM	Agency	$\begin{gathered} \hline \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{S} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{R} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft}]} \end{gathered}$	
	$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	5.14	3.21	0.41	
	$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	5.14	4.01	0.52	
	$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	5.14	6.58	0.85	
SAMPLE CALCULATION:							
1) DETERMINE SOIL STORAGE - S							
$S=(1000 / C N)-10$			SOIL STORAGE (inches)			S	5.14
2) DETERMINE RUNOFF - R							
$\mathrm{P}=$		11.00					
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)$			RUNOFF (inches)			R	6.58
3) DETERMINE RUNOFF VOLUME - V[R]							
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA			RUNOFF (ac-ft)			V[R]	0.85

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 12	CHECKED BY:	TDA

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 12

COMPUTED BASIN AREA (Ac)		1.54		
DETERMINE BASIN RUNOFF CURVE-NUMBER-CN				
LAND-USE DESCRIPTION	SOIL GROUP	CN	AREA	PRODUCT
Impervious (New)				
Roadway, Shoulder and sidewalk		98	0.96	94.08
Sub-total for Impervious Land Uses			0.96	94.08
Pervious				
Open Space, Fair Condition - Urban Land Soil Type	C / B/D	77	0.34	26.39
Sub-total for Impervious Land Uses			0.34	26.39
Pond				
Wet Area		100	0.24	23.82
Sub-total for Impervious Land Uses				
			0.24	23.82
		TOTAL	1.54	144.30
		COMPOSITE CN		94

ESTIMATED RUNOFF VOLUME

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 12	CHECKED BY:	TDA

III GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
2.75	39.0	36.25
		36.25

IV SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 12

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Requirement $=1.0$ inch of runoff from New Impervious Area	0.08

V PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS
Basin 12

Swale 12

DESCRIPTION			
Pwale Bottom	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
SHWT	35.25	0.12	0.00
Weir Crest Elevation	36.25	0.21	0.16
DHW 10	36.59	0.24	0.24
DHW 25	37.90	0.36	0.63
Top of Bank Elevation	37.98	0.36	0.66
Top of Berm	39.00	0.46	1.08

$\left\lvert\,$| PROVIDED TREATMENT VOLUME | AC-FT |
| :--- | :---: |
| Treatment Volume Provided = Volume between Seasonal High and Weir Crest Elevation | 0.08 |
| PROVIDED ATTENUATION VOLUME AC-FT
 DHW 10 Provided between Weir Crest and 10 Year Stage 0.39
 DHW 25 Provided between Weir Crest and 25 Year Stage 0.42
 DHW 100 Provided between Weir Crest and 100 Year Stage 0.76 | |$.$| |
| :---: |\right.

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 12	CHECKED BY:	TDA

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS
Basin 12

Low Edge of Pavement in Basin $=$	40.0 Ft	Station/Location: Edge of southbound I-275 at Sta. 4068+00.
1.0' of Clearance $=$	39.0 Ft	
Distance from EOP to Pond $=$	30 Ft	
Hydraulic Grade Line (HGL) at EOP $=$.02 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft})$
$\mathbf{1 0}$ year HGL $=$	38.98 Ft	
10 year Pond Stage $=$	37.9 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 13	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 13

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:							
	DESIGN STORM	Agency	$\begin{gathered} \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft}]} \end{gathered}$	
	$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	3.51	4.04	1.16	
	$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	3.51	4.93	1.41	
	$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	3.51	7.68	2.20	
SAMPLE CALCULATION:							
1) DETERMINE SOIL STORAGE - S							
$S=(1000 / \mathrm{CN})-10$				SOIL STORAGE (inches)		S	3.51
2) DETERMINE RUNOFF - R							
$\mathrm{P}=\quad 11.00$							
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /(P+0.8 * S)$				RUNOFF (inches)		R	7.68
3) DETERMINE RUNOFF VOLUME - V[R]							
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA				RUNOFF (ac-ft)		$\mathrm{V}[\mathrm{R}]$	2.20

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 13	CHECKED BY:	TDA

II POSt development
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 13

ESTIMATED RUNOFF VOLUME

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 13	CHECKED BY:	TDA

III GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
2.75	39.0	36.25
	Permitted Facility: Exist. Pond No. 1	38.49
		38.49
Estimated SHWT		

IV SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 13

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Requirement $=1.0$ inch of runoff from New Impervious Area	0.21

V PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS
Basin 13

SMF 13

POND STAGE, AREA \& STORAGE			
DESCRIPTION	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Pond Bottom	34.49	0.65	0.00
SHWT	38.49	0.68	2.66
Weir Crest Elevation	38.80	0.68	2.87
DHW 10	39.90	0.69	3.62
DHW 25	39.94	0.69	3.65
Top of Bank Elevation	41.50	0.70	4.73
Top of Berm	42.50	0.87	5.52

| PROVIDED TREATMENT VOLUME | AC-FT |
| :--- | :---: | :---: |
| Treatment Volume Provided = Volume between Seasonal High and Weir Crest Elevation | 0.21 |
| PROVIDED ATTENUATION VOLUME AC-FT
 DHW 10 Provided between Weir Crest and 10 Year Stage 0.75
 DHW 25 Provided between Weir Crest and 25 Year Stage 0.78
 DHW 100 Provided between Weir Crest and 100 Year Stage 1.86 | |$.$

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 13	CHECKED BY:	TDA

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSEL Y IMPACT BASIN INLETS
Basin 13

Low Edge of Pavement in Basin =	45.0 Ft	Station/Location: Edge of southbound I-275 exist ramp at Sta. 4092+00.
1.0 ' of Clearance =	44.0 Ft	
Distance from EOP to Pond =	200 Ft	
Hydraulic Grade Line (HGL) at EOP =	. 16 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	43.84 Ft	
10 year Pond Stage =	39.9 Ft	HGL Below EOP

$28^{\circ} 4^{\prime} 6^{\prime \prime} N$
3
\vdots
N
N
N

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 14

ESTIMATED RUNOFF VOLUME						
SUMMARY TABLE:						
$\begin{aligned} & \hline \text { DESIGN } \\ & \text { STORM } \end{aligned}$	Agency	$\begin{gathered} \hline \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{R} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft}]} \end{gathered}$	
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	3.26	4.19	1.57	
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	3.26	5.09	1.90	
$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	3.26	7.87	2.94	
SAMPLE CALCULATION:						
1) DETERMINE SOIL STORAGE - S						
S $=(1000 / C N)-10$			SOIL STORAGE (inches)		S	3.26
2) DETERMINE RUNOFF - R						
$P=$						
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)$			RUNOFF (inches)		R	7.87
3) DETERMINE RUNOFF VOLUME - V[R]						
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA		RUNOFF (ac-ft)			V [R]	2.94

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 14

ESTIMATED RUNOFF VOLUME

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

III GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
$2-3.5$	50.5	47.75
		47.75

IV SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 14

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Volume $=1.0$ Inch of Runoff from New Impervious Area	0.31

V PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS
Basin 14

SMF 14A

DESCRIPTION	PTANE STAGE, AREA \& STORAGE $(F T)$	AREA $(A C)$	CUMMULATIVE STORAGE (AC-FT)
Pond Bottom	44.00	0.38	0.00
SHWT	47.75	0.44	1.54
Weir Crest Elevation	48.44	0.45	1.84
DHW 10	49.94	0.47	2.53
DHW 25	50.03	0.47	2.57
DHW 100	51.00	0.49	3.04
Top of Bank Elevation	52.00	0.50	3.53
Top of Berm	52.00	0.73	3.53

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided $=$ Volume between Seasonal High and Weir Crest Elevation	0.31

PROVIDED ATTENUATION VOLUME	AC-FT	
DHW 10	Provided between Weir Crest and 10 Year Stage	0.69
DHW 25	Provided between Weir Crest and 25 Year Stage	0.73
DHW 100	Provided between Weir Crest and 100 Year Stage	1.19

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS
Basin 14

Low Edge of Pavement in Basin $=$	53.0 Ft	Station/Location: Edge of northbound Bearss Ave. exit ramp at Sta. 4137+00.
1.0 of Clearance $=$	52.0 Ft	
Distance from EOP to Pond =	730 Ft	
Hydraulic Grade Line (HGL) at EOP =	. 58 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	51.42 Ft	
10 year Pond Stage =	49.94 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 14

ESTIMATED RUNOFF VOLUME						
SUMMARY TABLE:						
DESIGN STORM	Agency	$\begin{gathered} \mathbf{P} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{s} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \text { V[R] } \\ \text { [ac-ft] } \end{gathered}$	
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	3.28	4.18	1.66	
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	3.28	5.08	2.01	
$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	3.28	7.86	3.12	
SAMPLE CALCULATION:						
1) DETERMINE SOIL STORAGE - S						
$S=(1000 / C N)-10$		SOIL STORAGE (inches)			S	3.28
2) DETERMINE RUNOFF - R						
$\mathrm{P}=\quad 11.00$						
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)$		RUNOFF (inches)			R	7.86
3) DETERMINE RUNOFF VOLUME - V[R]						
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA		RUNOFF (ac-ft)			V [R]	3.12

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 14

ESTIMATED RUNOFF VOLUME

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

III GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
-	Permitted Facility: Exist. Pond No. 2	48.21
		48.21

IV SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 14

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Volume $=1.0$ Inch of Runoff from New Impervious Area	0.31

V PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS
Basin 14
SMF 14B

POND STAGE, AREA \& STORAGE			
DESCRIPTION (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)	
Pond Bottom	39.85	0.38	0.00
SHWT	48.21	0.75	4.72
Weir Crest Elevation	48.62	0.77	5.04
DHW 10	49.63	0.82	5.84
DHW 25	49.67	0.82	5.87
Top of Bank Elevation (DHW 100)	51.30	0.89	7.26
Top of Berm	52.30	1.00	8.21

PROVIDED TREATMENT VOLUME	AC-FT		
Treatment Volume Provided $=$ Volume between Seasonal High and Weir Crest Elevation	0.31		
PROVIDED ATTENUATION VOLUME AC-FT DHW 10 Provided between Weir Crest and 10 Year Stage 0.80 DHW 25 Provided between Weir Crest and 25 Year Stage 0.83 DHW 100 Provided between Weir Crest and 100 Year Stage 2.23		$.$	
:---:			

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS
Basin 14

Low Edge of Pavement in Basin $=$	53.0 Ft	Station/Location: Edge of northbound Bearss Ave. exit ramp at Sta. 4137+00.
1.0 of Clearance =	52.0 Ft	
Distance from EOP to Pond =	730 Ft	
Hydraulic Grade Line (HGL) at EOP =	. 58 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	51.42 Ft	
10 year Pond Stage =	49.63 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 14
COMPUTED BASIN AREA (Ac) 3.76

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{gathered} \text { SOIL } \\ \text { GROUP } \end{gathered}$	CN	AREA	PRODUCT
Impervious				
Roadway, Shoulder and sidewalk		98	0.00	0.00
Sub-total for Impervious Land Uses			0.00	0.00
Pervious				
Open Space, Fair Condition - Urban Land Soil Type (72\%)	C	74	2.71	200.33
Open Space, Fair Condition - Urban Land Soil Type (28\%)	B/D or D	80	1.05	84.22
Sub-total for Pervious Land Uses			3.76	284.56
Pond				
Open Space, Fair Condition	C	74	0.00	0.00
 Sub-total for Pervious Land Uses 0.00 0.00				
		TOTAL	3.76	284.56
		COMPOSITE		

ESTIMATED RUNOFF VOLUME						
SUMMARY TABLE:						
$\begin{aligned} & \hline \text { DESIGN } \\ & \text { STORM } \end{aligned}$	Agency	$\begin{gathered} \hline \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{s} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{R} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft]}} \end{gathered}$	
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	3.21	4.22	1.32	
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	3.21	5.12	1.60	
$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	3.21	7.90	2.48	
SAMPLE CALCULATION:						
1) DETERMINE SOIL STORAGE - S						
$S=(1000 / \mathrm{CN})-10$			SOIL STORAGE (inches)		S	3.21
2) DETERMINE RUNOFF - R						
$P=$						
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)$		RUNOFF (inches)			R	7.90
3) DETERMINE RUNOFF VOLUME - V[R]						
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA		RUNOFF (ac-ft)			$\mathrm{V}[\mathrm{R}]$	2.48

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 14

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:							
	DESIGN STORM	Agency	$\begin{gathered} \hline \mathbf{P} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{R} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\overline{V[R]}$ $[\mathrm{ac}-\mathrm{ft}]$	
	$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	0.20	6.76	2.12	
	$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	0.20	7.76	2.43	
	$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	0.20	10.76	3.37	
SAMPLE CALCULATION:							
1) DETERMINE SOIL STORAGE - S							
S $=(1000 / C N)-10$				SOIL STORAGE (inches)		S	0.20
2) DETERMINE RUNOFF - R							
$\mathrm{P}=\quad 11.00$							
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /(P+0.8 * S)$				RUNOFF (inches)		R	10.76
3) DETERMINE RUNOFF VOLUME - V[R]							
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA				RUNOFF (ac-ft)		V[R]	3.37

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

III GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
$2-3.5$	52.0	49.25
		49.25

IV SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 14

REQUIRED ATTENUTATION CACULATION				
PRE-DEVELOPED CONDITION		POST-DEVELOPED CONDITION		
AREA (AC):3.76		AREA (AC):		3.76
CN :	76		CN :	98
IMPERVIOUS AREA (AC):	0.00	MPERVIOUS AREA (AC):PERVIOUS AREA (AC):		3.76
PERVIOUS AREA (AC):	3.76			0.00
		NEW IMPERVIOUS AREA (AC):		3.76
SUMMARY OF WATER MANAGEMENT DISTRICT ATTENUATION ESTIMATES				
			RUNOFF VOLUME	
AGENCY	DESIGN	PRE	POST	TOTAL RETENTION
	STORM	[AC-FT]	[AC-FT]	[AC-FT]
SWFWMD	$10 \mathrm{yr} / 24 \mathrm{hr}$	1.32	2.12	0.80
SWFWMD	$25 \mathrm{yr} / 24 \mathrm{hr}$	1.60	2.43	0.83
SWFWMD	$100 \mathrm{yr} / 24 \mathrm{hr}$	2.48	3.37	0.89

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Volume $=1.0$ Inch of Runoff from New Impervious Area	0.31

V PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS
Basin 14

SMF 14C

POND STAGE, AREA \& STORAGE			
	STAGE $(\mathbf{F T})$	AREA $(\mathbf{A C)}$	CUMMULATIVE STORAGE (AC-FT)
Pond Bottom	47.00	0.51	0.00
SHWT	49.25	0.63	1.28
Weir Crest Elevation	49.73	0.66	1.59
DHW 10	50.88	0.73	2.39
DHW 25	50.92	0.73	2.41
DHW 100	51.00	0.73	2.47
Top of Bank Elevation	52.00	0.79	3.23
Top of Berm	52.00	1.04	3.23

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided $=$ Volume between Seasonal High and Weir Crest Elevation	0.31

PROVIDED ATTENUATION VOLUME	AC-FT	
DHW 10	Provided between Weir Crest and 10 Year Stage	0.80
DHW 25	Provided between Weir Crest and 25 Year Stage	0.83
DHW 100	Provided between Weir Crest and 100 Year Stage	0.89

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 14	CHECKED BY:	TDA

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS
Basin 14

Low Edge of Pavement in Basin $=$	53.0 Ft	Station/Location: Edge of northbound Bearss Ave. exit ramp at Sta. 4137+00.
1.0 of Clearance =	52.0 Ft	
Distance from EOP to Pond =	730 Ft	
Hydraulic Grade Line (HGL) at EOP =	. 58 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	51.42 Ft	
10 year Pond Stage =	50.88 Ft	HGL Below EOP

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 15

$$
\text { COMPUTED BASIN AREA (Ac) } \quad 3.35
$$

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

ESTIMATED RUNOFF VOLUME						
SUMMARY TABLE:						
DESIGN STORM	Agency	$\begin{gathered} \hline \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{R} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft}]} \end{gathered}$	
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	3.44	4.09	1.14	
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	3.44	4.97	1.39	
$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	3.44	7.73	2.16	
SAMPLE CALCULATION:						
1) DETERMINE SOIL STORAGE - S						
$S=(1000 / \mathrm{CN})-10$		SOIL STORAGE (inches)			S	3.44
2) DETERMINE RUNOFF - R						
$\mathrm{P}=\quad 8.00$						
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /(P+0.8 * S)$		RUNOFF (inches)			R	4.97
3) DETERMINE RUNOFF VOLUME - V[R]						
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA		RUNOFF (ac-ft)			$\mathrm{V}[\mathrm{R}]$	1.39

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

II post development
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 15

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:							
	$\begin{aligned} & \hline \text { DESIGN } \\ & \text { STORM } \end{aligned}$	Agency	$\begin{gathered} \hline \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{R} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft}]} \end{gathered}$	
	$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	0.55	6.38	1.78	
	$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	0.55	7.37	2.06	
	$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	0.55	10.36	2.89	
SAMPLE CALCULATION:							
1) DETERMINE SOIL STORAGE - S							
$S=(1000 / C N)-10$				SOIL STORAGE (inches)		S	0.55
2) DETERMINE RUNOFF - R							
$\mathrm{P}=\quad 8.00$							
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)$				RUNOFF (inches)		R	7.37
3) DETERMINE RUNOFF VOLUME - V[R]							
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA				RUNOFF (ac-ft)		$\mathrm{V}[\mathrm{R}]$	2.06

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

III SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 15

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Requirement $=1.0$ inch of runoff from New Impervious Area	0.19

iv post development

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Runoff Diverted from Basin 16
COMPUTED BASIN AREA (Ac)

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:						
	DESIGN STORM	Agency	$\begin{gathered} \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} R \\ {[i n]} \\ {\left[\begin{array}{c} \mathrm{in} \end{array}\right.} \\ \hline \end{gathered}$	V[R] [ac-ft]
	$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	0.20	10.76	0.98

SAMPLE CALCULATION

1) DETERMINE SOIL STORAGE - S

S= (1000/CN) - 10	SOIL STORAGE (inches)	S	0.20
2) DETERMINE RUNOFF - R			
$\mathrm{P}=\quad 11.00$			
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /(P+0.8 * S)$	RUNOFF (inches)	R	10.76
3) DETERMINE RUNOFF VOLUME - V[R]			
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA	RUNOFF (ac-ft)	V [R]	0.98

V SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Runoff Diverted from Basin 16

REQUIRED ATTENUTATION CACULATION				
PRE-DEVELOPED CONDITION			POST-DEVELOPED CONDITION	
AREA (AC): CN : IMPERVIOUS AREA (AC): PERVIOUS AREA (AC):		AREA (AC):		1.09
		CN:IMPERVIOUS AREA (AC):PERVIOUS AREA (AC):		98
				1.09
				0.00
		NEW IMPERVIOUS AREA (AC):		1.09
SUMMARY OF WATER MANAGEMENT DISTRICT ATTENUATION ESTIMATES				
AGENCY	DESIGN STORM	RUNOFF VOLUME V[R]		
		$\begin{gathered} \text { PRE } \\ {[\mathrm{AC}-\mathrm{FT}} \\ \hline \end{gathered}$	$\begin{gathered} \text { POST } \\ {\left[\begin{array}{c} \mathrm{AC}-\mathrm{FT} \text {] } \end{array}\right.} \end{gathered}$	TOTAL RETENTION [AC-FT]
SWFWMD	$100 \mathrm{yr} / 24 \mathrm{hr}$		0.98	0.98
REQUIRED TREATMENT VOLUME CALCULATION				AC-FT
Wet Detention Treatment Volume $=1.0$ inch of Runoff from New Impervious Area				0.09

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

VI GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
2.75	56.5	53.75
		53.75

VII PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS Basin 15
SMF 15A

PESCRIPTION			
	PTAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Pond Bottom	50.25	0.37	0.00
SHWT	53.75	0.56	1.63
Weir Crest Elevation	54.24	0.59	1.91
DHW 10	55.42	0.66	2.65
DHW 25	55.68	0.67	2.82
DHW 100	57.00	0.74	3.75
Top of Bank Elevation	58.00	0.80	4.53
Top of Berm	58.00	1.06	4.53

REQUIRED TREATMENT VOLUME	AC-FT
Treatment Volume Required = Runoff from Basin 15 and Diverted Area from Basin 16	0.29

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided $=$ Volume between Seasonal High and Weir Crest Elevation	0.29

REQUIRED ATTENUATION VOLUME	AC-FT	
*DHW 10	Provided between Weir Crest and 10 Year Stage	0.74
*DHW 25	Provided between Weir Crest and 25 Year Stage	0.91
*DHW 100	Provided between Weir Crest and 100 Year Stage	1.71

Includes retention of the 100-Year runoff volume from the 1.09 acres diverted from Basin 16.

PROVIDED ATTENUATION VOLUME	AC-FT	
DHW 10	Provided between Weir Crest and 10 Year Stage	0.74
DHW 25	Provided between Weir Crest and 25 Year Stage	0.91
DHW 100	Provided between Weir Crest and 100 Year Stage	1.84

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS Basin 15

Low Edge of Pavement in Basin =	57.0 Ft	Station/Location: Edge of northbound Bearss Ave. exist ramp at Sta. 4153+00.
1.0 ' of Clearance =	56.0 Ft	
Distance from EOP to Pond =	100 Ft	
Hydraulic Grade Line (HGL) at EOP =	. 08 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	55.92 Ft	

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 15

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 15

ESTIMATED RUNOFF VOLUME

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

III SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 15

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Requirement $=1.0$ inch of runoff from New Impervious Area	0.19

iv post development

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Runoff Diverted from Basin 16
COMPUTED BASIN AREA (Ac)

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:						
	DESIGN STORM	Agency	$\begin{gathered} \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} R \\ {[i n]} \\ {\left[\begin{array}{c} \mathrm{in} \end{array}\right.} \\ \hline \end{gathered}$	V[R] [ac-ft]
	$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	0.20	10.76	0.98

SAMPLE CALCULATION

1) DETERMINE SOIL STORAGE - S

S= (1000/CN) - 10	SOIL STORAGE (inches)	S	0.20
2) DETERMINE RUNOFF - R			
$\mathrm{P}=\quad 11.00$			
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /(P+0.8 * S)$	RUNOFF (inches)	R	10.76
3) DETERMINE RUNOFF VOLUME - V[R]			
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA	RUNOFF (ac-ft)	V [R]	0.98

V SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Runoff Diverted from Basin 16

REQUIRED ATTENUTATION CACULATION				
PRE-DEVELOPED CONDITION			POST-DEVELOPED CONDITION	
AREA (AC): CN : IMPERVIOUS AREA (AC): PERVIOUS AREA (AC):		AREA (AC):		1.09
		CN:IMPERVIOUS AREA (AC):PERVIOUS AREA (AC):		98
				1.09
				0.00
		NEW IMPERVIOUS AREA (AC):		1.09
SUMMARY OF WATER MANAGEMENT DISTRICT ATTENUATION ESTIMATES				
AGENCY	DESIGN STORM	RUNOFF VOLUME V[R]		
		$\begin{gathered} \text { PRE } \\ {[\mathrm{AC}-\mathrm{FT}} \\ \hline \end{gathered}$	$\begin{gathered} \text { POST } \\ {\left[\begin{array}{c} \mathrm{AC}-\mathrm{FT} \text {] } \end{array}\right.} \end{gathered}$	TOTAL RETENTION [AC-FT]
SWFWMD	$100 \mathrm{yr} / 24 \mathrm{hr}$		0.98	0.98
REQUIRED TREATMENT VOLUME CALCULATION				AC-FT
Wet Detention Treatment Volume $=1.0$ inch of Runoff from New Impervious Area				0.09

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

VI GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
2.75	51.0	48.25
		48.25

VII PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS Basin 15
SMF 15B

PESCRIPTION			
	PTAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Pond Bottom	42.20	0.22	0.00
SHWT	48.25	0.72	2.84
Weir Crest Elevation	48.63	0.80	3.13
DHW 10	49.51	0.88	3.88
DHW 25	49.71	0.90	4.05
DHW 100	51.00	1.02	5.29
Top of Bank Elevation	52.00	1.11	6.36
Top of Berm	52.00	1.65	6.36

REQUIRED TREATMENT VOLUME	AC-FT
Treatment Volume Required = Runoff from Basin 15 and Diverted Area from Basin 16	0.29

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided $=$ Volume between Seasonal High and Weir Crest Elevation	0.29

REQUIRED ATTENUATION VOLUME	AC-FT	
*DHW 10	Provided between Weir Crest and 10 Year Stage	0.74
*DHW 25	Provided between Weir Crest and 25 Year Stage	0.92
*DHW 100	Provided between Weir Crest and 100 Year Stage	1.72

*Includes retention of the 100-Year runoff volume from the 1.09 acres diverted from Basin 16.

PROVIDED ATTENUATION VOLUME	AC-FT	
DHW 10	Provided between Weir Crest and 10 Year Stage	0.74
DHW 25	Provided between Weir Crest and 25 Year Stage	0.92
DHW 100	Provided between Weir Crest and 100 Year Stage	2.16

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS Basin 15

Low Edge of Pavement in Basin =	57.0 Ft	Station/Location: Edge of northbound Bearss Ave. exist ramp at Sta. 4153+00.
1.0 of Clearance $=$	56.0 Ft	
Distance from EOP to Pond =	1500 Ft	
Hydraulic Grade Line (HGL) at EOP =	1.2 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	54.8 Ft	

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

PRE DEVELOPMENT

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 15

$$
\begin{array}{ll}
\text { COMPUTED BASIN AREA (Ac) } & 3.76 \\
\hline
\end{array}
$$

DETERMINE BASIN RUNOFF CURVE-NUMBER-CN

LAND-USE DESCRIPTION	$\begin{gathered} \text { SOIL } \\ \text { GROUP } \end{gathered}$	CN	AREA	PRODUCT
Impervious				
Roadway, Shoulder and sidewalk (Reconstruction)		98	0.00	0.00
Sub-total for Impervious Land Uses			0.00	0.00
Pervious				
Open Space, Fair Condition - Urban Land Soil Type (90\%)	C	74	2.06	152.51
Open Space, Fair Condition - Urban Land Soil Type (10\%)	A/D	80	0.23	18.32
Sub-total for Pervious Land Uses			2.29	170.83
Pond				
Roadway, Shoulder and sidewalk	A/D	74	0.88	65.27
Roadway, Shoulder and sidewalk	A/D	80	0.59	47.04
Sub-total for Pervious Land Uses			1.47	112.31
		TOTAL	3.76	283.14
		COMPOSITE CN		5

ESTIMATED RUNOFF VOLUME						
SUMMARY TABLE:						
DESIGN STORM	Agency	$\begin{gathered} \hline \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \hline \mathbf{R} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft}]} \end{gathered}$	
$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	3.28	4.18	1.31	
$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	3.28	5.08	1.59	
$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	3.28	7.85	2.46	
SAMPLE CALCULATION:						
1) DETERMINE SOIL STORAGE - S						
$S=(1000 / \mathrm{CN})-10$			SOIL STORAGE (inches)		S	3.28
2) DETERMINE RUNOFF - R						
$\mathrm{P}=\quad 8.00$						
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)$		RUNOFF (inches)			R	5.08
3) DETERMINE RUNOFF VOLUME - V[R]						
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA		RUNOFF (ac-ft)			$\mathrm{V}[\mathrm{R}]$	1.59

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

II POST DEVELOPMENT
RUNOFF CURVE NUMBER (CN) CALCULATIONS
Basin 15

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:							
	$\begin{aligned} & \hline \text { DESIGN } \\ & \text { STORM } \end{aligned}$	Agency	$\begin{gathered} \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathbf{S} \\ {[\mathrm{in}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{V}[\mathrm{R}] \\ {[\mathrm{ac}-\mathrm{ft}]} \end{gathered}$	
	$10 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	7.00	0.52	6.41	2.01	
	$25 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	8.00	0.52	7.41	2.32	
	$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	0.52	10.40	3.26	
SAMPLE CALCULATION:							
1) DETERMINE SOIL STORAGE - S							
$S=(1000 / \mathrm{CN})-10$			SOIL STORAGE (inches)			S	0.52
2) DETERMINE RUNOFF - R							
$P=\quad 8.00$							
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /\left(P+0.8^{*} S\right)$			RUNOFF (inches)			R	7.41
3) DETERMINE RUNOFF VOLUME - V[R]							
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA			RUNOFF (ac-ft)			V [R]	2.32

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

III SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Basin 15

REQUIRED TREATMENT VOLUME CALCULATION	AC-FT
Wet Detention Treatment Requirement $=1.0$ inch of runoff from New Impervious Area	0.19

iv post development

RUNOFF CURVE NUMBER (CN) CALCULATIONS
Runoff Diverted from Basin 16
COMPUTED BASIN AREA (Ac)

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

ESTIMATED RUNOFF VOLUME

SUMMARY TABLE:						
	DESIGN STORM	Agency	$\begin{gathered} \mathbf{P} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} R \\ {[i n]} \\ {\left[\begin{array}{c} \mathrm{in} \end{array}\right.} \\ \hline \end{gathered}$	V[R] [ac-ft]
	$100 \mathrm{yr} / 24 \mathrm{hr}$	SWFWMD	11.00	0.20	10.76	0.98

SAMPLE CALCULATION

1) DETERMINE SOIL STORAGE - S

S= (1000/CN) - 10	SOIL STORAGE (inches)	S	0.20
2) DETERMINE RUNOFF - R			
$\mathrm{P}=\quad 11.00$			
$R=\left(P-0.2^{*} S\right)^{\wedge} 2 /(P+0.8 * S)$	RUNOFF (inches)	R	10.76
3) DETERMINE RUNOFF VOLUME - V[R]			
$\mathrm{V}[\mathrm{R}]=\mathrm{R} / 12$ * AREA	RUNOFF (ac-ft)	V [R]	0.98

V SUMMARY OF REQUIRED ATTENUTION AND TREATMENT VOLUME
Runoff Diverted from Basin 16

REQUIRED ATTENUTATION CACULATION				
PRE-DEVELOPED CONDITION			POST-DEVELOPED CONDITION	
AREA (AC): CN : IMPERVIOUS AREA (AC): PERVIOUS AREA (AC):		AREA (AC):		1.09
		CN:IMPERVIOUS AREA (AC):PERVIOUS AREA (AC):		98
				1.09
				0.00
		NEW IMPERVIOUS AREA (AC):		1.09
SUMMARY OF WATER MANAGEMENT DISTRICT ATTENUATION ESTIMATES				
AGENCY	DESIGN STORM	RUNOFF VOLUME V[R]		
		$\begin{gathered} \text { PRE } \\ {[\mathrm{AC}-\mathrm{FT}} \\ \hline \end{gathered}$	$\begin{gathered} \text { POST } \\ {\left[\begin{array}{c} \mathrm{AC}-\mathrm{FT} \text {] } \end{array}\right.} \end{gathered}$	TOTAL RETENTION [AC-FT]
SWFWMD	$100 \mathrm{yr} / 24 \mathrm{hr}$		0.98	0.98
REQUIRED TREATMENT VOLUME CALCULATION				AC-FT
Wet Detention Treatment Volume $=1.0$ inch of Runoff from New Impervious Area				0.09

PROJECT TITLE:	SR 93 from MLK Jr. Blvd. (SR 574) to North of Bearss Ave.	DATE:	Nov-18
PROJECT NUMBER:	$431821-1$	MADE BY:	JLL
BASIN DESIGNATION:	Basin 15	CHECKED BY:	TDA

VI GEOTECHNICAL INFORMATION

NRCS SOIL SURVEY		
Approximate Depth to SHWT (Ft)	Adjacent Ground Elevation (Ft)	Estimated NRCS SHWT (Ft)
3.5	54.0	50.50
		50.50

VII PROVIDED TREATMENT \& ATTENUATION VOLUME CALCULATIONS Basin 15
SMF 15C

POND STAGE, AREA \& STORAGE			
	STAGE (FT)	AREA (AC)	CUMMULATIVE STORAGE (AC-FT)
Pond Bottom	48.00	0.75	0.00
SHWT	50.50	0.93	2.10
Weir Crest Elevation	50.80	0.95	2.38
DHW 10	51.62	1.00	3.18
DHW 25	51.79	1.02	3.35
DHW 100	53.00	1.10	4.63
Top of Bank Elevation	54.00	1.17	5.77
Top of Berm	54.00	1.47	5.77

REQUIRED TREATMENT VOLUME	AC-FT
Treatment Volume Required = Runoff from Basin 15 and Diverted Area from Basin 16	0.29

PROVIDED TREATMENT VOLUME	AC-FT
Treatment Volume Provided $=$ Volume between Seasonal High and Weir Crest Elevation	0.29

REQUIRED ATTENUATION VOLUME	AC-FT	
*DHW 10	Provided between Weir Crest and 10 Year Stage	0.80
*DHW 25	Provided between Weir Crest and 25 Year Stage	0.97
*DHW 100	Provided between Weir Crest and 100 Year Stage	1.77

*Includes retention of the 100-Year runoff volume from the 1.09 acres diverted from Basin 16.

PROVIDED ATTENUATION VOLUME	AC-FT	
DHW 10	Provided between Weir Crest and 10 Year Stage	0.80
DHW 25	Provided between Weir Crest and 25 Year Stage	0.97
DHW 100	Provided between Weir Crest and 100 Year Stage	2.25

VI BASIN HYDRAULICS - VERIFY POND DOES NOT ADVERSELY IMPACT BASIN INLETS Basin 15

Low Edge of Pavement in Basin =	57.0 Ft	Station/Location: Edge of northbound Bearss Ave. exist ramp at Sta. 4153+00.
1.0 of Clearance $=$	56.0 Ft	
Distance from EOP to Pond =	1500 Ft	
Hydraulic Grade Line (HGL) at EOP =	1.2 Ft	(Assume Slope $=0.0008 \mathrm{ft} / \mathrm{ft}$)
10 year HGL =	54.8 Ft	

United States Department of Agriculture

Soil
Conservation Service

In cooperation with University of Florida, Institute of Food and Agricultural Sciences, Agricultural Experiment Stations and Soil Science Department, and
Florida Department of
Agriculture and Consumer Services

Soil Survey of Hillsborough County, Florida

["Flooding" and "water table" and terms such as "rare," "brief," "apparent," and "perched" are explained in the text. The symbol < means less than; > means more than. Absence of an entry indicates that the feature is not a concern or that data were not estimated]

Map symbol and soil name	Hydrologic group	Flooding			H1gh water table			Beतrock		Subsidence		R1sk of corrosion	
		Frequency	Duration	Months	Depth	Kind	Months	Depth	Hardness	$\begin{gathered} \text { Ini- } \\ \text { tial } \\ \hline \end{gathered}$	Total	Uncoated stee]	Concrete
					Ft			In		In	In		
$\begin{gathered} \text { 2---------- } \\ \text { Adamsville } \end{gathered}$	C	None-----	---	---	2.0-3.5	Apparent	Jun-Nov	>60	---	---	---	Low-----	Moderate.
$3-$ Archbold	A	None------	---	---	$\|3.5-6.0\|$	Apparent	Jun-Nov	>60	---	-	---	Low-----	Moderate.
Archbold		+											
4.													
Arents													
Areats													
5:													
Basinger	D	None-----	---	---	+2-1.0	Apparent	Jun-Feb	>60	---	-	---	High-----	Moderate.
Holopaw--	D	\|Nove-------	-	---	+2-1.0	Apparent	Jun-Apr	>60	-	--	-	High-----	Moderate.
Samsula----	D	\|None-----	--	---	+2-1.0	Apparent	Jan-Dec	>60	---	16-20	30-34	High-----	High.
6:													
Broward	C	None------	---	---	1.5-2.5\|	Apparent	Jun-Nov	20-40	Soft	--	---	Low-	Low.
Urban land.													
$\begin{gathered} \text { 7, 8---- } \\ \text { Candler } \end{gathered}$	A	\|None-----	---	---	>6.0	--	---	>60	---	---	---	Low----	High.
Candler													
9:													
Candler-	A	\|None-----	---	---	>6.0	---	---	>60	---	---	---	Low-	High.
Urban land.													
10------ Chobee	B/D	None---	---	--*	0-1.0	Apparent	Jun-Feb	>60	-	---	--	Moderate	Low.
Chobee													
	D	(None------	---	---	+2-1.0	Apparent	Jun-Dec	>60	---	--	--	High----	High.
Chobee													
Chobee	B/D			Jun-Feb	0-1.0	Apparent	Jun-Feb!	>60	---	---	---	Moderate	Low.
13----------- Eaton	D	None-------	--	---	0-1.0	Apparent	Jul-Oct	>60	-	---	---	High---	High.
14--------------	D	None--------	---	---	+2-1.0	Apparent	Jun-Feb	>60	--	---	---	High-----	High.
Eaton													

TABLE 15.--SOIL AND WATER FEATURES--Continued

TABLE 15.--SOIL AND WATER FEATURES--Continued

TABLE 15.--SOIL AND WATER FEATURES--Continued

100-Year Floodplain Calculations

```
Project: SR }93\mathrm{ from MLK Blvd. (SR 574) to North of Bearss Ave.
```

Subject: 100 Year Floodplain Imapcts \& Mitigation

| Designed By: JLL | Date: |
| :--- | :--- | :--- |
| Checked By: TDA | Date: |

30-Nov-18
Subject: 100 Year Floodplain Imapcts \& Mitigation
Checked By :
TDA
Date:
30-Nov-18

100 Year Floodplain Encroachment

Basin	LOCATION			100 Year Flodplain Elevation	Area	Depth (Estimated)	Total Volume Impact
	Station	Station	Rt / Lt	Ft	Ac	$\mathrm{Ac}-\mathrm{Ft}$	$\mathrm{Ac}-\mathrm{Ft}$
14	4120+50	4139+46	Rt	50.1	0.30	1.0	0.30
	4119+93	4140+22	Lt	50.1	0.70		0.70
	Total Floodplain Encroachment:						1.00

Basin	LOCATION			100 Year Flodplain Elevation	Area	Depth (Estimated)	Total Volume Impact
	Station	Station	Rt / Lt	Ft	Ac	Ac-Ft	Ac-Ft
14	4110+00	4120+33	Lt	50.1	1.00	1.0	1.00
					Total Floodplain Mitigation:		1.00

[^1]
Bridge Cost Estimate

Project:	SR 93 from MLK Blvd. (SR 574) to North of Bearss Ave.	Designed By:	JLL	Date	25-Nov-18
Subject:	Estimate for Bridge Extension over Bearss Ave.	Checked By :	TDA	Date:	25-Nov-18

Cost Estimate for Extending the Bridge over Bearss Ave.

LOCATION		Stormwater Facility	Bridge Width	Bridge Length	Bridge Area	Bridge Cost
Station	Station	Name	Ft	Ft	Sq-Ft	\$125 / Sq-Ft
4146+32	4148+25	SMF 14C	162	193	31,266	\$3,908,250
$4150+60$	4153+15	SMF 15C	162	255	41,310	\$5,163,750
Total Cost for Bridge Extension:						\$9,072,000

Appendix G: Drainage Maps

Appendix H: Environmental Assessments

Threatened Endangered Species and Wetland Assessment

ADDENDUM

THREATENED AND ENDANGERED SPECIES (T\&E) AND WETLANDS ASSESSMENT FOR POND SITING

I-275 (State Road 93)

From north of Dr. Martin Luther King, Jr. Boulevard (SR 574) to north of Bearss Avenue (SR 678/CR 582)

Hillsborough County, Florida

Florida Department of Transportation
District Seven
Tampa, Florida

November 2018

ADDENDUM

THREATENED AND ENDANGERED SPECIES (T\&E) AND WETLANDS ASSESSMENT FOR POND SITING

I-275 (State Road 93)

From north of Dr. Martin Luther King, Jr. Boulevard (SR 574) to north of Bearss Avenue (SR 678/CR 582)

Hillsborough County, Florida

Florida Department of Transportation
District Seven
Tampa, Florida

Prepared by:
ESA Scheda
Tampa, Florida

INTRODUCTION

This addendum to the Threatened and Endangered Species (T\&E) and Wetlands Assessment for Pond Siting (January 2015) is provided to summarize the project changes and update the impacts associated with the updated Build Alternative. In 2015 Environmental Science Associates, Inc. (ESA) (formerly Scheda Ecological Associates, Inc.) completed a review of eighteen (18) stormwater management facility (SMF) sites and two floodplain compensation (FPC) areas for the above referenced project. This updated Build Alternative replaces FPC 14, SMF 14, and SMF 15 with SMF 14A; SMF 14B; SMF 15A; and SMF 15B. This addendum uses the same methodology as the 2015 effort but addresses the four new SMF sites that are part of the updated Build Alternative. Figure 1 depicts the project location and all pond site locations.

PROJECT UPDATE

The Florida Department of Transportation (FDOT), District Seven, is conducting a Project Development and Environment (PD\&E) Study to evaluate the need for capacity and operational improvements along 7.64 miles of State Road 93 (SR 93)/Interstate 275 (I-275) from north of Dr. Martin Luther King, Jr. Boulevard/SR 574 (MLK Boulevard) to north of Bearss Avenue/SR 678/County Road (CR) 582 in Hillsborough County, Florida.

Planning for the Tampa Bay area interstates began in the late 1980s with the Tampa Interstate Study (TIS) Master Plan being approved in late 1980s with improvements outlined to relieve congestion and improve mobility. The TIS Master Plan included additional travel lanes on the Tampa Bay area interstates and included a transit envelope for the east-west movement but not along this segment of I-275. In 2013, building upon the original TIS Master Plan, the Tampa Bay Express (TBX) program was developed to provide guidance for improvements to the Tampa Bay interstate system and identified freeway segments (including this segment of I-275) for the addition of tolled express lanes. In 2017, FDOT District Seven reset TBX to Tampa Bay Next (TBNext) to demonstrate its commitment to comprehensive, integrated transportation planning and development. As part of TBNext, FDOT District Seven made a policy decision to remove the express lanes from this segment of I-275 and allow the I-75 corridor to provide the north/south express lanes movement. Providing express lanes on I-75 is more regionally focused.

The updated Build Alternative includes one additional travel lane in each direction of I-275. The proposed typical section contains four 12-foot general purpose lanes in each direction and accommodates transit on the inside shoulders. The improvements would be constructed on the existing alignment with the same existing horizontal and vertical geometries. All the proposed improvements within the l-275 project corridor would be accomplished within the existing right of way. Minimal right of way may be required at the Bearss Avenue interchange for stormwater ponds.

The improvements proposed for this segment of I-275, from north of MLK Boulevard to north of Bearss Avenue, will include one additional general purpose lane in each direction and improvements to the inside shoulder that will allow for the integration of infrastructure for transit.

Build Alternative

Mainline l-275

The updated Build Alternative includes widening I-275 from an existing six-lane divided interstate to an eight-lane divided interstate, plus accommodating transit on the inside shoulder. The Bearss Avenue interchange will be reconfigured and operational improvements will be implemented at Hillsborough Avenue; no other interchange configurations will change with the improvements.

The proposed typical section has been updated and includes eight 12 -foot wide general purpose lanes (four in each direction), two 15-foot wide inside shoulders which accommodate transit, 12 -foot wide outside shoulders, and a 2 -foot wide concrete barrier separating the two directions of travel. The proposed I-275 mainline typical section is shown below.

I-275 Proposed Typical Section - Updated

The existing horizontal and vertical alignment will be maintained in the Build Alternative to avoid right of way impacts. The proposed improvements for mainline $\mathrm{I}-275$ will take place within the existing right of way. Minimal right of way may be required at the Bearss Avenue interchange for stormwater ponds.

Interchanges

The interchanges along the corridor will be improved to accommodate the mainline widening of l-275, but the interchange configurations will not change, except for the Bearss Avenue interchange. Operational improvements will be included at the Hillsborough Avenue interchange.

The vertical and horizontal constraints at the existing bridges at the Bearss Avenue interchange cannot accommodate the proposed improvements; thus, the Bearss Avenue
interchange will be reconstructed as a single point urban interchange (SPUI). The design includes reconstructing the l-275 bridge over Bearss Avenue and reconstructing the on- and off-ramps from the l-275 gores to approximately halfway to the Bearss Avenue intersection. The bridge design will accommodate potential future widening of Bearss Avenue. The bridge reconstruction will create the configuration for a SPUI interchange to be implemented in the future.

The future configuration would have one traffic signal underneath the l-275 bridge to control through traffic on Bearss Avenue and left-turning traffic entering or exiting I-275 at the intersection.

The tight urban diamond interchange (TUDI) configuration has been eliminated from further consideration.

RESULTS

The following is an updated discussion of protected species that occur within close proximity to the project corridor based on database and literature research, U.S. Fish and Wildlife Service (USFWS) Consultation Areas (CA) that overlap the project boundary, and/or have the potential to occur based upon existing habitat in the project area. Although not in the CA, West Indian manatees (Trichechus manatus) (Federally-designated Endangered) have been documented in the Hillsborough River adjacent to the project area. Standard in-water conditions for the manatee may be required during construction of the bridge over the Hillsborough River. Additionally, special manatee grates may be necessary if culverts that outfall to the river are replaced or added.

All SMF sites fall within the USFWS CA for the Florida scrub-jay (Aphelocoma coerulescens). However, there is no appropriate habitat within the project limits or SMF sites for the Florida scrub-jay. The project also falls within 11 wood stork (Mycteria americana) core foraging areas. One wading bird rookery, Atlas Number 611168, is located approximately 0.3 miles east of the project limits; however, this rookery was last documented active in 1970.

Federally listed faunal species potentially occurring within the SMF sites include:

- wood stork (FE) and
- eastern indigo snake (Drymarchon corais couperi) (FT).

Potential state listed faunal species (not listed above) in the project area include:

- gopher tortoise (Gopherus polyphemus) (ST**);
- Florida pine snake (Pituophis melanoleucus mugitus) (ST);
- Sherman's fox squirrel (Sciurus niger shermani) (SSC);
- Florida sandhill crane (Antigone canadensis pratensis) (ST);
- roseate spoonbill (Platalea ajaia) (ST);
- southeastern American kestrel (Falco sparverius paulus) (ST);
- little blue heron (Egretta caerulea) (ST); and
- tricolored heron (Egretta tricolor) (ST).
**Species being considered for Federal listing
FE= Federally-designated Endangered \quad FT= Federally-designated Threatened
SSC=State Species of Special Concern \quad ST=State-designated Threatened
Potential state and federally listed floral species in the project area include:
- Florida lady's nightcap (Bonamia grandiflora);
- Robin's bellflower (Campanula robinsiae);
- pigmy fringetree (Chionanthus pygmaeus);
- Florida goldenaster (Chrysopsis floridana); and
- Britton's beargrass (Nolina brittoniana).

Additionally, the bald eagle (Haliaeetus leucocephalus) is no longer listed by the USFWS or Florida Fish and Wildlife Conservation Commission (FWC) but remains protected under the Bald and Golden Eagle Protection Act (BGEPA) (16 U.S.C. 668-668d), as amended, and the Migratory Bird Treaty Act (MBTA) (16 U.S.C. 703-712). No bald eagle nests were previously documented within 660 feet of the SMF sites. In addition, no bald eagle nests were observed in the project area during any field review. The closest bald eagle nest is HLO46 and is located approximately 1.4 miles east of the project limits. According to the FWC Eagle Nest Locator online database (https://public.myfwc.com/FWRI/EagleNests/nestlocator.aspx), this nest was last surveyed and documented inactive in 2013. However, there is a possibility that bald eagles may establish new nests within appropriate habitat within 660 feet of the proposed project limits; none were observed during 2018 field reviews conducted on September 26, 27, and October 18.

In January 2017, FWC updated state designations for several species, changes from the 2015 pond siting effort include the roseate spoonbill, little blue heron, and tri-colored heron were listed as species of special concern but as of January 2017 were re-classified as threatened. The limpkin (Aramus guarana), white ibis (Eudocimus albus), and snowy egret (Egretta thula) were listed as species of special concern in the 2015 pond siting report, but as of January 2017, they were removed as listed species.

Land use/land cover was classified using the Florida Land Use, Cover and Forms Classification System (FLUCFCS) (FDOT, 1999), and field-verified land use within each SMF site is depicted in Figure 2. The approximate locations of protected species observations and known occurrence data located in the vicinity of the proposed pond sites are provided in Figure 3. The land use data for each site, faunal protected species that could potentially utilize each alternative and outfall easement, and ranking of each site for potential impacts to protected species and wetlands is located in Table 1.

SMF Descriptions

SMF 14A (1.25 acres; 5\% wetland) is composed of Fixed Single Family Units, Low Density Residential (FLUCFCS 111) and Freshwater Marsh (FLUCFCS 641). This site has minimal wildlife habitat value, but has the potential to be utilized by gopher tortoise, southeastern American kestrel, Florida sandhill crane, eastern indigo snake, wood stork, and other wetland dependent wading birds. Therefore, it was given the species rating of "Low". No listed species were observed during field surveys. A small wetland area is present in the northern portion of the site; therefore, the site was given a wetland score of "Low".

SMF 14B (1.41 acres; 0\% wetland) is composed of Fixed Single Family Units, Low Density Residential (FLUCFCS 111). This site has minimal wildlife habitat value, but has the potential to be utilized by gopher tortoise, Florida sandhill crane, southeastern American kestrel, and eastern indigo snake; therefore, it was given the species rating of "Low". No listed species were observed during field surveys. No wetlands or surface waters are present; therefore, the site was given a wetland score of "None".

SMF 15A (1.32 acres; 0\% wetland) is composed of Undeveloped Land Within Urban Areas (FLUCFCS 191). This site has minimal wildlife habitat value, but has the potential to be utilized by gopher tortoise, Florida sandhill crane, southeastern American kestrel, and eastern indigo snake; therefore, it was given the species rating of "Low". No listed species were observed during field surveys. No wetlands or surface waters are present; therefore, the site was given a wetland score of "None".

SMF 15B (2.00 acres; 0\% wetland) is composed of Undeveloped Land Within Urban Areas (FLUCFCS 191). This site has minimal wildlife habitat value, but has the potential to be utilized by gopher tortoise, Florida sandhill crane, southeastern American kestrel, and eastern indigo snake; therefore, it was given the species rating of "Low". No listed species were observed during field surveys. No wetlands or surface waters are present; therefore, the site was given a wetland score of "None".

CONCLUSIONS AND RECOMMENDATIONS

Listed Species

The four updated SMF sites were documented as having "Low" protected species involvement (potential, but unlikely presence of protected species). No gopher tortoises or other protected species were observed within any of the SMF sites. If gopher tortoise burrows do exist within a selected site, any proposed construction that occurs within 25 feet of a potentially occupied gopher tortoise burrow will require a FWC gopher tortoise relocation permit. Wood stork compensation is required if the project impacts more than 0.5 acre of suitable foraging habitat which consists of most wetlands and surface waters. It is anticipated that wood stork foraging habitat compensation would be completely mitigated through the purchase of wetland mitigation credits and no additional wetland credits would be needed to offset wood stork impacts. The project falls within the CA of the scrub-jay; however, there is no habitat for this species within the project limits and none were observed during field surveys. One wading bird rookery, Atlas Number 611168, is located approximately 0.3 miles east of the project limits; however, this rookery was last documented active in 1970. The nearest bald eagle nest is greater than 660 feet from the project area; therefore, no additional involvement is anticipated. It should be noted that although the project is not in the CA for the West Indian manatee many have been documented in the Hillsborough River adjacent to the project. Designed manatee grates and the implementation of Standard Manatee Conditions for InWater Work during construction may be required.

Wetlands

One (1) of the SMF sites (SMF 14A) contained wetlands and was documented as having a potential wetland impact of "Low". The wetland impact area associated with SMF 14A is a
decrease of 0.44 acres from the previous Build Alternative. Measures to avoid or minimize wetland and water quality impacts will be implemented during final pond site design.

RESOURCES

Cowardin, L.M., V. Carter, F.C. Golet, and E.T.LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States, U.S. Fish and Wildlife Service Publication. Washington, D.C., 103 pp.

Environmental Laboratory. 1987. U.S. Army Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Florida Department of Environmental Protection. 1998. Florida Wetland Plants: An Identification Manual. University Press of Florida. 598 pp.

Florida Department of Transportation. 1999. Florida Land Use, Cover and Forms Classification System.

Florida Geographic Data Library. 2014 NWI GIS data.
Florida Natural Areas Inventory. 2013. Protected Species Elemental Occurrence GIS data.

Florida Natural Areas Inventory and Florida Department of Natural Resources. 2010. Guide to the Natural Communities of Florida.

Florida Fish and Wildlife Conservation Commission. 2010-2014. GIS data for various protected species.

Myers, R. L. and J. J. Ewel (eds.). 1990. Ecosystems of Florida. University of Central Florida Press. 765 pp.

Southwest Florida Water Management District. 2011 Florida Land Use Land Cover GIS data.

Stankey, D.L. 1980. Soil Survey of Hillsborough County, Florida. Natural Resource Conservation Service, U.S. Department of Agriculture, Washington D.C.

Wunderlin, R. P., and B. F. Hansen. 2003. Guide to the Vascular Plants of Florida. University Press of Florida. Tampa, Florida. 788 pp.

Figures \& Tables
(In Order of Reference Within the Text)

Legend

Hanna Rd

Legend

\square PROJECT LOCATION - EXISTING ROW

Legend

${ }^{23}$

Legend

Table 1. Summary of Wetland Involvement, Potential Protected Species Involvement, and Land Use Characteristics for SMF and FPC Sites l-275 from North of Martin Luther King Boulevard (SR 574) to North of Bearss Avenue FPID No. 431821-1

Pond	Land Use / FLUCFCS Code		Wetlands / Surface Waters			Potential Protected Species that would Utilize Habitat	Species Score	Wetland Score
	Type	Code	Wetland Impacts (acres)	\% Coverage of site	Wetland Mitigation Cost ^			
$\begin{aligned} & \text { SMF } 1 \\ & 2.92 \mathrm{ac} \end{aligned}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{aligned} & \text { SMF 2A } \\ & 0.94 \text { ac } \end{aligned}$	Roads and Highways	814	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{gathered} \text { SMF 2B } \\ 2.32 \mathrm{ac} \end{gathered}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{gathered} \text { SMF 3A } \\ 4.19 \mathrm{ac} \end{gathered}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
SMF 3B 2.87 ac	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{gathered} \text { SMF } 4 \\ 2.36 \mathrm{c} \end{gathered}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{aligned} & \text { SMF } 5 \\ & 2.65 \text { ac } \end{aligned}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{aligned} & \text { SMF } 6 \\ & \text { 1.23ac } \end{aligned}$	Auto Parking Facilities	818	0.00	0\%	\$0	no potential listed species would utilize this habitat	None	None
$\begin{aligned} & \text { SMF } 7 \\ & 1.56 \text { ac } \end{aligned}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{aligned} & \text { SMF } 8 \\ & 0.78 \text { ac } \end{aligned}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{aligned} & \text { SMF } 9 \\ & 3.55 \mathrm{ac} \end{aligned}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{gathered} \text { SMF } 10 \\ 1.62 \mathrm{ac} \end{gathered}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\text { SMF } 11$ $0.66 \mathrm{ac}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{gathered} \text { SMF } 12 \\ 1.64 \mathrm{ac} \end{gathered}$	Fixed Single Family Units, Medium Density Residential	121	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{aligned} & \text { SMF } 13 \\ & 0.75 \mathrm{ac} \end{aligned}$	Fixed Single Family Units, Medium Density Residential	121	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None

Table 1. Summary of Wetland Involvement, Potential Protected Species Involvement, and Land Use Characteristics for SMF and FPC Sites I-275 from North of Martin Luther King Boulevard (SR 574) to North of Bearss Avenue FPID No. 431821-1

Pond	Land Use / FLUCFCS Code		Wetlands / Surface Waters			Potential Protected Species that would Utilize Habitat	Species Score	Wetland Score
	Type	Code	Wetland Impacts (acres)	\% Coverage of site	Wetland Mitigation Cost ^			
$\begin{aligned} & \text { SMF 14A } \\ & 1.25 \mathrm{ac} \end{aligned}$	Fixed Single Family Units, Low Density Residential	111	0.06	5\%	\$6,810	gopher tortoise, southeastern American kestrel, Florida sandhill crane, eastern indigo snake, wood stork, and other wetland dependant wading birds	Low	Low
	Freshwater Marshes	641						
$\begin{gathered} \text { SMF 14B } \\ 1.41 \mathrm{ac} \end{gathered}$	Fixed Single Family Units, Low Density Residential	111	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{gathered} \text { SMF 15A } \\ 1.32 \mathrm{ac} \end{gathered}$	Undeveloped Land Within Urban Areas	191	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{aligned} & \text { SMF 15B } \\ & 2.00 \mathrm{ac} \end{aligned}$	Undeveloped Land Within Urban Areas	191	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{gathered} \text { SMF } 16 \\ 1.22 \mathrm{ac} \end{gathered}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{aligned} & \text { FPC } 12 \\ & 0.40 \text { ac } \end{aligned}$	Fixed Single Family Units, High Density Residential	131	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None
$\begin{aligned} & \text { FPC } 14 \\ & 0.38 \mathrm{ac} \end{aligned}$	Roads and Highways	814	0.00	0\%	\$0	gopher tortoise, southeastern American kestrel, Florida sandhill crane, and eastern indigo snake	Low	None

$n=$ Based on the 2013/2014 fiscal year, $\$ 113,494$ was used to calculate estimated mitigation cost provided via Senate Bill.

NOTES:

 observations or records but unlikely presence
protected species protected species

Contamination Report

1.0 PROPOSED POND SITES

1.1 INTRODUCTION/METHODOLOGY

A contamination screening desktop analysis was performed in October 2018 for the four proposed pond sites associated with the Proposed Action. This analysis included historical aerial photography and regulatory documents review within $1 / 4$-mile (or 1 -mile for superfund sites, brownfields, and landfills) of the proposed pond sites using the Florida Department of Environmental Protection (FDEP) Map Direct data layers. Additionally, a site visit to the pond sites was completed in October 2018. The site visit included observations from the right of way, and did not include a detailed reconnaissance of the properties. The Environmental Data Report (EDR), dated November 25, 2014, prepared by Environmental Data Management, Inc. (EDM), was used as supplemental information for these pond site reviews. However, one pond site (Proposed Pond Site No. 15-B) was completely outside of the 1/8-mile 2014 EDR study area and Proposed Pond Site No. 14-B was partially outside of the $1 / 8$-mile 2014 EDR study area.

A second evaluation was conducted using an updated EDR dated December 21, 2018 and a revisit to the sites in December 2018. Presented below is an evaluation for the proposed pond sites which summarizes the findings and conclusions based on the October 2018 preliminary screening, the 2014 and 2018 EDRs, and the October 2018 and December 2018 site visits. Potential contamination sites near the proposed pond locations are discussed in the Draft Contamination Screening Evaluation Report for the Proposed Action, dated January 2019.

1.1.1 Risk Rankings

A hazardous materials ranking system that expresses the degree of concern for potential contamination problems was used to rank the pond sites. The rankings are NO, LOW, MEDIUM, and HIGH and are generally defined as follows:

No - A review of available information on the property and a review of the conceptual or design plans indicates there is no potential contamination impact to the project. It is possible that contaminants had been handled on the property. However, findings from the contamination screening evaluation or sampling and testing results indicate that contamination impacts are not expected.

Low - A review of available information indicates that former or current activities on the property have an ongoing contamination issue, has a hazardous waste generator identification (ID) number, or handles hazardous materials in some capacity. However, based on the review of conceptual or design plans and/or findings from the contamination screening evaluation or sampling and testing results, it is not likely that there would be any contamination impacts to the project.

[^2]High - After a review of all available information and conceptual or design plans, there is appropriate analytical data that shows contamination will substantially impact construction activities, have implications to right of way acquisition or have other potential transfer of contamination related liability to the FDOT.

1.2 Potential Contaminated Site Impacts

One of four contamination risk ranking categories were assigned to each of the pond sites evaluated for potential contamination impacts (No, Low, Medium or High).

Proposed Pond Site No. 15-B is located outside of the previous contamination screening boundary conducted in 2014 but within the December 2018 EDR. Pond 15-B is an undeveloped private property, located in the northeast corner of Sinclair Hills Road and W Lake Burrell Drive. Pond $15-B$ is located east of I-275, and is bordered to the east by Burrell Lake, with undeveloped land located to the north. Residential properties are located further to the north. Railroad tracks border Pond 15-B to the west, with BCPeabody Construction Services located further to the west. Properties located to the south of Pond $15-\mathrm{B}$ include a car wash facility, and a warehouse with boat storage. Based on a review of aerial photography, Pond 15-B was previously undeveloped land where trucks would park. The property located to the south of the proposed pond site (at the southeast corner of Sinclair Hills Road and N Nebraska Avenue) was formerly Patriot Petroleum Truck Stop, which has been developed into Tire Kingdom. The Truck Stop experienced three discharges (1987, 1990 and 1992) and these three incidents were granted a cleanup completion status (No Further Action) in 2004. During the site visit, the site was fenced off with a "Private Property" sign on the front, with an advertisement for fireworks for sale. An abandoned boat was located within the fenced property. The location of Pond Site No. 15-B is depicted on Figure 1.

Proposed Pond Site No. 15-A is located within the previous contamination screening boundary for the EDR prepared in 2014 and was included in the boundary for the 2018 EDR update. Pond $15-\mathrm{A}$ is undeveloped land, and is located north of W Bearss Avenue and west of I-275. Pond 15A is bordered to the north by undeveloped land, to the west by Vista Inn and Suites, and to the south by IHOP. Based on the review on the 2014 and 2018 EDRs, two sites located south of Bearss Avenue and two sites east of I-275 were indicated as LUST sites. These sites are reported in Table 2 and in Section 6.1 as contamination sites 19 through 22. No obvious signs of environmental concern were noted for Pond 15-A during the site visit. The location of Pond Site No. 15-A is depicted on Figure 2.

Proposed Pond Site No. 14-A is located within the previous contamination screening boundary for the EDR prepared in 2014 and the 2018 EDR update. Pond 14-A is developed land containing a residential property within the parcel, and is located west of I-275 and north of April Lane. The proposed pond site is bordered to the north by an existing retention pond. Residential properties are located to the west and to the east, and undeveloped land is located to the south. Residential properties are located further south. Proposed Pond Site No. 14-B is located directly southeast of proposed Pond Site No. 14-A. A portion of the proposed pond location was included in the previous contamination screening boundary for the EDR prepared in 2014 but was entirely included within the boundary for the updated EDR in 2018. Pond 14-B is developed land, containing a residential property within the parcel. Residential properties are located to the south and to the north of the proposed pond site. Undeveloped land borders the proposed pond site to the east, with commercial/retail facilities located to the west. Proposed Ponds 14-A and 14-B share the same issues and risks, and are discussed together. A shopping strip mall is located west of these two proposed pond sites that contained a former dry cleaners, which currently operates as Shelly's Cafe. Groundwater contamination at this site (dry cleaning solvents) occurred in 1989, according to a Florida Department of Environmental Regulation letter dated
1992. No contamination concerns were noted near Pond 14-A or Pond 14-B, based on the contamination screening for the corridor right of way. No obvious signs of environmental concern were noted at Pond Site No. 14-A or Pond Site 14-B during the site visit. The location of Pond Sites No. 14-A and 14-B are depicted on Figure 3.

Figure 1: Proposed Pond Site No. 15-B

Figure 2: Proposed Pond Site No. 15-A

Figure 3: Proposed Pond Sites Nos. 14-A and 14-B

2.0 RESULTS

The following summarizes the findings and states the risk rankings for potential contamination concerns near the proposed pond sites.

Pond Site No. 15-B is assigned a risk ranking of MEDIUM. The MEDIUM risk ranking is based on historic operations of a petroleum truck stop near the site as well as a boat repair shop with its current operations being unknown. An Impact to Construction Assessment is recommended, complying with requirements of Level II Assessment (FDOT Part 2, Chapter 20) to assess the type and extent of potential contamination impacts to construction activities on the project or right of way acquisition.

Pond Site No. 15-A is assigned a risk ranking of MEDIUM. The MEDIUM risk ranking is based on the location of several active gas stations located within 0.1 miles of the site (~ 500 feet), with the threat of release from onsite USTs. An Impact to Construction Assessment is recommended, complying with requirements of Level II Assessment (FDOT Part 2, Chapter 20) to assess the type and extent of potential contamination impacts to construction activities on the project or right of way acquisition.

Pond Site No. 14-A and Pond Site No. 14-B are assigned a risk ranking of HIGH, based on the close proximity of a previous dry cleaners, with reports of groundwater contamination. An Impact to Construction Assessment is recommended, complying with requirements of Level II Assessment (FDOT Part 2, Chapter 20) to assess the type and extent of potential contamination impacts to construction activities on the project or right of way acquisition.

Archeological and
 Cultural Resources

CULTURAL RESOURCE ASSESSMENT SURVEY UPDATE TECHNICAL MEMORANDUM

I-275 (SR 93) from North of Dr. Martin Luther King, Jr. (MLK) Boulevard (SR 574) to North of Bearss Avenue (SR 678/ CR 582) Project Development and Environment (PD\&E) Study Hillsborough County

Proposed Stormwater Management Facility (SMF) Sites SMF 14B and 15B

Work Program Item Segment No.: 431821-1
Federal Aid Project No.: TBD

Prepared for:

Florida Department of Transportation
District Seven 11201 McKinley Dr
Tampa, FL 33612

The environmental review, consultation, and other actions required by the applicable Federal environmental laws for this project are being, or have been, carried out by FDOT pursuant to 23 U.S.C § 327 and a Memorandum of Understanding dated December 14, 2016, and executed by the FHWA and FDOT.

February 2019

CULTURAL RESOURCE ASSESSMENT SURVEY UPDATE TECHNICAL MEMORANDUM

I-275 (SR 93) from North of Dr. Martin Luther King, Jr. (MLK) Boulevard (SR 574) to North of Bearss Avenue (SR 678/ CR 582)
Project Development and Environment (PD\&E) Study Hillsborough County

Proposed Stormwater Management Facility (SMF) Sites SMF 14B and 15B

Work Program Item Segment No.: 431821-1
Federal Aid Project No.: TBD

Prepared for:
Florida Department of Transportation
District Seven 11201 McKinley Dr
Tampa, FL 33612

Prepared by:
Rebecca Spain Schwarz, AIA, Senior Architectural Historian
Frank Keel, Senior Archaeologist
Sarah Guagnini, Architectural Historian Rin Gaubatz, Archaeological Technician II

Atkins
4030 W Boy Scout Blvd
Tampa, FL 33613

February 2019

Table of Contents

Section Page
Introduction 1
Project Description 1
Area of Potential Effect (APE) 4
Environmental Overview 4
Background Research and Archaeological/Historical Considerations. 9
Cultural Overview 9
Survey and Laboratory Methods 11
Inadvertent / Unanticipated Discovery of Cultural Remains 11
Survey Results 12
Conclusion 18
References Cited 18
List of Figures
Figure
Figure 1: Overall PD\&E Study Project Location Map. 2
Figure 2: SMF 14B and SMF 15B Project Location Map 3
Figure 3: Area of Potential Effect and Previously Recorded Resources 5
Figure 4: Sulphur Springs USGS quadrangle map (1956, photorevised 1987) 6
Figure 5: Project Setting for Proposed SMF 14B, Looking North Toward April Lane from Center of Parcel 7
Figure 6: Project Setting for Proposed SMF 14B, Looking South within the Fenced Area at the East Side of the Parcel (Note: This area was not accessible) 7
Figure 7: Project Setting for Proposed SMF 15B, Looking Northeast Toward Parcel from Sinclair Hills Road (Note: Heavy vegetation surrounding the parcel). 8
Figure 8: Project Setting for Proposed SMF 15B, Looking North from the South Entrance to the Parcel (Note: Heavy vegetation surrounding the parcel) 8
Figure 9: 1957 Aerial of the Project Area (courtesy of the University of Florida George A. Smathers Libraries) 10
Figure 10: Recorded Historic Resources 15
Figure 11: 131 April Lane, Looking Southwest 16
Figure 12: 140 April Lane, Looking North 16
Figure 13: 148 April Lane, Looking Northwest 17
Figure 14: 149 April Lane, Looking South 17
Table Page
Table 1: Shovel Test Results 13
Table 2: Historic Resources Recorded Within the APE (all are related to proposed SMF 14B) 14

I-275 (SR 93) from north of MLK Boulevard (SR 574) to north of Bearss Avenue (SR 678/CR 582)
Proposed SMF 14B and 15B
Hillsborough County
WPI Segment No.: 431821-1

Appendices

Appendix A: Shovel Test Maps
Appendix B: FMSF Forms
Appendix C: Survey Log

Introduction

On behalf of the Florida Department of Transportation (FDOT), District Seven, Atkins has prepared a Cultural Resource Assessment Survey (CRAS) Update Technical Memorandum for two proposed pond / stormwater management facility (SMF) sites (SMF 14B and 15B). This project will be eligible for federal funds. This CRAS Update serves as an update to the Cultural Resources Assessment Survey for Interstate 275 (I-275)(State Road 93 [SR 93]) from North of Dr. Martin Luther King, Jr. Boulevard (SR 574) to North of Bearss Avenue (SR 678/County Road [CR] 582) prepared by Janus Research in 2015 for the Project Development and Environment (PD\&E) Study. The purpose of this CRAS Update is to locate and identify any cultural resources associated with the two proposed SMF sites (SMF 14B and 15B).

The cultural resource analysis was designed in compliance with Section 106 of the National Historic Preservation Act (NHPA) of 1966 (Public Law 89-665, as amended), as implemented by 36 CFR 800 (Protection of Historic Properties, effective August 2004), as well as Chapter 267, Florida Statutes (F.S.) and Chapter 1A-46, Florida Administrative Code (F.A.C.). All work was performed in accordance with the standards outlined in the Cultural Resources Management Standards \& Operational Manual (Florida Division of Historical Resources [FDHR] 2003) and the PD\&E Manual (FDOT 2019). The purpose of this analysis was to identify the presence of resources listed in or considered eligible for listing in the National Register of Historic Places (NRHP) per the criteria set forth in 36 CFR Section 60.4. The review was conducted by staff who meet the Secretary of the Interior's Professional Qualification Standards (48 FR 44716).

Project Description

The FDOT, District Seven, is conducting a PD\&E Study to evaluate the need for capacity and operational improvements along 7.70 miles of I-275 (Figure 1). The objective of the PD\&E Study is to assist FDOT in reaching a decision on the type, location, and conceptual design of the proposed I-275 improvements to safely and efficiently accommodate future travel demand. As part of the PD\&E Study, potential SMF sites were identified and evaluated. A Draft Pond Siting Report (January 2019) was prepared by WSP and describes the results. There are 17 proposed SMF (swale treatment facilities and/or ponds) for this project. Except for SMF 14B and SMF 15B, all SMF are located within the existing right of way (ROW). The required ROW for SMF 14B and SMF 15B is 1.40 acres and 2.00 acres respectively. Figure 1 shows the proposed SMF alternatives for 2015 and 2018; however, the 2015 SMF locations are no longer proposed.

This CRAS Update focuses on proposed SMF 14B and SMF 15B (Figure 2). Proposed SMF 14 B is located at 131 April Lane, Tampa, which is located west of I-275, south of Bearss Avenue and east of North Florida Avenue. Proposed SMF 15B is located at 1007

Hillsborough County
WPI Segment No.: 431821-1

Figure 1: Overall PD\&E Study Project Location Map

I-275 (SR 93) from north of MLK Boulevard (SR 574) to north of Bearss Avenue (SR 678/CR 582)
Proposed SMF 14B and 15B
Hillsborough County
WPI Segment No.: 431821-1

Figure 2: SMF 14B and SMF 15B Project Location Map

Sinclair Hills Road, Lutz, which is located east of I-275, north of Bearss Avenue and east of North Nebraska Avenue. The proposed SMF sites are not currently in FDOT ROW.

Area of Potential Effect (APE)

As defined in 36 CFR Part § 800.16(d), the APE is the "geographic area or areas within which an undertaking may directly or indirectly cause alterations in the character or use of historic properties, if any such properties exist." Based on the scale and nature of the activities, the archaeological APE is limited to the footprint of the proposed SMF sites. The historic resources APE is the proposed SMF sites and adjacent parcels that are not blocked from views by existing vegetation (or up to 250 feet where potential visual effects would be possible). See Figure 3 for the historic resources APE for SMF 14B. The historic resources APE for SMF 15B was just the proposed SMF parcel which is bound by roads on the south and west, and by existing ponds on the east and north (Figures 3 and 7).

Environmental Overview

Proposed SMF 14B is located in Township 28S Range 18E, Section 01 on the Sulphur Springs United States Geological Survey (USGS) quadrangle map (1956, photorevised 1987) (Figure 4). This is an urban area, and the proposed SMF site is within 500 feet (ft) of I-275 The soils in the SMF 14B site include Zolfo fine sand. The natural vegetation of Zolfo fine sand consists of live oak, turkey oak, longleaf pine, and slash pine. The understory includes broomsedge; bluestem, lopsided indean grass, saw palmetto, and pineleaf threeawn. Zolfo fine sand is described as somewhat poorly drained, with high runoff potential (USDA 1989). Proposed SMF 14B is located in an urban area, on manicured lawn with large live oak trees. (Figures 5 and 6).

Proposed SMF 15B is located Township 27S, Range 19E, Section 31 on the Sulphur Springs USGS quadrangle map (Figure 4). The soils in the 15B pond site include Zolfo fine sand and Bassinger, Holopaw, and Samsula soils. There is a seasonable high-water table, ranging from 24 to 40 inches below surface in rainier months, and dropping to 60 inches in prolonged dry periods. Zolfo fine sand is described above. The natural vegetation of Bassinger, Holopaw and Samsula soils consists of cypress, with an understory of bluestem, maidencane, pancum, Jamaican sawgrass, and cutgrass (USDA 1989). Proposed SMF 15B is within a semi-urban area, on property used for storage and cutting of firewood, and is adjacent to a large natural pond. (Figures 7 and 8).

Figure 3: Area of Potential Effect and Previously Recorded Resources

Figure 4: Sulphur Springs USGS quadrangle map (1956, photorevised 1987)

Figure 5: Project Setting for Proposed SMF 14B, Looking North Toward April Lane from Center of Parcel

Figure 6: Project Setting for Proposed SMF 14B, Looking South within the Fenced Area at the East Side of the Parcel (Note: This area was not accessible)

Figure 7: Project Setting for Proposed SMF 15B, Looking Northeast Toward Parcel from Sinclair Hills Road (Note: Heavy vegetation surrounding the parcel)

Figure 8: Project Setting for Proposed SMF 15B, Looking North from the South Entrance to the Parcel (Note: Heavy vegetation surrounding the parcel)

Background Research and Archaeological/Historical Considerations

This section represents an overview of previous archaeological and historical investigations conducted in the general vicinity of the project area. The information presented is designed to supplement the information in previous sections as well as to provide a comparative base from which to interpret the data obtained during the present assessment of the project. Specifically, this section discusses previously recorded archaeological and historical properties located within the general vicinity of the project limits. Information on previously recorded historic sites and surveys was obtained by examination of the Florida Master Site Files (FMSF) website data. Prior to the field survey, a review of the FMSF records, as well as an examination of the pertinent literature of the surrounding area, was conducted for the purpose of identifying any previously recorded archaeological or historical sites and/or surveys within the project APE or the immediate project vicinity.

A review of the information in the FMSF indicates that the Technical Memorandum: Cultural Resource Assessment Survey, State Road 45 (US 41) Proposed Pond Sites, Hillsborough County (Survey No. 13831) prepared by ACI in 1993 is the nearest CRAS to SMF 15B. The Cultural Resources Assessment Survey of I-275/ State Road 93 (SR 93) from North of Dr. Martin Luther King, Jr. Boulevard (SR 574) to North of Bearss Avenue (SR 678/County Road 582) PD\&E (Survey No. 22589) prepared by Janus Research in 2015 is the most recent nearby survey for SMF 14B. Neither one of the SMF sites has been surveyed for cultural resources.

Based on a review of the FMSF data, there is only one previously recorded archaeological site within one-quarter mile of each proposed SMF site. The archaeological site (8HI05631; Red Leaf) is low-density Pre-Columbian lithic artifact scatter site that is described in the previous I-275 CRAS. It is located east of I-275 and east of Proposed SMF 14B (Figure 3). There is no previously recorded archaeological site within or adjacent to either proposed SMF site. There is one previously recorded historic structure east of SMF 14B on April Lane, but outside of the historic resources survey APE (Figure 3). This masonry vernacular residence (8 HI 12906) at 151 April Lane was recorded during the previous I-275 CRAS and was determined not eligible for NRHP listing by the SHPO in 2016.

Cultural Overview

Since this is an update of a recently prepared previous CRAS, a full cultural overview (prehistoric and historic) is available in the Cultural Resources Assessment Survey of I-275 (SR 93) from North of Dr. Martin Luther King, Jr. Boulevard (SR 574) to North of Bearss Avenue (SR 678/County Road 582) (FMSF Survey No. 22589) prepared by Janus Research in 2015, and will not be repeated here.

A review of historic aerials shows the project area in 1957, before I-275 was constructed (Figure 9). There was limited development surrounding both proposed SMF sites.

Figure 9: 1957 Aerial of the Project Area (courtesy of the University of Florida George A. Smathers Libraries)

Survey and Laboratory Methods

Archaeological: This assessment survey was designed to evaluate the presence of cultural resources within the APE. The archaeological field survey consisted of a thorough visual inspection of surface exposures, photographic documentation of the survey areas and the excavation of shovel tests. The subsurface testing methodology employed the excavation of judgmentally and systematically placed shovel tests. Each shovel test was 50 cm in diameter and excavated to a depth of one meter unless subsurface obstructions were encountered. All units were backfilled immediately upon completion. All excavated soil was screened through 0.25 -inch mesh hardware cloth. Test locations were marked on $1 "=$ 200' field maps and notes on soil conditions and stratigraphy were recorded for each subsurface test location. Field assessment activities were documented in accordance with accepted professional standards.

Based on cultural and environmental data, preliminary areas of archaeological probability were developed for the APE prior to initiating field work. These data suggested that the APE possessed a low archaeological site probability for proposed SMF 14B and a low to high probability for proposed SMF 15B. After examining the APE in the field, the probability areas were refined to account for variables not observable from quads or aerials.

Laboratory and Curation: No artifacts were recovered; therefore, no laboratory or curation methods were utilized.

Historic resources: A historic resources field survey was conducted to verify the locations of any previously recorded historic resources, assess the potential for unrecorded historic resources, and to review the location of the proposed improvements in relation to these cultural resources. As part of the survey methodology, historic resources were identified/evaluated that are 50 years of age or older. Therefore, historic resources were included in the survey that were built in or prior to 1970.

Inadvertent / Unanticipated Discovery of Cultural Remains

Although rare, archaeological deposits, subsurface features, or unmarked human remains can be encountered during project development, despite the project having received a thorough professional cultural resource assessment. In the event that human remains are encountered during the course of project development, the procedures outlined in Chapter 872, F.S. will be followed. All activities in the immediate vicinity of the discovery will be suspended, and the FDOT District Seven Environmental Administrator will be contacted. A professional archaeologist will also be contacted to evaluate the importance of the discovery. The area will be examined by the archaeologist, who, in consultation with staff of the FDOT and the SHPO will determine if the discovery is significant or potentially significant. In the event the discovery is found not to be significant, the work may immediately resume. If the discovery is found to be significant or potentially significant, then project development activities in the immediate vicinity of the discovery will continue
to be suspended until such time as a mitigation plan, acceptable to the SHPO, is developed and implemented, after which project development activities may then resume.

Survey Results

Archaeological

In January 2019, Atkins staff and Crystal Geiger, FDOT District Seven Cultural Resource Coordinator, conducted a cultural resources field assessment for the two proposed SMF sites (SMF 14B and SMF 15B). A total of nine shovel tests were excavated in the APE; 5 for SMF 14B and 4 for SMF 15B (Appendix A). All the shovel tests were negative, and no intact deposits were encountered. Table $\mathbf{1}$ includes the results and stratigraphy of shovel tests in each SMF site.

The southwestern shovel test at SMF 14B is just outside the proposed pond footprint due to existing fill located just south of the structure that is within the southwest corner of the proposed SMF footprint. The eastern portion of the proposed SMF 14B parcel was inaccessible due to a locked fence. The area appeared to be an access road to the existing pond located south of the proposed SMF 14B.

Concentrations of compacted shell and rock fill were observed in three of the four shovel tests excavated at SMF 15B. The shovel tests were terminated several centimeters into the compact fill. The person leasing the parcel had previously noted the heavily compacted fill and mentioned having to use a pickaxe in an attempt to put in post holes. The fourth shovel test in the northwestern corner of the parcel did not display the compact fill and the shovel test was terminated at water.

Table 1: Shovel Test Results

Location	Conditions	Soil Stratigraphy	Results
$\begin{aligned} & \text { SMF 14B } \\ & \text { ST } 1 \\ & \text { NE quad } \end{aligned}$	Manicured lawn, live oak trees	$0-16 \mathrm{~cm}$ very dark grey sandy 16-38 cm light grey sandy $38-88 \mathrm{~cm}$ light yellowish brown Terminated at water table	Negative
SMF 14B ST 2 SE quad	Manicured lawn, live oak, ferns	$0-14 \mathrm{~cm}$ very dark grey organic $14-25 \mathrm{~cm}$ light grey sandy 25-92 cm light brownish grey Terminated at water table	Negative
$\begin{gathered} \hline \text { SMF 14B } \\ \text { ST 3 } \\ \text { Center } \end{gathered}$	Manicured lawn, open area, modern burn pile within 7 m	$0-60 \mathrm{~cm}$ very dark grey organic $60-80 \mathrm{~cm}$ light grey Terminated at water table	Negative (modern trash from previous burn pile)
$\begin{gathered} \text { SMF 14B } \\ \text { ST } 4 \\ \text { NW quad } \end{gathered}$	Manicured lawn, 10m west of home site, live oak, palms	$0-32 \mathrm{~cm}$ dark grey mottled with shell fill throughout $32-44 \mathrm{~cm}$ light grey 44-87 light greyish brown Terminated at water table	Negative
$\begin{gathered} \hline \text { SMF 14B } \\ \text { ST } 5 \\ \text { SW quad } \\ \hline \end{gathered}$	Leaf litter, live oak, lots of roots	$0-60 \mathrm{~cm}$ dark grey $60-70 \mathrm{~cm}$ light grey soil Terminated at water table	Negative
$\begin{gathered} \hline \text { SMF 15B } \\ \text { ST } 1 \\ \text { SE quad } \\ \hline \end{gathered}$	Tall grasses, wood piles nearby, modern trash	$0-15 \mathrm{~cm}$ dark grey (fill) $15-32 \mathrm{~cm}$ light grey (fill) Terminated at compact fill	Negative
$\begin{gathered} \hline \text { SMF 15B } \\ \text { ST } 2 \\ \text { SW quad } \\ \hline \end{gathered}$	Wood pile, sparse tall scrub grass	$0-10 \mathrm{~cm}$ dark grey organic $10-20 \mathrm{~cm}$ shell fill, compact Terminated at compact fill	Negative
$\begin{gathered} \text { SMF 15B } \\ \text { ST } 3 \\ \text { NE quad } \end{gathered}$	Grasses, open area with heavy vegetation nearby	0-9 cm dark grey 9-18 cm grayish brown $18-21 \mathrm{~cm}$ white (fill) Terminated at compact fill	Negative
$\begin{gathered} \hline \text { SMF 15B } \\ \text { ST } 4 \\ \text { NW quad } \end{gathered}$	Grasses, open area	$0-18 \mathrm{~cm}$ dark grey $18-23 \mathrm{~cm}$ orange grey $23-70 \mathrm{~cm}$ light grey Terminated at water table	Negative

Historic Resources

As a result of field survey, eight newly identified historic resources were recorded and evaluated. These include seven historic buildings and one resource group (consisting of three newly recorded historic buildings). See Table 2 and Figure 10. Two are located within proposed SMF 14B and the rest are adjacent to proposed SMF 14B but within the historic resources visual APE. No historic resources were identified or recorded within or immediately adjacent to proposed SMF 15B.

These include two masonry vernacular buildings located at 131 April Lane within proposed SMF 14B that are related to the non-historic church to the west (Figure 11). Two masonry vernacular residences are located across the street on the north side of April Lane (Figures 12 and 13). The parcel to the east of the proposed SMF 14B contains the Christian Growth Fellowship complex (resource group) consisting of three separate masonry vernacular church related buildings (Figure 14). None of these historic resources meet the criteria for listing in the NRHP. FMSF forms are included in Appendix B.

Table 2: Historic Resources Recorded Within the APE (all are related to proposed SMF 14B)

FMSF No.	Site Name / Address	Resource Type / Style	Date	National Register Evaluation
8HI14557	131 April Lane (Building A)	Masonry Vernacular	ca. 1950	Not eligible for listing in the NRHP
8HI14558	131 April Lane (Building B)	Masonry Vernacular	ca. 1950	Not eligible for listing in the NRHP
8HI14559	140 April Lane	Masonry Vernacular	ca. 1951	Not eligible for listing in the NRHP
8HI14560	148 April Lane	Masonry Vernacular	ca. 1954	Not eligible for listing in the NRHP
	Christian Growth Fellowship Building A/149 April Lane	Masonry Vernacular	ca. 1964	Not eligible for listing in the NRHP
8HI14561	Christian Growth Fellowship Building B/149 April Lane	Masonry Vernacular	ca. 1964	Not eligible for listing in the NRHP
8HI14562	Christian Growth Fellowship Building C/149 April Lane	Masonry Vernacular	ca. 1964	Not eligible for listing in the NRHP
8HI14563	Christian Growth Fellowship Complex	Resource Group	ca. 1964	Not eligible for listing in the NRHP
8HI14564				

Figure 10: Recorded Historic Resources

I-275 (SR 93) from north of MLK Boulevard (SR 574) to north of Bearss Avenue (SR 678/CR 582)
Proposed SMF 14B and 15B
Hillsborough County
WPI Segment No.: 431821-1

Figure 11: 131 April Lane, Looking Southwest

Figure 12: 140 April Lane, Looking North

I-275 (SR 93) from north of MLK Boulevard (SR 574) to north of Bearss Avenue (SR 678/CR 582)
Proposed SMF 14B and 15B
Hillsborough County
WPI Segment No.: 431821-1

Figure 13: 148 April Lane, Looking Northwest

Figure 14: 149 April Lane, Looking South

Conclusion

The archaeological field survey included visual pedestrian survey and subsurface testing of the project APE. No archaeological sites or artifacts were recorded. No further archaeological survey is recommended.

The historic resources field survey included visual pedestrian survey. As a result of field survey, eight newly identified historic resources were recorded and evaluated. These include seven historic buildings and one resource group (consisting of three newly recorded historic buildings). Two are within proposed SMF 14B and the rest are adjacent to proposed SMF 14B but within the historic resource visual APE. No historic resources were recorded within or immediately adjacent to proposed SMF 15B. None of these historic resources meet the criteria for listing in the NRHP.

Based on the results of the background research and field survey, there are no archaeological sites or historic resources located within the project APE that are listed, determined eligible, or considered potentially eligible for listing in the NRHP. Therefore, FDOT is proposing a finding of no historic properties affected for the two SMF sites.

A Survey Log is included in Appendix C.

References Cited

Archaeological Consultants, Inc.
1993 Technical Memorandum: Cultural Resource Assessment Survey, State Road 45 (US 41) Proposed Pond Sites, Hillsborough County. FMSF Survey No. 13831. Manuscript on file at Florida Division of Historical Resource, Tallahassee.

Janus Research
2015 Cultural Resources Assessment Survey for Interstate 275 (I-275) (State Road 93 [SR 93]) from North of Dr. Martin Luther King, Jr. Boulevard (SR 574) to North of Bearss Avenue (SR 678/County Road [CR] 582) Project Development and Environment (PD\&E) Study, Hillsborough County. FMSF Survey No. 22589. Manuscript on file at Florida Division of Historical Resource, Tallahassee.

United States Department of Agriculture (USDA)
1989 Soil Survey of Hillsborough County, Florida. United States Department of Agriculture, Soil Conservation Service, Washington, D.C.

United States Geological Survey (USGS)
1956 Sulphur Springs, photorevised 1987.

I-275 (SR 93) from north of MLK Boulevard (SR 574) to north of Bearss Avenue (SR 678/CR 582)
Proposed SMF 14B and 15B
Hillsborough County
WPI Segment No.: 431821-1

University of Florida Digital Collection

1957 Aerial Photography: Florida Collection. University of Florida, George A Smathers Libraries, Gainesville, FL

APPENDICES

APPENDIX A: SHOVEL TEST MAPS

APPENDIX B: FMSF FORMS

APPENDIX C: SURVEY LOG

APPENDIX B: FMSF FORMS

Page 1
QOriginal

HISTORICAL STRUCTURE FORM
FLORIDA MASTER SITE FILE
Version $4.0 \quad 1 / 07$

Shaded Fields represent the minimum acceptable level of documentation. Consult the Guide to Historical Structure Forms for detailed instructions.

HISTORY

Is the Resource Affected by a Local Preservation Ordinance? पyes पno 区unknown Describe

DESCRIPTION

Distinguishing Architectural Features (exterior or interior ornaments) Concrete sills beneath windows

[^3]
DHR USE ONLY

OFFICIAL EVALUATION
DHR USE ONLY

> SHPO - Appears to meet criteria for NR listing: $\begin{array}{ll}\square \mathrm{yes} & \square \mathrm{no} \\ \text { KEEPER - Determined eligible: } & \square \text { insufficient info }\end{array}$ $\begin{array}{lllll}\text { NR Criteria for Evaluation: } \\ \square \mathrm{a} & \square \mathrm{b} & \square \mathrm{c} & \square \mathrm{yes} & \square \mathrm{no} \\ & \square \mathrm{d} & \text { (see National Register Bulletin } & \text { 15, p. 2) }\end{array}$

Date ___ Init.
Site \#8

HI14557
Field Date 1-29-2019
Form Date 2-14-2019
Recorder \#
\qquad
Recorder \#
\qquad
r

DESCRIPTION (continued)

OPINION OF RESOURCE SIGNIFICANCE

Appears to meet the criteria for National Register listing individually?
Appears to meet the criteria for National Register listing as part of a district?
Explanation of Evaluation (required, whether significant or not; use separate sheetifneeded) This building is a common Masonry Vernacular style building that does not possess sufficient historical significance to be considered individually eligible for the NRHP. The building is not in an area that could comprise a potential historic district Area(s) of Historical Significance (see National Register Bulletin 15, p. 8 for categories: e.g. "architecture", "ethnic heritage", "community planning \& development", etc.) 1. 3. 5. 2. \qquad 4. \qquad 6.

DOCUMENTATION

Accessible Documentation Not Filed with the Site File - including field notes, analysis notes, photos, plans and other important documents

(address / phone / fax / e-mail)
(1) USGS 7.5' MAP WITH STRUCTURE LOCATION PINPOINTED IN RED

Required
Attachments
(2) LARGE SCALE STREET, PLAT OR PARCEL MAP (available from most roroerty appraiser web sites)

3 PHOTO OF MAIN FACADE, ARCHIVAL B\&W PRINT OR DIGITAL IMAGE FILE
If submitting an image file, it must be included on disk or CD AND in hard copy format (plain paper is acceptable). Digital image must be at least 1600×1200 pixels, 24 -bit color, jpeg or tiff.

Photograph

Structure Location

USGS Topo

Page 1
区Original

HISTORICAL STRUCTURE FORM
FLORIDA MASTER SITE FILE
Version $4.0 \quad 1 / 07$

Shaded Fields represent the minimum acceptable level of documentation． Consult the Guide to Historical Structure Forms for detailed instructions．

HISTORY

Construction	Year：	1950	区ap	proximately	$\square \mathrm{yea}$	listed or	earlier	ear listed		
Original Use	Club	or Lode	buil	ding			From（year）	C1950	To（year）：	c2015
Current Use	Abandoned／Vacant						From（year）	c2015	To（year）：	2019
Other Use							From（year）		To（year）：	
	पyes 区no पunknown			Date：		Original address				
Alterations：	区yes	$\square \mathrm{no} \square^{\text {un }}$	nown			Nature	Carport	nclosure	east	
Additions：	$\square y \mathrm{~s}$	冈no $\square^{\text {a }}$	nown	Date：		Nature				
Architect（las	st name firs	st）：Unkno					Builder（1）	name first）：	nnown	
Ownership H	History（	（especially or	Iown	er，dates，profes	sion，etc．）					

Is the Resource Affected by a Local Preservation Ordinance？पyes पno 区unknown Describe

DESCRIPTION

Distinguishing Architectural Features（exterior or interior ornaments）

[^4]
DHR USE ONLY

OFFICIAL EVALUATION
DHR USE ONLY

| SHPO－Appears to meet criteria for NR listing： | \square yes \square no \square insufficient info Date
 KEEPER－Determined eligible： \square yes \square no
 NR Criteria for Evaluation： $\square \mathrm{a}$ $\square \mathrm{b}$ $\square \mathrm{c}$
 \square $\square \mathrm{d}$ （see National Register Bulletin 15，p．2） Date | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DESCRIPTION (continued)

OPINION OF RESOURCE SIGNIFICANCE

Appears to meet the criteria for National Register listing individually?
Appears to meet the criteria for National Register listing as part of a district?
Explanation of Evaluation (required, whether significant or not, use separate sheetifneeded) This building is a common Masonry Vernacular style building that does not possess sufficient historical significance to be considered individually eligible for the NRHP. The building is not in an area that could comprise a potential historic district Area(s) of Historical Significance (see National Register Bulletin 15, p. 8 for categories: e.g. "architecture", "ethnic heritage", "community planning \& development", etc.) 1. 3. 4.
\qquad

DOCUMENTATION

Accessible Documentation Not Filed with the Site File - including field notes, analysis notes, photos, plans and other important documents

1)

1) Document type All materials at one location \quad Document description Mapping, photographs, survey notes Maintaining organization ATKINS Global
2) Document type \qquad File or accession \#'s
3) Document description \qquad Maintaining organization

RECORDER INFORMATION

Recorder Name

Sarah K. Guagnini

Affiliation ATKINS Global
Recorder Contact Information 4030 Boy Scout Blvd. Tampa, FL, $33607 /+1$ (813) 282-7275 / Fax: +1 (813) 281-3634 (address / phone / fax / e-mail)

Required
Attachments
(1) USGS 7.5' MAP WITH STRUCTURE LOCATION PINPOINTED IN RED
(2) LARGE SCALE STREET, PLAT OR PARCEL MAP (available from most ropeety appraiser web sites)

3 PHOTO OF MAIN FACADE, ARCHIVAL B\&W PRINT OR DIGITAL IMAGE FILE If submitting an image file, it must be included on disk or CD AND in hard copy format (plain paper is acceptable). Digital image must be at least 1600×1200 pixels, 24 -bit color, jpeg or tiff.

Photograph

Structure Location

USGS Topo

Page 1
@Original

HISTORICAL STRUCTURE FORM
FLORIDA MASTER SITE FILE
Version $4.0 \quad 1 / 07$

Shaded Fields represent the minimum acceptable level of documentation. Consult the Guide to Historical Structure Forms for detailed instructions.

HISTORY

Construction Year: 1951 区approximately \square year listed or earlier \square year listed or later

Original Use Private Residence (House/Cottage/Cabin) From (year): c1951 To (year):

Current Use	Private Residence (House/Cottage/Cabin) From (year):	To (year): Other Use	From (year):

Is the Resource Affected by a Local Preservation Ordinance? पyes पno 区unknown Describe

DESCRIPTION

Style Masonry Vernacular	Exterior Plan Irregular	Number of Stories	1
Exterior Fabric(s) 1. Brick	2. Wood siding	3. Board and batten	
Roof Type(s) 1. Hip	2.		
Roof Material(s) 1. Barrel tile	2.	3. concrete	
Roof secondary strucs. (dormers etc.) 1.	2.		
Windows (types, materials, etc.) Metal casement			

Distinguishing Architectural Features (exterior or interior ornaments) Brick window sills

[^5]
DHR USE ONLY

OFFICIAL EVALUATION
DHR USE ONLY

$$
\begin{array}{lllll}
\text { SHPO - Appears to meet criteria for NR listing: } \begin{array}{l}
\text { Yes }
\end{array} & \square \mathrm{no} & \square \text { insufficient info } & \text { Date } \\
\text { KEEPER - Determined eligible: } & & \square \text { yes } & \square \text { no } & \text { Date } \\
\text { NR Criteria for Evaluation: } \begin{array}{l}
\square \mathrm{a}
\end{array} \quad \square \mathrm{~b} & \square \mathrm{c} & \square \mathrm{~d} & \text { (see National Register Bulletin 15, p. 2) }
\end{array}
$$

Init.

DESCRIPTION (continued)

OPINION OF RESOURCE SIGNIFICANCE

Appears to meet the criteria for National Register listing individually?
Appears to meet the criteria for National Register listing as part of a district?
Explanation of Evaluation (required, whether significant or not, use separate sheet if needed) This building is a common Masonry Vernacular style residence that does not possess sufficient historical significance to be considered individually eligible for the NRHP. The building is not in an area that could comprise a potential historic district Area(s) of Historical Significance (see National Register Bulletin 15, p. 8 for categories: e.g. "architecture", "ethnic heritage", "community planning \& development", etc.) 1.
3.
4. \qquad 2. \qquad

DOCUMENTATION

Accessible Documentation Not Filed with the Site File - including field notes, analysis notes, photos, plans and other important documents

(address / phone / fax / e-mail)
(1) USGS 7.5' MAP WITH STRUCTURE LOCATION PINPOINTED IN RED

Required
Attachments

Пyes 区no ■insufficient information
पyes 区no पinsufficient information

Photograph

Structure Location

USGS Topo

Page 1
@Original

HISTORICAL STRUCTURE FORM
FLORIDA MASTER SITE FILE
Version $4.0 \quad \mathbf{1 / 0 7}$

Shaded Fields represent the minimum acceptable level of documentation. Consult the Guide to Historical Structure Forms for detailed instructions.
F

HISTORY

Construction Year: 1954 区approximately \square year listed or earlier \square year listed or later
Original Use Private Residence (House/Cottage/Cabin) From (year): c1954 To (year):

Is the Resource Affected by a Local Preservation Ordinance? पyes पno 区unknown Describe

DESCRIPTION

Distinguishing Architectural Features (exterior or interior ornaments) _Non-historic stucco window surrounds

[^6]
DHR USE ONLY

OFFICIAL EVALUATION
DHR USE ONLY

NR List Date
\square Owner Objection

SHPO - Appears to meet criteria for NR listing: \square yes \square no $\quad \square$ insufficient info Date \quad Init. KEEPER - Determined eligible: NR Criteria for Evaluation: $\square \mathrm{a} \quad \square \mathrm{b} \quad \square \mathrm{c} \quad \square \mathrm{d} \quad$ (see National Register Bulletin 15, p. 2)

Date

Site \#8 HI14560
Field Date 1-29-2019
Form Date $1-26$-2019
Recorder \# \qquad
-

OPINION OF RESOURCE SIGNIFICANCE

Appears to meet the criteria for National Register listing individually?
Appears to meet the criteria for National Register listing as part of a district?
Explanation of Evaluation (required, whether significant or not; use separate sheetif needed) This building is a common Masonry Vernacular style residence that does not possess sufficient historical significance to be considered individually eligible for the NRHP. The building is not in an area that could comprise a potential historic district Area(s) of Historical Significance (see National Register Bulletin 15, , p. 8 for categories: e.g. "architecture", "ethnic heritage", "community planning \& development", etc.) 1. 3. 5.

2.

\qquad 4. \qquad 6.

DOCUMENTATION

Accessible Documentation Not Filed with the Site File - including field notes, analysis notes, photos, plans and other important documents

(address / phone / fax / e-mail)

Required
Attachments
(1) USGS 7.5' MAP WITH STRUCTURE LOCATION PINPOINTED IN RED
(2) LARGE SCALE STREET, PLAT OR PARCEL MAP (available from most property appraiser web sites)

3 PHOTO OF MAIN FACADE, ARCHIVAL B\&W PRINT OR DIGITAL IMAGE FILE
If submitting an image file, it must be included on disk or CD AND in hard copy format (plain paper is acceppable). Digital image must be at least 1600×1200 pixels, 24 -bit color, jpeg or tiff.

Photograph

Structure Location

USGS Topo

Date: 2/18/2019

Page 1
区Original

HISTORICAL STRUCTURE FORM
FLORIDA MASTER SITE FILE
Version $4.0 \quad 1 / 07$

Shaded Fields represent the minimum acceptable level of documentation. Consult the Guide to Historical Structure Forms for detailed instructions.

Site \#8
HI14561
Field Date 1-29-2019
Form Date 2-14-2019
Recorder \# \qquad

HISTORY

Is the Resource Affected by a Local Preservation Ordinance? पyes पno 区unknown Describe

DESCRIPTION

[^7]
DHR USE ONLY

OFFICIAL EVALUATION
DHR USE ONLY
NR List Date
\square Owner Objection
SHPO - Appears to meet criteria for NR listing: \square yes \square no \square insufficient info
Date
Date
KEEPER - Determined eligible:
NR Criteria for Evaluation: $\square \mathrm{a} \quad \square \mathrm{b} \quad \square \mathrm{c} \quad \begin{aligned} & \square \mathrm{yes} \\ & \square \mathrm{d} \\ & \square \mathrm{no} \\ & \text { (see National Register Bulletin 15, p. 2) }\end{aligned}$ Init.___

DESCRIPTION（continued）

Chimney：No．＿Chimney Material（s）： 1.	2.	
Structural System（s）：1．Concrete block		
Foundation Type（s）：1．Slab		
Foundation Material（s）：1．Poured Concrete Footing		
Main Entrance（stylistic details）Simple wood double－doors wit	glass set flush within	north wall
Porch Descriptions（types，locations，roof types，etc．）North central	entrance porch beneath	t gable extension with
thin metal pole supports；full－length walkways at	and west elevations ben	roof extensions which
also include thin metal pole supports．		
Condition（overall resource condition）：\square－xcellent 区good \square fair	riorated \square ruinous	
Narrative Description of Resource This building appears to	the sanctuary．This bui	g is a typical post－World
War II constructed church and is one of three build	included in the Christ	Growth Fellowship Complex
（8HI14564）		
Archaeological Remains		\square check if Archaeological Form Completed
RESEARCH MET	S（check all that apply）	
XFMSF record search（sites／surveys）\square library research	\square building permits	\square Sanborn maps
$\square F L$ State Archives／photo collection \square city directory	\square occupant／owner interview	$\square \mathrm{Clat}$ maps
区property appraiser／tax records \quad newspaper files	\square neighbor interview	\square Public Lands Survey（DEP）
区cultural resource survey（CRAS）\square historic photos	\square interior inspection	$\square H A B S / H A E R ~ r e c o r d ~ s e a r c h ~$
区other methods（describe）Aerial photographs		
Bibliographic References（give FMSF manuscript \＃if relevant，use continu		

OPINION OF RESOURCE SIGNIFICANCE

Appears to meet the criteria for National Register listing individually？
Appears to meet the criteria for National Register listing as part of a district？
$\square y$ ®nos \square insufficient information
पyes 区no 口insufficient information
Explanation of Evaluation（required，whether significant or not；use separate sheet if needed）This building is a common 1960s Masonry Vernacular church that does not possess sufficient historical significance to be considered individually eligible for the NRHP．The building is not in an area that could comprise a potential historic district Area（s）of Historical Significance（see National Register Bulletin 15, p． 8 for categories：e．g．＂architecture＂，＂ethnic heritage＂，＂community planning \＆development＂，etc．） 1. 3. 5. 2. \qquad 4. \qquad 6.

DOCUMENTATION

Accessible Documentation Not Filed with the Site File－including field notes，analysis notes，photos，plans and other important documents
 Maintaining organization ATKINS Global File or accession \＃＇s
2）Document type \qquad Maintaining organization Document description \qquad File or accession \＃＇s

RECORDER INFORMATION

Recorder Name

Sarah K．Guagnini

Affiliation ATKINS Global
Recorder Contact Information 4030 Boy Scout Blvd．Tampa，FL， $33607 /+1$（813） $282-7275 /$ Fax：＋1（813）281－3634 （address／phone／fax／e－mail）

Required
Attachments
（1）USGS 7．5＇MAP WITH STRUCTURE LOCATION PINPOINTED IN RED
（2）LARGE SCALE STREET，PLAT OR PARCEL MAP（available from most property appraiser web sites）
3 PHOTO OF MAIN FACADE，ARCHIVAL B\＆W PRINT OR DIGITAL IMAGE FILE
If submitting an image file，it must be included on disk or CD AND in hard copy format（plain paper is acceptable）． Digital image must be at least 1600×1200 pixels， 24 －bit color，jpeg or tiff．

Photograph

Structure Location

USGS Topo

Page 1
区Original

HISTORICAL STRUCTURE FORM
FLORIDA MASTER SITE FILE
Version $4.0 \quad 1 / 07$

Shaded Fields represent the minimum acceptable level of documentation． Consult the Guide to Historical Structure Forms for detailed instructions．

Site \＃8
HI14562
Field Date 1－29－2019
Form Date 2－14－2019
Recorder \＃ \qquad

HISTORY

Construction Year： 1964 囚approximately \square year listed or earlier \square year listed or later

Original Use	Church／Temple／Synagogue	From（year）：ci964	To（year）：
Current Use	Church／Temple／Synagogue	From（year）：	To（year）：$\quad 2019$
Other Use		From（year）：	To（year）：

Is the Resource Affected by a Local Preservation Ordinance？\square yes \square no 区unknown Describe

DESCRIPTION

[^8]
DHR USE ONLY

OFFICIAL EVALUATION
DHR USE ONLY
NR List Date
\square Owner Objection
SHPO－Appears to meet criteria for NR listing：\square yes \square no \square insufficient info
Date
Date
 Init．＿＿＿

DESCRIPTION（continued）

OPINION OF RESOURCE SIGNIFICANCE

Appears to meet the criteria for National Register listing individually？
Appears to meet the criteria for National Register listing as part of a district？
Explanation of Evaluation（required，whether significant or not；use separate sheet if neede
This building is a common 1960s Masonry
Vernacular church that does not possess sufficient historical significance to be considered individually eligible for the NRHP．The building is not in an area that could comprise a potential historic district． Area（s）of Historical Significance（see National Register Bulletin 15，p． 8 for categories：e．g．＂architecture＂，＂ethnic heritage＂，＂community planning \＆development＂，etc．） 1.
\square 】es 区no \square insufficient information
पyes 区no पinsufficientinformation
Uy
\square insufficient information
\square Sanborn maps
\square plat maps
\square Public Lands Survey（DEP）
$\square H A B S / H A E R$ record search
Bibliographic References（give FMSF manuscript \＃if relevant，use continuation sheet if needed）

DOCUMENTATION

Accessible Documentation Not Filed with the Site File－including field notes，analysis notes，photos，plans and other important documents

1）

）Document type All materials at one location Maintaining organization ATKINS Global

2）Document type \qquad File or accession \＃＇s Document description Maintaining organization
\qquad
\qquad

RECORDER INFORMATION

Recorder Name

Sarah K．Guagnini

Affiliation ATkins Global
Recorder Contact Information 4030 Boy Scout Blvd．Tampa，FL， $33607 /$＋1（813）282－7275／Fax：＋1（813）281－3634 （address／phone／fax／e－mail）

Required
Attachments
（1）USGS 7．5＇MAP WITH STRUCTURE LOCATION PINPOINTED IN RED
（2）LARGE SCALE STREET，PLAT OR PARCEL MAP（available from most property appraiser web sites）
3 PHOTO OF MAIN FACADE，ARCHIVAL B\＆W PRINT OR DIGITAL IMAGE FILE
If submitting an image file，it must be included on disk or CD AND in hard copy format（plain paper is acceptable）． Digital image must be at least 1600×1200 pixels， 24 －bit color，jpeg or tiff．

Photograph

Structure Location

USGS Topo

Page 1
区Original

HISTORICAL STRUCTURE FORM
FLORIDA MASTER SITE FILE
Version $4.0 \quad 1 / 07$

Shaded Fields represent the minimum acceptable level of documentation． Consult the Guide to Historical Structure Forms for detailed instructions．

Site \＃8
HI14563
Field Date 1－29－2019
Form Date $\quad 2-14-2019$
Recorder \＃ \qquad

HISTORY

Construction Year： 1964 囚approximately \square year listed or earlier \square year listed or later

Original Use	Church／Temple／Synagogue	From（year）：ci964	To（year）：
Current Use	Church／Temple／Synagogue	From（year）：	To（year）：$\quad 2019$
Other Use		From（year）：	To（year）：

Is the Resource Affected by a Local Preservation Ordinance？\square yes \square no 区unknown Describe

DESCRIPTION

Style Masonry Vernacular	Exterior Plan Rectangular	Number of Stories	1
Exterior Fabric（s）1．Stucco	2.	3.	
Roof Type（s）1．Gable	2.		
Roof Material（s）1．Composition shingles			
Roof secondary strucs．（dormers etc．） 1.	－ 2.		
Windows（types，materials，etc．）Metal 1／1 single－hung sash			
Distinguishing Architectural Features（exterior or interior ornaments）．This building is obscured by another building and			
architectural features were not easily identifiable from the right－of－way			
Ancillary Features／Outbuildings（record outbuildings，major landscape features；use continuation sheet if needed．）There are two other Masonry			
Vernacular buildings on the same parcel．Buildings are set back．There is a non－historic storage shed w of			
this building．			

DHR USE ONLY

OFFICIAL EVALUATION
DHR USE ONLY
NR List Date
\square Owner Objection
SHPO－Appears to meet criteria for NR listing：\square yes \square no \square insufficient info
Date
Date

Init． nit．＿＿

DESCRIPTION (continued)

OPINION OF RESOURCE SIGNIFICANCE

Appears to meet the criteria for National Register listing individually?
Appears to meet the criteria for National Register listing as part of a district?
Explanation of Evaluation (required, whether significant or not; use separate sheet if neede
This building is a common 1960s Masonry
Vernacular church that does not possess sufficient historical significance to be considered individually eligible for the NRHP. The building is not in an area that could comprise a potential historic district. Area(s) of Historical Significance (see National Register Bulletin 15, p. 8 for categories: e.g. "architecture", "ethnic heritage", "community planning \& development", etc.) 1. 3.
4. 2. \qquad
\qquad 5.

Accessible Documentation Not Filed with the Site File - including field notes, analysis notes, photos, plans and other important documents
1)

Document description Mapping, photographs, survey notes

2) Document type \qquad File or accession \#'s
3) Document description Maintaining organization
\qquad
\qquad

RECORDER INFORMATION

Recorder Name

Sarah K. Guagnini

Affiliation ATKins Global
Recorder Contact Information 4030 Boy Scout Blvd. Tampa, FL, $33607 /+1$ (813) 282-7275 / Fax: +1 (813) 281-3634 (address / phone / fax / e-mail)

Required
Attachments
(1) USGS 7.5' MAP WITH STRUCTURE LOCATION PINPOINTED IN RED
(2) LARGE SCALE STREET, PLAT OR PARCEL MAP (available from most property appraiser we s sites)

3 PHOTO OF MAIN FACADE, ARCHIVAL B\&W PRINT OR DIGITAL IMAGE FILE
If submitting an image file, it must be included on disk or CD AND in hard copy format (plain paper is acceptable). Digital image must be at least 1600×1200 pixels, 24 -bit color, jpeg or tiff.

Photograph

Structure Location

USGS Topo

RESOURCE GROUP FORM

FLORIDA MASTER SITE FILE
Version $4.0 \quad 1 / 07$

Site \＃8
HI14564
Field Date＿1－29－2019
Form Date 2－14－2019
Recorder\＃ 4

NOTE：Use this form to document districts，landscapes，building complexes and linear resources as described in the box below． Cultural resources contributing to the Resource Group should also be documented individually at the Site File．Do not use this form for National Register multiple property submissions（MPSs）．National Register MPSs are treated as Site File manuscripts and are associated to the individual resources included under the MPS cover using the Site File manuscript number．

Check ONE box that best describes the Resource Group：

\square Historic district（NR category＂district＂）：buildings and NR structures only：NO archaeological sites
\square Archaeological district（NR category＂district＂）：archaeological sites only：NO buildings or NR structures
\square Mixed district（NR category＂district＂）：includes more than one type of cultural resource（example：archaeological sites and buildings）
区 Building complex（NR category usually＂building（s）＂）：multiple buildings in close spatial and functional association
\square Designed historic landscape（NR category usually＂district＂or＂site＂）：can include multiple resources（see National Register Bulletin \＃18，page 2 for more detailed definition and examples：e．g．parks，golf courses，campuses，resorts，etc．）Rural historic landscape（NR category usually＂district＂or＂site＂）：can include multiple resources and resources not formally designed（see National Register Bulletin \＃30，Guidelines for Evaluating and Documenting Rural Historic Landscapes for more detailed definition and examples：e．g．farmsteads，fish camps，lumber camps，traditional ceremonial sites，etc．）
\square Linear resource（NR category usually＂structure＂）：Linear resources are a special type of rural historic landscape and can include canals，railways，roads，etc．

Resource Group Name＿Christian Growth Fellowship Complex Multiple Listing［DHR only］ \qquad
Project Name I－275 fr N of Dr MLK Jr．Blvd to N of Bearrs Ave \qquad FMSF Survey \＃ \qquad
National Register Category（please check one）：区building（s）\square structure \square district \square site \square object
Linear Resource Type（if applicable）：\square canal $\quad \square$ railway $\quad \square$ road \square other（describe）： \qquad
\qquad Ownership：\square private－profit 区private－nonprofit \square private－individual \square private－nonspecific \square city \square county \square state \square federal \square Native American \square foreign \square unknown

DHR USE ONLY

OFFICIAL EVALUATION

DHR USE ONLY

HISTORY \＆DESCRIPTION

Construction Year： 1964 囚approximately \square year listed or earlier \square year listed or laterArchitect／Designer（last name first）：UnknownBuilder（last name first）：Unknown
Total number of individual resources included in this Resource Group：\＃of contributing

\qquad
\＃of non－contributing
Time period（s）of significance（choose a period from the list or type in date range（s），e．g．1895－1925）
1．Modern（Post 1950） 3.
2．Twentieth C American 4.
Narrative Description（National Register Bulletin 16 A pp．33－34；fit a summary into 3 lines or attach supplementary sheets if needed） See continuation sheet

RESEARCH METHODS（check all that apply）

囚FMSF record search（sites／surveys）
\square FL State Archives／photo collection区property appraiser／tax records区cultural resource survey
\square library research \square city directory \square newspaper files
\square historic photos区other methods（specify）Aerial photographs Bibliographic References（give FMSF Manuscript \＃if relevant）

OPINION OF RESOURCE SIGNIFICANCE

Potentially eligible individually for National Register of Historic Places？
\square yes 区no
\square insufficient information
Potentially eligible as contributor to a National Register district？\square yes 区no \square insufficient information

Explanation of Evaluation（required，see National Register Bulletin 16Ap．48－49．Attach longer statement，if needed，on separate sheet．）See cont inuation sheet

Area（s）of Historical Significance（see National Register Bulletin 15，p． 8 for categories：e．g．＂architecture＂，＂ethnic heritage＂，＂community planning \＆development＂，etc．）
1.
2.
3.
\square
5.
6.

DOCUMENTATION

Accessible Documentation Not Filed with the Site File－including field notes，analysis notes，photos，plans and other important documents
1） Document type All materials at one location Maintaining organization ATKINS Global
Document description Mapping，photographs，survey notes File or accession \＃＇s
 Maintaining organization
Document description \qquad File or accession \＃＇s

RECORDER INFORMATION

Recorder Name Sarah K．Guagnini

Recorder Contact Information 4030 Boy Scout Blvd．Tampa，FL，33607／＋1（813）282－7275／Fax：＋1（813）281－3634 （address／phone／fax／e－mail）
$\square b u i l d i n g$ permits
\square occupant／owner interview
\square neighbor interview
\square interior inspection
\square Sanborn maps
\square plat maps
\square Public Lands Survey（DEP）
\square HABS／HAER record search

	1 PHOTOCOPY OF USGS 7．5＇MAP WITH DISTRICT BOUNDARY CLEARLY MARKED
Required	2 LARGE SCALE STREET，PLAT OR PARCEL MAP WITH RESOURCES MAPPED \＆LABELED
Attachments	3 TABULATION OF ALL INCLUDED RESOURCES（name，FMSF \＃，contributing？Y／N，resource
category，street address or township－range－section if no address）	
	4 PHOTOS OF GENERAL STREETSCAPE OR VIEWS（Optional：aerial photos，views of typical resources）
Photos may be archival B\＆W prints OR digital image files．If submitting digital image files，they must be	
included on disk or CD AND in hard copy format（plain paper is acceptable）．Digital images must be at least	
	1600×1200 pixels， 24 －bit color，jpeg or tiff．

The Christian Growth Fellowship Complex Resource Group (8HI14564) includes the entire parcel that is located at 149 April Lane in Hillsborough County, Florida. This parcel is situated at the south side of April Lane between I-275 (SR 93) at the east and N Florida Avenue at the west. The resource group is comprised of three individual church buildings constructed ca. 1964 that are also recorded individually: Building A (8HI14561), Building B (8HI14562), and Building C (8HI14563). All three buildings are simple Masonry Vernacular structures and Building A appears to be the sanctuary. The structures are set far back on the parcel; the closest building, Building A, is approximately 225 feet from the edge of April Lane. The complex is accessed by a gravel driveway that is set between wood ballards. There is a pond surrounded by trees to the south of the three buildings.

As part of the current survey, the Christian Growth Fellowship Complex Resource Group is considered ineligible for listing in the National Register of Historic Places (NRHP). According to National Register Bulletin 15 under Criteria Consideration A, a religious property deriving primary significance from architectural or artistic distinction or historical importance may be eligible for listing in the NRHP (National Park Service 1997:26). The current buildings associated with the grouping are typical 1960s Masonry Vernacular buildings that would not meet Criteria Consideration A for listing. In addition, the church is not associated with an important historical event.

Photograph

Resource Location

USGS Topo

Date: 2/18/2019

APPENDIX C: SURVEY LOG

Identification and Bibliographic Information

Report Authors (as on title page, last names first)

1. Spain Schwarz, Rebecca
2. Keel, Frank
3. Guagnini, Sarah K.
4. Gaubatz, Rin

Publication Date (year) 2019 Total Number of Pages in Report (count text, figures, tables, not site forms) \qquad 18
Publication Information (Give series, number in series, publisher and city. For article or chapter, cite page numbers. Use the style of American Antiquity.)
Atkins, 4030 Boy Scout Boulevard, Suite 700, Tampa FL 33607

Supervisors of Fieldwork (even if same as author) Names \quad Rebecca Spain Schwarz
Affiliation of Fieldworkers: Organization ATKINS Global

Key Words/Phrases (Don't use county name, or common words like archaeology, structure, survey, architecture, etc.)

1. April Lane
2. SMF
3.
4.
5. Sinclair Hills Road
6. \qquad 6. \qquad 8.

Survey Sponsors (corporation, government unit, organization or person directly funding fieldwork)

$$
\text { Name FDOT District } 7 \quad \text { Organization Florida Dept of Transportation - District } 7
$$

Address/Phone/E-mail 11201 North McKinley Drive, Tampa, Florida 33612
Recorder of Log Sheet Rebecca Spain Schwarz Date Log Sheet Completed 2-15-2019
Is this survey or project a continuation of a previous project? \square No \boxtimes Yes: Previous survey \#s (FMSF only) 22589

Mapping

Counties (List each one in which field survey was done; attach additional sheet if necessary)

1. Hillsborough
2.
3.

\qquad
2. \qquad 4. \qquad 6. \qquad
USGS 1:24,000 Map Names/Year of Latest Revision (attach additional sheet if necessary)

Description of Survey Area

Dates for Fieldwork: Start 1-29-2019 End 1-29-2019 Number of Distinct Tracts or Areas Surveyed \qquad If Corridor (fill in one for each) Width: _____ meters ___ feet

Total Area Surveyed (fill in one) \qquad hectares 3.4 acres Length: \qquad kilometers \qquad miles

Research and Field Methods

Preliminary Methods（check as many as apply to the project as a whole）

\square Florida Archives（Gray Building）	\square library research－local public	区local property or tax records	区other historic maps
\square Florida Photo Archives（Gray Building）	\square library－special collection－nonlocal	\square newspaper files	区 soils maps or data
QSite File property search	\square Public Lands Survey（maps at DEP）	区literature search	\square windshield survey
区Site File survey search	\square local informant（s）	\square Sanborn Insurance maps	区aerial photography
\square other（describe）：			

Archaeological Methods（check as many as apply to the project as a whole）
\square Check here if NO archaeological methods were used．
\square surface collection，controlled
\square shovel test－other screen size
\square water screen
区 shovel test－1／4＂screen
\square shovel test $-1 / 8^{\prime \prime}$ screen
\square shovel test $1 / 16$＂screen
\square shovel test－unscreened
\square other（describe）：
Historical／Architectural Methods（check as many as apply to the project as a whole）
\square Check here if NO historical／architectural methods were used．
\square building permits \square demolition permits
\square commercial permits
\square interior documentation
\square demolition permits
区local property records
\square neighbor interview \square occupant interview \square occupation permits
\square subdivision maps
\square tax records
\square unknown

囚other（describe）：Aerial photographs；Google Earth

Survey Results（cultural resources recorded）

Site Significance Evaluated？凹Yes \square No
Count of Previously Recorded Sites \qquad Count of Newly Recorded Sites \qquad
Previously Recorded Site \＃＇s with Site File Update Forms（List site \＃＇s without＂ 8 ＂．Attach additional pages if necessary．）

Newly Recorded Site \＃＇s（Are all originals and not updates？List site \＃＇s without＂8＂．Attach additional pages if necessary．）Hi14557－HI14564

Site Forms Used：\square Site File Paper Form \boxtimes Site File Electronic Recording Form

＊＊＊REOUIRED：ATTACH PLOT OF SURVEY AREA ON PHOTOCOPY OF USGS 1：24，000 MAP（S）＊＊＊

SHPO USE ONLY

SHPO USE ONLY

SHPO USE ONLY
Origin of Report：
$\square 872 \square$ CARL \square UW $\square 1$ A32 \＃ \square Grant Project \＃\square Compliance Review：CRAT \＃

| Type of Document： | \square Archaeological Survey $\quad \square$ Historical／Architectural Survey | \square Marine Survey | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | \square Cell Tower CRAS | \square Monitoring Report | |
| | \square Overview $\quad \square$ Excavation Report $\quad \square$ Multi－Site Excavation Report | \square Structure Detailed Report | \square Library，Hist．or Archival Doc |

Document Destination：
Plotability：

Appendix I:

 Right of Way Cost Estimates

[^0]: Disclaimer: The District ERP pre-application meeting process is a service made available to the public to assist interested parties in preparing for submittal of a permit application. Information shared at pre-application meetings is superseded by the actual permit application submittal. District permit decisions are based upon information submitted during the application process and Rules in effect at the time the application is complete.

[^1]: Note: Migitation provided in FPC 14

[^2]: Medium - After a review of conceptual or design plans and findings from a contamination screening evaluation or sampling and testing results, a potential contamination impact to the project has been identified. If there is insufficient information (such as regulatory records or site historical documents) to make a determination as to the potential for contamination impact, and there is reasonable suspicion that contamination may exist, the property should be rated at least as a "Medium". Properties used historically as gasoline stations and which have not been evaluated or assessed by regulatory agencies, sites with abandoned in place underground petroleum storage tanks or currently operating gasoline stations should receive this rating.

[^3]: Ancillary Features / Outbuildings (record outbuildings, major landscape features; use continuation sheet if needed.) Second Masonry Vernacular
 building to the south of the current one that is on same parcel (131 April Lane Building 2).

[^4]: Ancillary Features／Outbuildings（record outbuildings，major landscape features；use continuation sheet if needed．）Second Masonry Vernacular
 building to the north of the current one that is on same parcel（131 April Lane Building 1）．

[^5]: Ancillary Features / Outbuildings (record outbuildings, major landscape features; use continuation sheet if needed.) Detached double-wide carport with concrete posts \& wood frame shed roof SE of house; pool at N ; non-historic metal shed at SE corner of the property

[^6]: Ancillary Features / Outbuildings (record outbuildings, major landscape features, use continuation sheet if needed.) Non-historic wood frame storage building with a gable roof to the west of the main residence; metal fence at S; vinyl fence at $E, N, \& W$; pool at N

[^7]: Ancillary Features / Outbuildings (record outbuildings, major landscape features; use continuation sheet if needed.) There are two other Masonry Vernacular buildings on the same parcel. Buildings are set back. There is a covered walkway that connects Building A and B

[^8]: Ancillary Features／Outbuildings（record outbuildings，major landscape features；use continuation sheet if needed．）There are two other Masonry
 Vernacular buildings on the same parcel．Buildings are set back．There is a covered walkway that connects Building A and B

