TRAFFIC
 TECHNICAL MEMORANDUM

I-75 (SR 93) PD\&E Study

From North of SR 52 to South of CR 476B
(Pasco, Hernando, and Sumter Counties)
FAP No.: 0751-1201
WPI No.: 411014-1
J une 2007

Florida Department of Transportation District Seven

TRAFFIC TECHNICAL MEMORANDUM

I-75 (SR 93) Project Development and Environment (PD\&E) Study

I-75 from North of SR 52 to South of CR 476B
(Pasco, Hernando, and Sumter Counties)

FAP No.:	$0751-120 I$
WPI No.:	$\mathbf{4 1 1 0 1 4 - 1}$

This proposed action consists of capacity and safety improvements to I-75 (SR 93), a four-lane divided limited access freeway, from North of SR 52
(Pasco County) to South of CR 476B (Sumter County)

Prepared for:
FLORIDA DEPARTMENT OF TRANSPORTATION
District Seven

Prepared by:
H.W. LOCHNER, INC.

June 2007

TABLE OF CONTENTS
1 INTRODUCTION 1
1.1 Purpose 1
1.2 Description of Project 3
1.3 Methodology 4
2 EXISTING CONDITIONS 6
2.1 Roadway and Intersection Characteristics 6
2.2 Collection of Traffic Data 7
2.3 Traffic Parameters 10
2.4 Existing Year (2005) Intersection Traffic Volumes 12
2.5 Existing Year (2005) Freeway Segment and Ramp Merge / Diverge LOS 13
2.6 Existing Year (2005) Intersection LOS Analysis Summary 13
2.7 Safety Considerations 20
3 FUTURE CONDITIONS 26
3.1 Planned Improvements 26
3.2 Interim Year and Design Year Traffic Projections 27
3.3 Design Year (2030) No-Build Intersection LOS Analysis 31
3.4 Design Year (2030) No-Build Freeway Segment LOS 35
3.5 Design Year (2030) No-Build Ramp Merge/Diverge LOS 35
3.6 Build Freeway Segment and Ramp Merge / Diverge LOS 37
3.7 Build Intersections LOS Analysis 48
3.8 Determination of Storage Lengths 69
4 SUMMARY AND CONCLUSIONS 71

LIST OF TABLES

Table 1 Comparison of Site Specific Data with State and National Data 11
Table 2 Traffic Characteristics for the I-75 PD\&E Study Area 11
Table 3 Crash History Overview - I-75 21
Table 4 Crash History - Cross Roads 23
Table 5 Crash Types - I-75 24
Table 6 Crash Types - Cross Roads 25
Table 7 Level of Service Results for Ramp Termini 68
Table 8 Recommended Alternative (2030) Storage Lengths) 70

LIST OF FIGURES

Figure 1 Location Map 2
Figure 2 Traffic Count Locations 8
Figure 3 Annual Average Daily Traffic (AADT) 14
Figure 4 Existing Year (2005) AADT \& Peak Hour DDHV 15
Figure 5 Existing Year (2005) Intersection Peak Hour DHV 16
Figure 6 Existing Year (2005) Lane Configuration 17
Figure 7 Existing Year (2005) Freeway Segment / Ramp LOS 18
Figure 8 Existing Year (2005) Intersection Peak Hour LOS 19
Figure 9 Opening Year (2010) AADT \& Peak Hour DDHV 28
Figure 10 Interim Year (2010) AADT \& Peak Hour DDHV 29
Figure 11 Design Year (2030) AADT \& Peak Hour DDHV 30
Figure 12 No-Build Design Year (2030) Intersection Peak Hour DDHV 32
Figure 13 Design Year (2030) No-Build Lanes... 33
Figure 14 Design Year (2030) No-Build Intersection Peak Hour LOS 34
Figure 15 Design Year (2030) No-Build Freeway / Ramp Peak Hour LOS 36
Figure 16a Opening Year (2010) Build Freeway LOS 39
Figure 16b Interim Year (2020) Build Freeway LOS 40
Figure 16c Design Year (2030) Build Freeway LOS 41
Figure 17a 2010 Build LOS CR 41 Ramp Junctions 42
Figure 17b 2020 Build LOS CR 41 Ramp Junctions 43
Figure 17c 2030 Build LOS CR 41 Ramp Junctions 44
Figure 18a 2010 Build LOS SR 50 Ramp Junctions 45
Figure 18b 2020 Build LOS SR 50 Ramp Junctions 46
Figure 18c 2030 Build LOS SR 50 Ramp Junctions 47
Figure 19a 2010 Volumes CR 41 Intersection 49
Figure 19b 2020 Volumes CR 41 Intersection 50
Figure 19c 2030 Volumes CR 41 Intersection 51
Figure 20 Build Lane Configurations CR 41 Intersection 52
Figure 21 Build LOS CR 41 Intersection 53
Figure 22a-1 2010 Volumes SR 50 Intersection 58
Figure 22a-2 2010 Volumes SR 50 Intersection 59
Figure 22b-1 2020 Volumes SR 50 Intersection 60
Figure 22b-2 2020 Volumes SR 50 Intersection 61
Figure 22c-1 2030 Volumes SR 50 Intersection 62
Figure 22c-2 2030 Volumes SR 50 Intersection 63
Figure 23a Build Lanes SR 50 Intersection 64
Figure 23b Build Lanes SR 50 Intersection 65
Figure 24a Build LOS SR 50 Intersection 66
Figure 24b Build LOS SR 50 Intersection 67
Figure 25 Recommended Build Lanes 73
Figure 26 Design Year (2030) Recommended Build LOS 74

LIST OF APPENDICES

APPENDIX A: Mainline AADT Traffic Count Summaries
APPENDIX B: Cross Street AADT Traffic Count Summaries and Cross Street Intersection Turning Movement Counts

APPENDIX C: Traffic Related Correspondence
APPENDIX D: Existing Year (2005) Intersection LOS Analysis
APPENDIX E: Existing Year (2005) Freeway Segment and Ramp LOS
APPENDIX F: Opening Year (2010) No-Build Intersection LOS
APPENDIX G: Interim Year (2020) No-Build Intersection LOS
APPENIDIX H: Design Year (2030) No-Build Intersection LOS
APPENDIX I: Opening year (2010) No-Build Freeway Segment and Ramp LOS
APPENDIX J: Interim Year (2020) No-Build Freeway Segment and Ramp LOS
APPENIX K: Design Year (2030) No-Build Freeway Segment and Ramp LOS
APPENDIX L: Opening Year (2010) Build Intersection LOS
APPENDIX M: Interim Year (2020) Build Intersection LOS
APPENDIX N: Design Year (2030) Build Intersection LOS
APPENDIX O: Opening Year (2010) Build Freeway Segment and Ramp LOS
APPENDIX P: Interim Year (2020) Build Freeway Segment and Ramp LOS
APPENDIX Q: Design Year (2030) Build Freeway Segment and Ramp LOS
APPENDIX R: Air Quality and Noise Traffic

TRAFFIC TECHNICAL MEMORANDUM
 I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

1 INTRODUCTION

The Florida Department of Transportation (FDOT) has conducted a Project Development and Environment (PD\&E) study to evaluate capacity improvements along a portion of Interstate 75 (I-75) -State Road (SR) 93. The limits of the study extend from just north of SR 52 in Pasco County to just south of County Road (CR) 476B in Sumter County, Florida, a distance of approximately 20.8 miles. The design year for the improvements is Year 2030. Figure 1 illustrates the location and limits of this project.

1.1 Purpose

The objective of this PD\&E study is to document the engineering and environmental analyses that were performed for this project so that the FDOT and the Federal Highway Administration (FHWA) can reach a decision on the type, location, and conceptual design of the necessary improvements of I-75 to accommodate future traffic demand in a safe and efficient manner. This study documents the need for the improvements as well as the procedures utilized to develop and evaluate various improvement alternatives. Information related to the engineering and environmental characteristics, which are essential for the alternatives analysis, was collected. Design criteria were established and preliminary alternatives were developed. The comparison of alternatives was based on a variety of parameters utilizing a matrix format. This process identified the alternative that would have minimal impacts, while providing the necessary improvements.

The PD\&E study satisfies all applicable requirements, including the National Environmental Policy Act (NEPA), in order for this project to qualify for federal-aid funding of subsequent development phases (design, right-of-way acquisition, and construction). This Traffic Technical Memorandum (TTM) is one in a series of reports prepared as part of this PD\&E Study. This report documents the existing (2005), opening (2010), interim (2020) and design year (2030) traffic conditions; the development of traffic parameters for the estimation of annual average daily traffic (AADT) and design hour volumes (DHV); and capacity and Level of Service (LOS) analyses of the design alternatives for this project.

TRAFFIC TECHNICAL MEMORANDUM
 I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

1.2 Description of Project

I-75 is an interstate, limited access freeway. It is included in the State Highway System (SHS), designated as SR 93, the Florida Intrastate Highway System (FIHS), the Strategic Intermodal System (SIS), and the Federal Aid Interstate System. I-75 also serves as a major evacuation route throughout the state. Within the study limits, I-75 is a four-lane, divided, limited access, rural highway that generally occupies 300 feet of right of way.

The study area includes two interchanges and two rest areas (one in each direction). Specifically, a partial cloverleaf interchange is currently provided at Blanton Road (CR 41) approximately 6.3 miles north of SR 52 in Pasco County and a diamond interchange is present at Cortez Road (SR 50/US 98), approximately 9.3 miles north of CR 41 in Hernando County. The rest areas are located approximately 4.9 miles north of SR 50, in Sumter County.

From north of SR 50 to the northern terminus of the project, the Withlacoochee State Forest abuts the entire western border of I-75 and most of its eastern border. At the Hernando/Sumter County line, approximately 1.5 miles from the northern project terminus, I-75 crosses the Withlacoochee River. In addition, a number of potential and approved Developments of Regional Impact and smaller developments are located along both sides of the study area. Most of them are located in Hernando County, south of SR 50.

The study area for this project extends from just north of SR 52 in Pasco County to just south of CR 476B in Sumter County, Florida; a distance of approximately 20.8 miles. The study area encompasses the following Sections, Townships, and Ranges:

- Pasco County:
- Sections 5 and 8 of Township 25 S, Range 20 E
- Sections 2, 3, 9, 10, 16, 17, 20, 21, 28, 29, 32, 33 of Township 24 S, Range 20 E
- Hernando County:
- Sections 13, 23, 24, 26, 35 of Township 23 S, Range 20 E
- Sections 5, 6, 7, 18 of Township 23 S, Range 21 E
- Sections 16, 17, 19, 20, 29, 30, 31, 32 of Township 22 S, Range 21 E
- Sumter County:
- Sections 4, 9, 16 of Township 22 S, Range 21 E.

To facilitate development and evaluation of the improvement alternatives, the project was divided into three segments:

- Segment 1: from north of SR 52 (southern project terminus) to the Pasco/ Hernando county line; 7.8 miles
- Segment 2: from the Pasco/Hernando county line to SR 50; 7.0 miles
- Segment 3: from SR 50 to just south of CR 476B (northern project terminus); 6.0 miles.

1.3 Methodology

This TTM was prepared consistent with the appropriate transportation planning procedures and guidelines. The Pasco County Metropolitan Planning Organization (MPO) and Hernando County MPO both have included the widening of I-75 to a six-lane, divided facility in the Cost Affordable Plans of their Long Range Transportation Plans (LRTP). This improvement would increase overall system capacity, improve safety and reduce the growing congestion problem on I-75. I-75 in this area is increasingly being used as a commuter route to Tampa. In addition, the FDOT has designated I-75 within the limits of this project as a "transitioning" (from rural to urban) area. Therefore, according to FIHS standards, all of its components (mainline, ramps, merge/diverge areas) should provide adequate capacity to operate at level of service (LOS) "C" or better.

The development of this TTM is consistent with the procedures of the FDOT Project Traffic Forecasting Handbook. The Tampa Bay Regional Planning Model, Version 5.1 was used to develop design year (2030) traffic volumes (20 years post assumed opening year of 2010). For the purposes of this study, I-75 was assumed to be four-lanes divided in the No-Build alternative. The traffic analysis conducted for this TTM included:

- collecting traffic volume information, previous traffic studies, roadway characteristics and other necessary data,
- conducting existing traffic analysis including freeway segment, ramp merge / diverge analysis, and intersection capacity analysis,
- development of design and interim year traffic (furnished by FDOT),
- conducting design year traffic analysis, and
- evaluating build and no-build conditions.

A series of improvement alternatives are provided in this report to correct locations where future conditions will not meet the LOS standard of "C". Improvements are evaluated in this report for their effectiveness in handling traffic demands and should not be considered final recommendations from the PD\&E study. Recommended improvements from the overall PD\&E study will need take into consideration other factors such as cost, constructability, right of way impacts, and future plans.

2 EXISTING CONDITIONS

2.1 Roadway and Intersection Characteristics

FDOT has designated I-75 as SR 93 - Section 14140000 in Pasco County, SR 93 - Section 08 150000 in Hernando County, and SR 93 - Section 18130000 in Sumter County. I-75 is part of the Florida Strategic Intermodal System (SIS), which is FDOT's network of significant transportation facilities providing statewide movement of people and goods and providing links to major intermodal facilities, such as ports and terminals. The SIS's minimum standards for LOS and design are derived from the Florida Intrastate Highway System's (FIHS) parameters. Since the study area is in a transitioning (from rural to urban) area type, the LOS standard for I75 in the study area is LOS C.

Within the study limits, I-75 is a four-lane, divided, limited access, interstate highway in a primarily rural setting. The roadway has 12 -foot lanes, 10 -foot outside paved shoulders, 4 -foot inside paved shoulders, an open-drainage section and generally a standard 64-foot wide median. The median width is wider than standard through certain curve sections along the study area. The speed limit is posted at 70 miles per hour. Rest areas are located on both sides of the mainline in Sumter County. The exit from I-75 and entrance onto I-75 at the northbound rest area is approximately 1,700 feet and 3,200 feet north of the Withlacoochee River Bridge, respectively. The exit from I-75 and entrance onto I-75 at the southbound rest area is approximately 3,700 feet and 2,500 feet north of the Withlacoochee River Bridge, respectively.

I-75 within the study area has two interchanges at CR 41 (Blanton Road - Exit 293) in Pasco County and at SR 50 (Cortez Boulevard - Exit 301) in Hernando County. The CR 41 interchange is a two quadrant cloverleaf interchange with short off-ramp lengths that cause low speeds on the off-ramps and could affect traffic operations on the mainline during heavy traffic periods. SR 50 is a standard diamond interchange with off-ramps in the southeast quadrants and northwest quadrants and on-ramps in the southwest and northeast quadrants of the interchange. CR 41 is a two-lane undivided arterial that connects I-75 to Dade City and Spring Hill. SR 50 is a four-lane divided arterial that connects I-75 to Brooksville and Ridge Manor. The LOS

TRAFFIC TECHNICAL MEMORANDUM
 I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

standard for the ramp terminals at CR 41 is LOS D. The LOS standard for the ramp terminals at SR 50 the standard is LOS C. The ramp terminals at the CR 41 interchange currently are unsignalized, with one-way stop control on both off-ramp terminals. The ramp terminals at SR 50 are signalized.

2.2 Collection of Traffic Data

Field traffic counts collected for this project include 72-hour machine counts and 6-hour (6:00 a.m. to 9:00 a.m. and 4:00 p.m. to 7:00 p.m.) manual turning movement counts, which were conducted generally from Monday afternoon to Friday morning during the week of March 14, 2005. Machine counts included the count of trucks and intersection turning movement counts included the count of pedestrians and bicycles. The 72 -hour machine counts were conducted at nine (9) locations and the turning movement counts were collected at the four (4) ramp terminal locations, as shown on Figure 2, and listed below. Summaries of the mainline count data and ramp terminal/cross street turning movement counts are provided in Appendices A and B , respectively.

- Three-day (72-hour) mainline / side street machine volume count locations:
(1) I-75 between SR 52 and CR 41 interchanges
(2) CR 41 (Blanton Road) west of I-75 Interchange
(3) CR 41 (Blanton Road) east of I-75 Interchange
(4) I-75 between southbound off-ramp and northbound off-ramp at CR 41 Interchange
(5) I-75 between CR 41 and SR 50
(6) SR 50 (Cortez Boulevard) west of I-75 Interchange and immediately east of LaRose Road
(7) SR 50 (Cortez Boulevard) east of I-75 Interchange and immediately west of Windermere Road
(8) I-75 between southbound off-ramp and northbound off-ramp at SR 50 Interchange
(9) I-75 between SR 50 and Withlacoochee River Bridge (Hernando - Sumter County Line)

Traffic Technical Memorandum
North of SR 52 to South of CR 476B
(Pasco, Hernando, and Sumter Counties)
WPI No. 411014-1 FAP No. 0751-120I

Traffic Count Locations

TRAFFIC TECHNICAL MEMORANDUM
 I - 75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

- Intersection turning movement count locations:
(10) CR 41 (Blanton Road) at I-75 southbound on-ramp and off-ramp
(11) CR 41 (Blanton Road) at I-75 northbound on-ramp and off-ramp
(12) SR 50 (Cortez Boulevard) at I-75 southbound on-ramp and off-ramp
(13) SR 50 (Cortez Boulevard) at I-75 northbound on-ramp and off-ramp

A review of the 72-hour machine traffic counts indicates that they are incomplete. According to the count consultant, the count tubes became detached from the roadway surface numerous times during the counting period. This was caused by rain on the roadway that loosened the tape and nails attaching the tube to the roadway surface. This situation was discussed with FDOT project management to determine if new counts should be conducted. It was concluded that the data was sufficient for the purposes of this project with some manual adjustments and FDOT gave approval to use this data.

Additional traffic data collected for use in this study includes:

- Year 2005 and 2025 Tampa Bay Regional Planning Model Data
- Year 2003 FDOT - Florida Traffic Information CD (FTI CD)
- Year 2005 FDOT - Florida Traffic Information CD (FTI CD)
- Year 2005 FDOT - Florida Traffic Information (FTI DVD)
- Design year (2030) traffic projections from the Traffic Technical Memorandum conducted by District 5 for a segment of I-75 north of the study corridor.

Based on a review of the collected traffic counts, traffic patterns on I-75 in the study area are representative of rural conditions that do not follow typical commuter travel patterns. In the northbound direction, the peak hour, peak direction for traffic is generally between 10:00 a.m. and 1:00 p.m. in the northbound direction. A second peak hour occurs in the northbound direction around 3:30 p.m. to 4:30 p.m., which is generally 10% less than the prior peak hour volume. Southbound traffic is less than northbound traffic and its peak hour lies between 8:30 a.m. and 11:30 a.m. Since traffic was collected in March 2005, these traffic numbers may be skewed, as this is a heavy period for seasonal residents to drive north to their summer residences.

TRAFFIC TECHNICAL MEMORANDUM
 I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

Peak hour traffic on CR 41 and SR 50 follow more typical commuting times with the morning peak direction occurring towards the I-75 from 6:30 a.m. to 7:30 a.m. and the afternoon peak direction occurring away from the I-75 from 3:30 p.m. to 4:30 p.m.

2.3 Traffic Parameters

The existing year (2005) AADT for mainline and ramp locations was estimated by multiplying the collected machine counts by the appropriate axle factor (AF) and seasonal factor (SF) provided by the FTI CD. AADTs derived were consistent with the FDOT provided volumes shown in Appendix C. Design Hour Volumes (DHV) for mainline and ramp locations were determined by applying the appropriate "K" and "D" factor to each AADT.

The design year (2030) AADT values were provided by FDOT (See Appendix C). FDOT developed the project traffic through the use of the Tampa Bay Regional Planning Model (TBRPM) version 5.1 model traffic (smoothed) and the I-75 District 5 PD\&E Study. Mainline directional design hour volumes (DDHV) were determined by multiplying the appropriate K_{30} and D_{30} factors to the AADT.

FDOT District 7 Planning staff provided K_{30} and D_{30} factors for mainline I-75. These factors were: K_{30} of 9.40 and D_{30} of 56.35 . The K_{30} factor provided by the FDOT is at or near the statewide observed minimum values for both rural and urban freeways, as seen in Table 1. This value is extremely low compared to the national K-factor range for rural freeways, yet within the national K-factor range for urban freeways, which implies that this area is transitioning from rural to urban. The provided D_{30} factor falls within both the statewide and national D -factor ranges for both rural and urban areas, as seen in Table 1.

A review of historical data available over the last three years was performed, as shown in Table 2. It was found that the FDOT provided factors are consistent with historical data, as the K_{30} factor ranges from 8.76 to 9.52 and the D_{30} factor ranges from 53.67 to 57.42 over the three year period. Therefore, the traffic factors (K_{30} of 9.40 and D_{30} of 56.35) used for mainline I-75 were considered reasonable.

Table 1
Comparison of Site Specific Data with State and National Data

Facility Type	K-Factor Ranges	FDOT Site Data*		State Data**		National Data**	
		K_{30}	D_{30}	K_{30}	D_{30}	K_{30}	D_{30}
Rural Freeway	Observed Minimum	8.76	52.76	9.60	52.30	15.00	54.00
	Observed Maximum	8.76	52.76	14.60	57.30	20.00	62.00
Urban Freeway	Observed Minimum	-	-	9.40	50.40	7.00	52.00
	Observed Maximum	-	-	10.00	61.20	10.00	57.00

* Source: Florida Traffic Information CD, 2003
** Source: FDOT Project Traffic Forecasting Handbook, 2002

Table 2
Traffic Characteristics for the I-75 PD\&E Study Area

Count Station	Location	Year	FTICD AADT	K_{30}	D_{30}	T_{24}
0093	I-75 (SR 93) - North of SR 52	2001	43,500	8.94	55.00	27.69
		2002	39,500	8.99	56.15	25.36
		2003	41,500	8.76	53.67	25.36
0094	I-75 (SR 93) - North of CR 41	2001	35,500	8.94	55.00	22.03
		2002	33,500	8.99	56.15	33.01
		2003	35,500	8.76	53.67	33.01
0037	I-75 (SR 93) - North of SR 50	2001	37,000	9.52	57.42	32.20
		2002	38,500	8.99	56.15	26.95
		2003	42,000	8.76	53.67	26.95
0046	SR $50-$ West of I-75	2001	16,200	9.62	56.39	19.94
		2002	18,800	9.58	56.69	15.49
		2003	18,000	9.59	56.45	15.49
0018	SR 50 - East of I-75	2001	16,200	9.62	56.39	21.29
		2002	18,100	9.58	56.69	18.96
		2003	15,600	9.59	56.45	18.96

Source: Florida Traffic Information CD; 2001, 2002, and 2003 Versions

At the beginning of this study (April 2005), FDOT provided traffic factors K_{30} of 8.79 and D_{30} of 53.67 for mainline I-75. These factors were later revised in June 2005 based on internal FDOT review to K_{30} of 10.75 and D_{30} of 56.35 . Although the K_{30} factor lies closer to the range recommended in the FDOT Project Traffic Forecasting Handbook (See Table 1) it is much higher than what has been observed in historical counts performed by FDOT (See Table 2). Lochner recommended that a K_{30} factor of 9.40 should be used since this lies on the lower end of FDOT recommendations for urban freeways and is consistent with historical observations on I75. Also, the K_{30} factor of 9.40 compares more favorably to the factors used in similar type studies on I-75 conducted by FDOT north and south of this study area and is more similar to the K_{30} derived from the traffic counts conducted for this study. FDOT agreed to use this factor in June 2006. All correspondence regarding this issue is included in Appendix C.

DHVs for the crossroads were developed based on the K and D factors on SR 50 provided on the FDOT Traffic CD (2005). These factors were $K_{30}=9.61$ and $D_{30}=54.5$. These factors are slightly different than mainline I-75 but are more representative of the nature of the crossroad traffic. Factors for CR 41 were not available; therefore, the factors for SR 50 were used as the patterns are believed to be similar on these two east-west facilities.

For this study, FDOT set the 24 -hour Truck (T24) factor for the mainline I-75 segments as 27.0%. The Design Hour T-factor for mainline I-75 was set to 13.5% (See Appendix C). This is consistent with Table 2 which shows that in 2003, the T24-factor ranged from 25.36 to 33.01 for the count stations covered in this study.

Figure 3 shows the AADT from the 2003 FTI CD and presents the AADT derived from the 2005 counts by application of the appropriate seasonal and axle factors.

2.4 Existing Year (2005) Intersection Traffic Volumes

Design hour turning movement volumes were determined by the initial use of the TURNS-5 software, which uses existing and design year AADTs, existing turning movement count data, and K_{30} and D_{30} factors to determine existing 2005 peak hour, turning movement volumes. The

TRAFFIC TECHNICAL MEMORANDUM
 I - 75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

initial TURNS-5 output was then adjusted to provide balanced flows. This information is illustrated in the following figures:

- Figure 4 shows the year 2005 intersection AADTs and directional design hour volumes.
- Figure 5 shows the year 2005 DHV turning movements.
- Figure 6 shows the year 2005 lane configuration.

2.5 Existing Year (2005) Freeway Segment and Ramp Merge / Diverge LOS

The existing year (2005) freeway segment and ramp merge / diverge LOS analysis for I-75 was conducted using the estimated existing year (2005) design hour volumes, previously shown on Figure 4. The LOS analysis was conducted using the Highway Capacity Software Version 5.2 (HCS Plus). This LOS analysis indicates that I-75 currently operates at LOS C northbound and LOS B southbound through the study area. The merge and diverge analysis indicates that the LOS for various merge and diverge sections of I-75 associated with the two interchanges within the study area varies from LOS C to LOS D, as shown on Figure 7. Since each interchange is spaced over five miles apart, there are no weaving sections within the study area, nor will there be in the design year.

2.6 Existing Year (2005) Intersection LOS Analysis Summary

According to the Pasco County Comprehensive Plan, the existing and future (2020) LOS standard for CR 41 is LOS D. The Hernando County Comprehensive Plan sets the LOS standard for SR 50 as LOS C. Since I-75 is an SIS facility and the study area is designated as a transitioning area, a standard of LOS C is required. (ref: Florida's Quality / Level of Service Handbook, LOS Standards, Table 6-1) The unsignalized intersections at the CR 41 interchange currently both operate at LOS B. The signalized intersections at SR 50 both operate at LOS B also, as shown on Figure 8. These intersections in the existing analysis meet the LOS standard.

North of SR 52 to South of CR 476B

TRAFFIC TECHNICAL MEMORANDUM I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

2.7 Safety Considerations

Crash data for I-75 and SR 50 was collected for the five most recent years (1999 to 2003) from the FDOT. For CR 41, crash data from the Pasco County Traffic Operations Division was collected. Crash data was collected for 500 feet west of the western ramp terminal and 500 feet east of the eastern ramp terminal, a total distance of approximately 3,100 feet. Data collected from these sources include number and type of crashes, crash locations, number of fatalities and injuries and estimates of property damage and economic losses. It should be noted that only crashes which involve injuries, fatalities, or major property damage are included in the FDOT crash database.

As indicated in Table 3, the crash records for I-75 indicate that over the five years studied, 219 crashes occurred in Pasco County (average of 5.21 per year per mile), 332 crashes occurred in Hernando County (5.83 per year per mile), and 57 crashes occurred in Sumter County (11.4 per year per mile). There were 214 injuries and 3 fatalities in Pasco County, 384 injuries and 12 fatalities in Hernando County, and 44 injuries and 1 fatality in Sumter County. The average crash rate (crashes per million VMT) was slightly higher over the five-year period in Sumter County (0.56) than in Pasco County (0.35) or in Hernando County (0.40). The average crash rates are higher than the statewide average crash rate of 0.31 for rural interstates.

Economic losses were determined for every study area segment that was analyzed for safety considerations. According to figures from the FDOT Safety Office - Data Processing and Maintenance Manuals, June 2003, Property Damage Only crashes have an economic loss of $\$ 2,000$ each, an average of $\$ 108,000$ per injury, and $\$ 2,600,000$ for each fatality. Therefore using the historical crash statistics from Table 3, total economic losses due to crashes occurring from 1999 to 2003 on the study area sections of I-75 in Pasco County was calculated to be \$31,092,000; in Hernando County \$65,726,000; and in Sumter County \$7,394,000.

TRAFFIC TECHNICAL MEMORANDUM I - 75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

Crash History:

Table 3 presents an overview of the crash history of the study segment of I-75.

Table 3
Crash History Overview - I-75

	1999	2000	2001	2002	2003	Total	Average
I-75 Pasco County							
Fatalities	0	0		1	1	3	0.6
Injuries	44	39	44	49	38	214	42.8
Property Damage Only	17	9	26	17	21	90	18
Total	43	31	53	47	45	219	43.8
AADT	40500	35500	43500	39500	41500	200500	40100
Distance	8.44	8.44	8.44	8.44	8.44	-	-
Crash Rate	0.34	0.28	0.40	0.39	0.35	1.76	0.35
I-75 Hernando County							
Fatalities	1	0	2	5	4	12	2.4
Injuries	113	70	63	65	73	384	76.8
Property Damage Only	34	17	21	32	23	127	25.4
Total	98	51	55	67	61	332	66.4
AADT	40500	35500	43500	39500	41500	200500	40100
Distance	11.48	11.48	11.48	11.48	11.48	-	-
Crash Rate	0.58	0.34	0.30	0.40	0.35	1.98	0.40
I-75 Sumter County							
Fatalities	0	0	0	0	1	1	0.2
Injuries	11	7	4	11	11	44	8.8
Property Damage Only	3	2	7	3	6	21	4.2
Total	9	8	11	12	17	57	11.4
AADT	35500	29500	37000	38500	42000	182500	36500
Distance	1.50	1.50	1.50	1.50	1.50	-	-
Crash Rate	0.46	0.50	0.54	0.57	0.74	2.81	0.56
Total Study Area							
Fatalities	1	0	3	6	6	16	3.2
Injuries	168	116	111	125	122	642	128.4
Property Damage Only	54	28	54	52	50	238	47.6
Total	150	90	119	126	123	608	121.6
AADT	38333	33500	41333	39167	41667	194500	38900
Distance	21.42	21.42	21.42	21.42	21.42	-	-
Crash Rate	0.49	0.34	0.37	0.41	0.38	1.99	0.40

Source: FDOT 1999-2003 FDOT District VII CAR (Crash Analysis Report) System

TRAFFIC TECHNICAL MEMORANDUM I- 75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

Table 4 provides similar crash information for the cross roads, CR 41 and SR 50. Over the five years studied, 110 crashes occurred along SR 50 in the vicinity of the I-75 interchange in Hernando County (from 500' west of the interchange to 500^{\prime} east of the interchange) and 5 crashes occurred along CR 41 in the vicinity of the I- 75 interchange in Pasco County. There were 148 injuries and no fatalities along this section of SR 50 and 4 injuries and no fatalities along this section of CR 41. The average crash rate on SR 50 in the immediate area of the interchange with I-75 was $3.74 / \mathrm{MEV}$ (Million Entering Vehicles) compared to a statewide average of 0.642 crashes/MEV for suburban four-lane, two-way divided roadways. For the CR 41 interchange, the crash rate was 0.74 crashes/MEV compared to a statewide average of 0.242 crashes/MEV for rural two-lane, two-way undivided roadways.

Two notes of caution are provided in presenting these crash rates. First, the length of the SR 50 segment analyzed is 0.28 miles. This length is greater than the typical 0.1 mile maximum length used for spot analysis (based on Million Entering Vehicles or MEV), yet analysis as a segment (Million Vehicle Miles Travel or MVMT), which typically is a mile or greater, would have yielded a disproportionately high rate due to the short length involved. Second, in some cases, crash data for CR 41 appeared to duplicate some crashes showing in the I-75 data. Reconciliation of this was beyond the scope of this study; however, the data presented is believed to be an accurate interpretation of the information available and appears reasonable. Total economic losses due to crashes occurring from 1999 to 2003 at the SR 50 interchange was $\$ 16,052,000$ and at the CR 41 interchange was $\$ 438,000$.

Table 4

Crash History - Cross Roads

	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	Total	Average			
$\underline{\text { SR 50 Hernando County }}$										
Fatalities	0	0	0	0	0	0	0			
Injuries	19	29	53	20	27	148	29.6			
Property Damage Only	5	3	5	14	7	34	6.8			
Total	13	17	31	28	21	110	22			
AADT	15,600	15,900	16,200	16,800	16,000	80,500	16,100			
Distance	0.28	0.28	0.28	0.28	0.28	-	-			
Crash Rate (per MEV)	2.28	2.93	5.24	4.57	3.60	-	3.74			
										$\underline{\text { CR 41 Pasco County }}$
Fatalities	0	0	0	0	0	0	0.0			
Injuries	0	0	0	0	4	4	0.8			
Property Damage Only	0	0	2	1	0	3	0.6			
Total	0	0	2	1	2	5	1.0			
AADT	3,600	3,650	3,700	3,750	3,800	18,500	3,700			
Distance	0.59	0.59	0.59	0.59	0.59	-	-			
Crash Rate (per MEV)	0.00	0.00	1.48	0.73	1.44	-	0.74			

Source: FDOT 1999-2003 FDOT District VII CAR (Crash Analysis Report) System and Pasco County Transportation Office

Crash Types:

Table 5 indicates the highest frequency crashes along I-75 in the study area are rear end, sideswipe, and overturned. The "Other" category represents 33 other less significant crash types. These crash statistics reflect that as I-75 becomes more congested, speed differential between drivers and driver inattention will become the greatest contributors to crashes. Also, many crashes are caused by moving vehicles colliding with stopped vehicles, which is due to traffic exceeding the roadway's capacity or other unplanned incidents that cause traffic to slow or stop. Capacity improvements along I-75 will likely help prevent at least some of these crashes.

Table 6 shows that rear end crashes are by far the most frequent crash type along SR 50 near the I-75 interchange followed by angle and left turn crashes. Angle crashes are the most frequent crash type along CR 41 in the study area. These types of crashes are common at rural intersections and closer inspection is required to determine exact causes.

TRAFFIC TECHNICAL MEMORANDUM I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

Table 5
Crash Types - I-75

Type (data code)	1999	2000	2001	2002	2003	Total	Percent	Average
Pasco County								
Rear End (1)	7	9	4	12	8	40	18.3\%	8
Head On (2)	0	1	1	2	2	6	2.7\%	1.2
Angle (3)	1	2	3	2	7	15	6.8\%	3
Left Turn (4)	1	1	0	0	0	2	0.9\%	0.4
Right Turn (5)	0	0	0	0	0	0	0.0\%	0
Sideswipe (6)	6	3	6	4	5	24	11.0\%	4.8
Hit Guardrail (18)	4	0	7	0	0	11	5.0\%	2.2
Overturned (31)	12	9	10	10	4	45	20.5\%	9
Other	12	6	22	17	19	76	34.7\%	15.2
Totals	43	31	53	47	45	219		43.8
Hernando County								
Rear End (1)	20	10	11	14	6	61	18.4\%	12.2
Head On (2)	0	0	0	1	0	1	0.3\%	0.2
Angle (3)	4	7	2	1	5	19	5.7\%	3.8
Left Turn (4)	0	0	0	0	0	0	0.0\%	0
Right Turn (5)	0	0	0	0	0	0	0.0\%	0
Sideswipe (6)	16	6	7	6	5	40	12.0\%	8
Hit Guardrail (18)	8	4	4	5	11	32	9.6\%	6.4
Overturned (31)	20	11	9	11	6	57	17.2\%	11.4
Other	30	13	22	29	28	122	36.7\%	24.4
Totals	98	51	55	67	61	332		66.4
Sumter County								
Rear End (1)	2	1	1	4	2	10	17.5\%	2.0
Head On (2)	0	0	0	0	0	0	0.0\%	0.0
Angle (3)	0	1	0	0	0	1	1.8\%	0.2
Left Turn (4)	0	0	0	0	0	0	0.0\%	0
Right Turn (5)	0	0	0	0	0	0	0.0\%	0
Sideswipe (6)	1	1	1	0	1	4	7.0\%	0.8
Hit Guardrail (18)	0	1	0	1	1	3	5.3\%	0.6
Overturned (31)	2	1	2	3	3	11	19.3\%	2.2
Other	4	3	7	4	10	28	49.1\%	5.6
Totals	9	8	11	12	17	57		11.4
Total 1-75 Study Area								
Rear End (1)	29	20	16	30	16	111	18.3\%	22.2
Head On (2)	0	1	1	3	2	7	1.2\%	1.4
Angle (3)	5	10	5	3	12	35	5.8\%	7
Left Turn (4)	1	1	0	0	0	2	0.3\%	0.4
Right Turn (5)	0	0	0	0	0	0	0.0\%	0
Sideswipe (6)	23	10	14	10	11	68	11.2\%	13.6
Hit Guardrail (18)	12	5	11	6	12	46	7.6\%	9.2
Overturned (31)	34	21	21	24	13	113	18.6\%	22.6
Other	46	22	51	50	57	226	37.2\%	45.2
Totals	150	90	119	126	123	608		121.6

Source: FDOT 1999-2003 FDOT District VII CAR (Crash Analysis Report) System

Table 6

Crash Types - Cross Roads

Type (data code)	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	Total	Average		
SR 50 - Hernando County									
Rear End (1)	5	6	15	9	11	46	9.2		
Head On (2)	0	0	0	1	0	1	0.2		
Angle (3)	3	5	5	3	3	19	3.8		
Left Turn (4)	2	4	5	5	3	19	3.8		
Right Turn (5)	0	1	0	0	0	1	0.2		
Sideswipe (6)	1	0	1	2	1	5	1.0		
Hit Guardr'I (18)	0	0	0	0	0	0	0		
Overturned (31)	0	0	0	0	0	0	0		
Other	2	1	5	8	3	19	3.8		
Total	13	17	31	28	21	110	22.0		
									$\underline{\text { CR 41-Pasco County }}$
Rear End (1)	0	0	1	0	0	1	0.2		
Head On (2)	0	0	0	0	1	1	0.2		
Angle (3)	0	0	0	1	1	2	0.4		
Left Turn (4)	0	0	0	0	0	0	0.0		
Right Turn (5)	0	0	0	0	0	0	0.0		
Sideswipe (6)	0	0	0	0	0	0	0.0		
Hit Guardr'I (18)	0	0	0	0	0	0	0.0		
Overturned (31)	0	0	0	0	0	0	0.0		
Other	0	0	1	0	0	0	0.2		
Total	0	0	2	1	2	5	1.0		

Source: FDOT 1999-2003 FDOT District VII CAR (Crash Analysis Report) System and Pasco County Transportation Office

TRAFFIC TECHNICAL MEMORANDUM I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

3 FUTURE CONDITIONS

The future year traffic conditions were developed and analyzed for the I-75 PD\&E study area. Using design year traffic projections provided by FDOT (see Appendix "C" for F. Bitar to M. Clasgens memo, 4/18/05), operational conditions for each alternative including the no-build alternative were analyzed. A summary of this information and analyses is presented below.

3.1 Planned Improvements

The current Cost Affordable Long Range Transportation Plan (LRTP), as developed by the Pasco County MPO, Hernando County MPO and the FDOT, was used as the future year base transportation network. This network included the various transportation improvements that could be implemented by the various jurisdictions and agencies over the next twenty years. These improvements are documented in the Long Range Transportation Plans (LRTP) produced by the Pasco County and Hernando County MPOs. The Hernando County LRTP includes widening SR 50 to six-lanes with frontage lanes from Lockhart Road to Kettering Road. This improvement was not considered in this study, however, because Hernando County did not have plans in place for frontage lanes on SR 50 between Kettering Road and Lockhart Road at the time of report preparation. There are no future improvements for CR 41 in the study area included in the Pasco County LRTP.

Despite both the Pasco and Hernando County Cost Affordable LRTPs listing I-75 as a 6-lane facility, the No-Build Analysis of this study assumed I-75 to be a four-lane, divided freeway. For the Build Analysis scenario, I-75 is analyzed with both six lane and eight lane cross sections, as both the Pasco and Hernando LRTPs include the widening of I-75 to six-lanes throughout the study area. Additional projects in the study limits that have been discussed by Hernando County officials are a new interchange on I-75 near Lockhart Road and a roadway connection between CR 41 to County Line Road in Masaryktown. Since both of these projects are not included in the current Hernando County LRTP, they were not considered in this study.

3.2 Interim Year and Design Year Traffic Projections

The year 2030 was selected as the design year for traffic analysis, since improvements are to operate at acceptable levels of service twenty (20) years from the assumed opening year of 2010. the FDOT provided the design year and interim year AADT volumes to be used in this study.

As previously stated, DHVs for mainline I-75 were developed from the AADTs using the I-75 K_{30} and D_{30} factors discussed earlier in the report. DHVs for the crossroads were based on the K_{30} and D_{30} factors of SR 50, which were provided on the 2005 FDOT Traffic Information CD. These factors were $K_{30}=9.61$ and $D_{30}=54.5$. These factors are slightly different than mainline I75, but are more representative of the nature of the crossroad traffic. Factors for CR 41 were not available; therefore, the factors for SR 50 were used as the patterns are believed to be similar on these two east-west facilities.

Figures 9, 10, and 11 present the opening year (2010), interim year (2020), and design year (2030) AADTs and DHVs, respectively.

North of SR 52 to South of CR 476B

North of SR 52 to South of CR 476B

North of SR 52 to South of CR 476B

3.3 Design Year (2030) No-Build Intersection LOS Analysis

Design hourly volumes (DHV) for I-75, SR 50, CR 41 and all freeway ramps were developed from provided AADTs, K-factors and D-factors. The resulting DHVs are provided in Figure 11. These design hourly volumes were then use to determine the intersection design hourly volumes, through the use of the TURNS-5 software and subsequent rebalancing. Figure 12 provides the design year (2030) intersection design hour volumes, while Figure 13 shows the design year (2030) lane configuration and the type of traffic control (signalized or unsignalized) for the NoBuild Alternative. These existing conditions were analyzed using Highway Capacity Software (HCS Plus). The results of these analyses indicate that all ramp terminal intersections with cross streets are expected to operate at LOS F under the No-Build conditions in the 2030 design year. These level of service results are shown on Figure 14.

For the ramp terminal / cross-street intersection analysis, the LOS standard for the cross streets was determined from the Comprehensive Plans of each county. At CR 41, the standard is LOS D and for the ramp terminals at SR 50 the standard is LOS C. A full signal warrant analysis should be performed at CR 41 during the design phase of this project. Since the unsignalized intersections at CR 41 are expected to operate at LOS F in the 2030 design year under the NoBuild conditions, the CR 41 intersections were considered to be signalized in the Build case.

The signalized intersections at the northbound and southbound off-ramp / on-ramp terminals at SR 50 are projected to operate at LOS F with the planned widening of SR 50 to a six-lane facility. Ramp terminal or more extensive improvements will be necessary to improve the LOS at these locations.

I-75 PD\&E Study
Traffic Technical Memorandum
North of SR 52 to South of CR 476B
(Pasco, Hernando, and Sumter Counties)
WPI No. 411014-1 FAP No. 0751-120I

No-Build Design Year (2030) Intersection Peak Hour DDHV

Figure 12

Nort of SR 52 to South of CR 476B

3.4 Design Year (2030) No-Build Freeway Segment LOS

The LOS analysis was conducted using HCS Plus. This analysis indicates that with a four lane cross section, traffic along I-75 will operate at LOS F for all three segments studied. These results are shown on Figure 15. Similar to the existing year analysis, the design year LOS standard for I-75 was set at LOS C. Therefore, traffic operations will not meet the LOS standard under design year (2030) conditions; widening of I-75 will be required to adequately handle future traffic demands.

3.5 Design Year (2030) No-Build Ramp Merge/Diverge LOS

The design year (2030) ramp merge / diverge LOS analysis for I-75 was conducted using the estimated design year (2030) design hour volumes shown in Figure 11. Based on this analysis, all ramp merge and diverge sections will operate at LOS F and thus will not meet the LOS standard under No-Build conditions. These results are shown with the freeway segment LOS results on Figure 15. These poor results are largely due to insufficient capacity on the mainline, particularly with respect to volumes in the right lane, more so than being a result of poorly functioning ramp merge or diverge sections.

TRAFFIC TECHNICAL MEMORANDUM I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

3.6 Build Freeway Segment and Ramp Merge / Diverge LOS

For the Build alternatives considered, analyses were done for the Opening Year (2010), Interim Year (2020) and Design Year (2030). These analyses are presented in this section for the I-75 mainline and ramp junctions. The following section presents the ramp termini analyses.

Since capacity of the mainline is the key factor in having I-75 meet LOS standards, two widening alternatives (6-lane and 8-lane) were analyzed in this TTM. As shown in Figures 16a and 16b, a 6-lane cross-section on I-75 will meet the LOS standard of C until 2020. By 2030, a 6-lane section will not suffice as shown in Figure 16c. This figure indicates that the northbound lanes will operate at LOS D or LOS E with a 6-lane section, and no worse than LOS C with an 8lane section.

With the 8-lane widening alternative, the I-75 NB off-ramp to SR 50 and the I-75 SB off-ramp to SR 50, will remain operating at substandard LOS. Various alternatives, including the implementation of auxiliary lanes, deceleration / acceleration lanes, widening of the ramps, were tried to improve these conditions to the LOS standard. The list below shows the minimum improvement required to have all I-75 ramp diverge sections to meet or better the LOS standard of C .

- I-75 northbound off-ramp to SR 50 - Widen the off-ramp to two lanes. Add a minimum 500 foot long right-side auxiliary lane that will become a drop lane into the northbound off-ramp. The right-most mainline of northbound I-75 will become a decision lane for northbound I-75 and the northbound off-ramp to SR 50.
- I-75 southbound off-ramp to SR 50 - Add a minimum 500 foot deceleration lane in advance of the gore area for this off-ramp.

With these improvements all freeway segment and ramp merge and diverge segments will operate at or better than the standard of LOS C for the design year of 2030.

The ramp junctions have also been examined. As shown in Figures 17a, 17b and 17c, a 6-lane section of I-75 will result in LOS D conditions at the northbound exit ramp of the CR 41
interchange by Year 2020. As shown in Figure 17c, an 8-lane section will result in conditions no worse than LOS C for all CR 41 ramp junctions by 2030.

Assuming that I-75 is widened to 6-lanes, ramp junctions at the SR 50 interchange will produce acceptable levels of service through Year 2020, as shown in Figures 18a and 18b. Figure 18c indicates that an I-75 6-lane section will result in LOS D for the southbound ramp junctions as well as the northbound on-ramp junction by Year 2030. An 8-lane section on I-75 will produce LOS C or better conditions for Year 20 for these junctions. The northbound off-ramp must be upgraded to a 2-lane off-ramp by Year 2020 to meet acceptable levels of service for either a 6lane or an 8-lane I-75, as shown in Figure 18c.

I-75 PD\&E Study
Traffic Technical Memorandum
North of SR 52 to South of CR 476B
(Pasco, Hernando, and Sumter Counties)
WPI No. 411014-1 FAP No. 0751-120I

2010 Build LOS SR 50 Ramp Junctions

I-75 PD\&E Study

Traffic Technical Memorandum
North of SR 52 to South of CR 476B
(Pasco, Hernando, and Sumter Counties)
WPI No. 411014-1 FAP No. 0751-120I

2020 Build LOS SR 50 Ramp Junctions

Figure 18b

I-75 PD\&E Study
 Traffic Technical Memorandum

North of SR 52 to South of CR 476B
(Pasco, Hernando, and Sumter Counties)
WPI No. 411014-1 FAP No. 0751-120I

2030 Build LOS SR 50 Ramp Junctions

TRAFFIC TECHNICAL MEMORANDUM I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

3.7 Build Intersections LOS Analysis

CR 41

Since operations at interchange ramps can have a direct influence on mainline traffic, ensuring that conditions meet LOS standards is very important. To improve the substandard conditions at ramp terminals on CR 41 and SR 50, a number of improvement alternatives were analyzed. One of the main issues at the CR 41 (Blanton Road) interchange is that the present unsignalized traffic control at both ramp terminals will not adequately handle the much higher turning movements under design year conditions. For purposes of this analysis, both ramp termini are assumed to be signalized in the opening year.

Presently, the northbound off ramp to CR 41 is approximately 620 feet long from the gore point to the stop bar at the ramp terminal. Future volumes will likely produce queues that exceed the storage capacity of the current ramp design. Also, the future widening of I-75 will further shorten this off-ramp length and thus reduce the storage capacity even more. To address storage deficiencies that will exist on the northbound off-ramp to CR 41, this ramp must either be reconstructed to provide more queue storage or be replaced by a northbound off-ramp that is located in the southeast quadrant of the interchange, thus creating a partial diamond interchange at CR 41. These two alternatives were examined in the build scenarios of this study.

Unlike the northbound off-ramp, the southbound off-ramp at CR 41 is expected to meet or exceed the design year storage demands with its current configuration. The southbound off-ramp is longer than the northbound off-ramp (approximately 780 feet long). Also, the traffic volumes on this ramp are substantially less than those of the northbound ramp. For these reasons, the southbound off-ramp at CR 41 is long enough to meet design year traffic demands and thus can be retained; however mainline widening will necessitate the reconstruction of this ramp, retaining the current cloverleaf concept.

Opening, Interim and Design Year volumes are shown on Figures 19a, 19b and 19c respectively while lane configurations for the two Build alternatives are shown in Figure 20. Figure 21 shows the Levels of Service for the three years analyzed for both Build alternatives.

SR 50

The ramp terminals, in their existing condition, will both operate at LOS F under design year traffic demands. To improve operating conditions, a total of five alternatives were developed and evaluated; however not all alternatives were found to provide acceptable operations. Although the focus of operations is on mainline I-75, it was strongly desired to also provide acceptable operations on SR 50, an SIS route, within the interchange area. Early on, it was decided that this study would not encompass a complete evaluation for SR 50 outside of the interchange area, as it would be outside the scope of this project. In addition, there are a large number of unknowns regarding future development. Numerous discussions occurred between the study consultant, FDOT District staff, County officials and developers representatives to gain a better understanding of future conditions.

The five alternatives evaluated to improve interchange operations include:

- Implementation of lane improvements to the existing diamond interchange,
- Conversion of the existing diamond interchange to a single point urban interchange,
- Addition of a loop ramp to serve westbound to southbound traffic,
- A westbound-to-southbound flyover ramp and
- A northbound-to-westbound flyover ramp.

Based on the initial demand volumes, approach and turning movement volumes were generated for each of the alternatives. These volumes are shown on Figures 22a-1 through 22c-2. Lane configurations associated with these alternatives are shown on Figures 23a and 23b.

Figure 24a indicates that neither lane improvements nor the single point urban interchange will improve conditions enough to meet the standard of LOS C for the design year. The westbound to southbound loop ramp alternative, will produce better results at the two ramp terminal intersections; however the western intersection will operate at LOS D, while the eastern intersection will operate at LOS E, as seen in Figure 24a. Both results are below the LOS standard of C set for SR 50. This alternative consists of the following improvements to the interchange:

- A westbound to southbound loop ramp located in the northwest quadrant of the interchange,
- A right-most channelized westbound lane that feeds this loop ramp and that begins at some point east of the northbound ramp intersection (this allows westbound traffic to proceed and not conflict with northbound to westbound traffic turning left from the I-75 off-ramp),
- The addition of an eastbound left turn lane for the eastern intersection, resulting in dual eastbound left turn lanes,
- The addition of southbound left turn and right turn lanes, resulting in dual southbound right and left turn lanes,
- The addition of two northbound left turn lanes, resulting in three northbound left turn lanes, and
- Widening SR 50 east of I-75 to some point east of the interchange to allow the northbound right turn lane to be a free flowing movement. This is the preferred treatment and assumes the relocation of the signal at Bronson Boulevard. If this signal cannot be relocated, the ramp terminal should be modified to a dual right-turn operation under signal control; however, this introduces ramp storage issues which would not exist under the preferred treatment.

The westbound to southbound flyover alternative will produce results at the two ramp terminal intersections that are similar to the results of the westbound to southbound loop ramp alternative. This alternative also results in western and eastern intersections which will operate at LOS D and LOS E, respectively, as seen in Figure 24b. Again, both intersections will operate at levels below the LOS standard of SR 50. The westbound to southbound flyover alternative consists of the following improvements to the interchange:

- A westbound to southbound flyover that begins in the northwest quadrant of the interchange,
- The addition of an eastbound left turn lane at the eastern intersection, resulting in dual eastbound left turn lanes,
- The addition of a southbound right turn lane, resulting in two southbound right turn lanes,

TRAFFIC TECHNICAL MEMORANDUM I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

- The addition of two left turn lanes for both the northbound and southbound left turn movements, resulting in three left turn lanes, and
- Widening SR 50 east of I-75 to some point east of the interchange to allow the northbound right turn lane to be allowed a free flowing movement.

The northbound to westbound flyover alternative will produce results at the two ramp terminal intersections that are equal to or better than all other alternatives. In the design year, the western intersection will operate at LOS D, while the eastern intersection will operate at LOS C, as seen in Figure 24b. Although the eastern intersection will meet the standards set for SR 50, the western intersection will operate below the LOS standard of C. The northbound to westbound flyover alternative consists of the following improvements to the interchange:

- A northbound to westbound flyover that begins in the southeast quadrant of the interchange, originating from the northbound off-ramp,
- The addition of an eastbound left turn lane at the eastern intersection, resulting in dual eastbound left turn lanes,
- The addition of a southbound right turn lane, resulting in two southbound right turn lanes,
- The addition of two left turn lanes for southbound left turn movements, resulting in three left turn lanes, and
- Widening SR 50 east of I-75 to some point east of the interchange to allow the northbound right turn lane to be allowed a free flowing movement.

Although these improvements do not allow the SR 50 interchange to operate at LOS C, the interchange improvements necessary to allow the interchange to operate at the LOS C standard requires a fully directional interchange with flyovers for every left turn movement. An improvement of this magnitude was not considered feasible, especially considering that other nearby intersections will likely operate at worse than LOS C and will act to meter traffic approaching the interchange. Thus, it is recommended that the appropriate improvements be implemented and a waiver of the LOS standard for the ramp termini be granted, as this situation is similar to that of a constrained roadway.

The recommended improvements at the ramp terminals of the CR 41 and SR 50 interchanges are shown on Figure 25 and their resulting LOS is shown on Figure 26.

WB - SB Flyover

NB - WB Flyover

I-75 PD\&E Study
Traffic Technical Memorandum
North of SR 52 to South of CR 476B
(Pasco, Hernando, and Sumter Counties)
WPI No. 411014-1 FAP No. 0751-120I

2020 Volumes
SR 50 Intersection

WB - SB Flyover

NB - WB Flyover

I-75 PD\&E Study
Traffic Technical Memorandum
North of SR 52 to South of CR 476B
(Pasco, Hernando, and Sumter Counties)
WPI No. 411014-1 FAP No. 0751-120I

2030 Volumes
SR 50 Intersection
Figure 22c-2

TRAFFIC TECHNICAL MEMORANDUM I-75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

Table 7 below summarizes the intersection Level of Service results of the preceding graphics.

Table 7

Level of Service Results for Ramp Termini

No-Build Alternatives						
Location	$\mathbf{2 0 1 0}$					

Build Alternatives

Location	2010		2020		2030	
	Delay (\mathbf{s})	LOS	Delay (\mathbf{s})	LOS	Delay (s)	LOS
I-75 NB Ramps/CR 41						
NB Partial Clover (WBT=2, SBLT=2)	11.3	B	13.6	B	24.2	C
NB Partia/ Clover (WBT=2, SBLT=1)	18.3	B	24.3	C	57.2	E
NB Partial Clover $(W B T=1, S B R T=F F)$	28.8	C	43.7	D	135.8	F
NB Diamond	13.5	B	16.2	B	39.4	D

I-75 SB Ramps/CR 41

$S B$ Partial Clover	6.5	A	8.7	A	14.1	B

I-75 NB Ramps/SR 50

Lane Improvements	27.1	C	51.2	D	143.7	F
SPUI	34.7	C	46.2	D	104.8	F
WB to SB Loop Ramp (WB Thru)	19.6	B	27.1	C	67.2	E
WB to SB Loop Ramp (WB-SB On/y)	20.7	C	28.7	C	70.7	E
WB to SB F/y-Over	22.7	C	32.2	C	77.6	E
NB to WB F/y-Over	10.1	B	13.2	B	27.7	C

I-75 SB Ramps/SR 50

Lane Improvements	26.6	C	38.3	D	79.9	E
Loop Ramp	13.8	B	17.5	B	36.8	D
WB to SB Fly-Over	17.6	B	22.3	C	51.2	D
NB to WB Fly-Over	25.8	C	28.2	C	36.0	D

3.8 Determination of Storage Lengths

The required storage lengths for turn lanes recommended at the ramp terminals at CR 41 and SR 50 were estimated using the red-time formula, found in 7.4.7 Intersection Design - Lane Configuration of the FDOT Plans Preparation Manual. Since it is possible that through-lane queuing can sometimes block access to right and left turn lanes, turn lane queuing requirements were also reviewed against anticipated queues in the through lanes. Table 8 compares the calculated queue lengths from the red time formula to the existing storage lane length. Shaded cells indicate design queues that will exceed the existing storage length and thus in designing these intersections, improvements to these lanes is required.

Table 8
Recommended Alternative (2030) Storage Lengths

Intersection	Control	Turn Lane	Number of Lanes	Existing Storage	Queue Length
SR 50 @ I-75 NB Ramps	Signal	Northbound Left	3	500	$207 \times$
		Northbound Right	2	$500 \times$	840^{\prime}
		Eastbound Left	2	$300 \times$	645
		Eastbound Thru	3	$300{ }^{\prime}$	1436'
		Westbound Thru	3	--	1802'
		Westbound Right	1	--	1144'
SR 50 @ I-75 SB Ramps	Signal	Southbound Left	3	400 '	383'
		Southbound Right	2	$40{ }^{\prime}$	385'
		Eastbound Thru	3	--	1483'
		Eastbound Right	1	--	1139 '
		Westbound Left	2	300	$52{ }^{\prime}$
		Westbound Thru	3	$30{ }^{\prime}$	1453'
CR 41 @ I-75 NB Ramps	Signal	Northbound Left	2	--	595
		Northbound Right	1	--	910
		Eastbound Left	1	250 '	727
		Eastbound Thru	1	1,900'	405 '
		Westbound Thru	2	--	595
		Westbound Right	1	200'	190'
CR 41 @ I-75 SB Ramps	Signal	Northbound Left	1	575'	$387 \times$
		Northbound Right	1	575	330^{\prime}
		Eastbound Thru	2	--	$404{ }^{\prime}$
		Eastbound Right	1	375	800
		Westbound Left	1	250 '	850
		Westbound Thru	2	1,900'	765 '

TRAFFIC TECHNICAL MEMORANDUM I - 75 (SR 93) PD\&E STUDY; PASCO, HERNANDO, AND SUMTER COUNTIES

4 SUMMARY AND CONCLUSIONS

Existing (2005) and design year (2030) traffic analyses were conducted as part of the I-75 PD\&E Study to document the existing levels of service in the corridor as well as the anticipated future levels of service in the corridor. Results of the existing condition LOS analyses indicate that the existing I-75 study area and interchanges at CR 41 and SR 50 operate at or better than the LOS standard for SIS facilities in transitioning areas, with the exception of the northbound I-75 offramp to SR 50, which operates at LOS D.

Design year (2030) traffic forecasts were developed by FDOT personnel using the TBRPM Version 5.1. The No-Build roadway network was based on the design year (2025) Cost Affordable plans of the Hernando County and Pasco County LRTPs, which includes the widening of SR 50 to six lanes within the study area.

The design year (2030) - build alternative key improvements are the widening of I-75 to eightlanes throughout the study area, addition of auxiliary lanes, and ramp improvements. With these improvements, the results of the Build alternative analyses indicate that all segments of I-75 will operate at or better than the LOS standard of C , which is required for SIS roadways in transitioning areas.

Ramp terminals at the CR 41 and SR 50 interchanges will also require improvement. At the CR 41 interchange, it is recommended that the northbound loop off-ramp presently located in the northeast quadrant be replaced with a slip ramp in the southeast quadrant. In addition, both ramp terminal intersections with CR 41 will require signalization. At the SR 50 interchange, it is recommended a flyover ramp serving northbound I-75 to westbound SR 50 traffic be constructed. In addition, widening SR 50 east of the interchange to allow the northbound right turn movement to be free flowing and other lane improvements such as multiple turn lanes on the northbound and southbound off-ramps and on-ramps will be necessary. With these improvements, the results of the Build alternative analyses indicate that the ramp terminals at both interchanges will operate at or better than the LOS standard of D, which is the standard set
by both Pasco and Hernando counties for their respective roadways; but not the LOS standard of C required since SR 50 west of I-75 is an SIS facility.

Figure 25 shows the recommended Build lane configurations with the resulting Levels of Service shown on Fig. 26.

APPENDIX 'A'

MAINLINE AADT TRAFFIC COUNT SUMMARIES

1．75 PD\＆E Study－Pasco，Hernando，Sumter Counties 24－hour Machine Count Data Times

	Count Location 1－1－75 between SR 52 and CR 41									
Time	Northbound					Southbound				
	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & \text { (3/17) } \end{aligned}$	$\begin{gathered} \mathrm{Fr} \\ (3 / 18) \end{gathered}$	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & (3 / 17) \end{aligned}$	$\begin{aligned} & \text { Fri } \\ & (3 / 18) \end{aligned}$
12：00 AM								\％		
1：00 AM								3	548409	－
2：00 AM			Promax					5		
3：00 AM					50993					
4：00 AM								59796委		4xam复
5：00 AM					\％（2ask			5404960		
6：00 AM										S ${ }^{4}$
7：00 AM								5		
8：00 AM								\％	4688気	
9：00 AM					\％tamer			Wxay		
10：00 AM		23839			4 4			\％		
11：00 AM				273298：				Whax		
12：00 PM			Sexar		人					54894
1：00 PM		\％ex		\％egrit	Wexas				－ $\mathrm{c}_{\text {chan }}$	
2：00 PM		5xam		约						
3：00 PM		趐		20496		2476ag				
4：00 PM	3 ${ }^{2}$	\％ 2	\％－159	\％		5－4583				
5：00 PM		4\％	－2x	\％		Watas	－		－${ }^{\text {a }}$	
6：00 PM		的㳔	－				柽：	2ax		
7：00 PM	2EM	T					＋7x	300wd	5－7	
8：00 PM	5\％	23，								
9：00 PM				（85cam					4xaske	
10：00 PM								登这5	84898983	
11：00 PM				368094				5		

Northbound

1．Tuesday（3／15）－10：00 AM to Wednesday（3／16）－10：00 AM
2．Thursday（3／17）－11：00 AM to Friday（3／18）－11：00 AM
Southbound

| 1．Tuesday（3／15）－10：00 AM to Wednesday（3／16）－10：00 AM | AADT $=$ | 32596 | 0.95 | 30966 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2．Wednesday（3／16）－10：00 AM to Thursday（3／17）－10：00 AM | AADT $=$ | 27285 | 0.95 | 25921 |
| 3．Thursday（3／17）－10：00 AM to Friday $(3 / 18)-10: 00 \mathrm{AM}$ | AADT $=$ | 27506 | 0.95 | 26131 |

1－75 PD\＆E Study－Pasco，Hernando，Sumter Counties 24－hour Machine Count Data Times

	Count Location 4－1－75＠CR 41 bridge									
	Northbound					Southbound				
Time	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Tues } \\ (3 / 15) \\ \hline \end{array}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & (3 / 17) \end{aligned}$	$\begin{gathered} \mathrm{Fri} \\ (3 / 18) \end{gathered}$	$\begin{aligned} & \text { Won } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & \text { (3/17) } \end{aligned}$	$\begin{gathered} \text { Fri } \\ (3 / 18) \end{gathered}$
12：00 AM			¢5909							
1：00 AM									4 453	
2：00 AM			\％				1382	部3743）		
3：00 AM								H5002近		64539
4：00 AM				紜21939				13593复		
5：00 AM									6ricen	
6：00 AM										
7：00 AM				3哭连39复						
8：00 AM										
9：00 AM			9－2x							，${ }^{\text {cheng }}$
10：00 AM				2 26388				516464	S 8 chem	
11：00 AM			Sbexpla			知t835				
12：00 PM										\％Mage
1：00 PM	2z	Wextim	8	－29839						－${ }^{\text {a }}$
2：00 PM	320			\％		5－2in	Whathe			
3：00 PM								Wher		
4：00 PM		2－2，					4 W	Watay		
5：00 PM	5 \％	5x					Hins	－		
6：00 PM		\％					59xat	UTCUE		
7：00 PM	\％atemat		紶发					1－59x		
8：00 PM	TS	－	8589			68089\％			94＊9984	
9：00 PM	atio	2extic				972m9				
10：00 PM						㲛65049			1553878	
11：00 PM	3mek					\％ 563 za			623 658	

SB

| Sum | 21451 | 19843 | 30928 | 17539 | 0 | 17586 | 26232 | 26047 | 26818 | 16921 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Northbound

| 1．Tuesday（3／15）－11：00 AM to Wednesday（3／16）－11：00 AM | AADT $=31089$ | 0.95 | 29535 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2．Wednesday（3／16）－11：00 AM to Thursday（3／17）－11：00 AM | AADT $=29168$ | 0.95 | 27710 | |
| | | | | |
| Southbound | | | | |
| 1．Tuesday（3／15）－12：00 AM to Wednesday（3／16）－12：00 AM | AADT $=$ | 26232 | 0.95 | 24920 |
| 2．Wednesday（3／16）－12：00 AM to Thursday $(3 / 17)-12: 00 \mathrm{AM}$ | AADT $=$ | 26047 | 0.95 | 24745 |
| 3．Thursday（3／17）－12：00 AM to Friday（3／18）－12：00 AM | AADT $=$ | 26818 | 0.95 | 25477 |

1－75 PD\＆E Study－Pasco．Hernando，Sumter Counties 24－hour Machine Count Data Times

	Count Location 5－1－75 between CR 41 and SR 50									
	Northbound					Southbound				
Time	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	Thurs $(3 / 17)$	$\begin{gathered} \mathrm{Fri} \\ (3 / 18) \end{gathered}$	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & (3 / 17) \end{aligned}$	$\begin{gathered} \text { Fri } \\ (3 / 18) \end{gathered}$
12：00 AM										5i5460
1：00 AM			\％	Mracke	20，				（35489	
2：00 AM								279958	\％ 207	
3：00 AM				$1{ }^{4}$						
4：00 AM								5－305x		Wheicis
5：00 AM								854883010		－ 51438
6：00 AM					20					
7：00 AM										
8：00 AM				\％						
9：00 AM			－					Whast		
10：00 AM			\％ 5		达\％			\％ 5636		
11：00 AM			82xat		295以等					
12：00 PM		－		＋						
1：00 PM				－2matat				\％${ }^{\text {cosen }}$		\％
2：00 PM		等域为	，							
3：00 PM		Hfor	Sher	4，						
4：00 PM	Fexter	等號	，	\％			64ing	25ata		
5：00 PM			．	Crime			5ater			
6：00 PM			Stic					－	\％ 2×8	
7：00 PM	維建		3－7							
8：00 PM		Cat	＋							
9：00 PM		－	H20					6xprat		
10：00 PM		33x820	3				76645			
11：00 PM							Ex53632			

NB
SB
$-21.06 \%-12.33 \%$
-2.93% \＃DIVIO！
$\begin{array}{llllllllllll}\text { Sum } & 15104 & 18748 & 30302 & 31974 & 21495 & 0 & 15699 & 25127 & 24457 & 17384\end{array}$

Northbound

1．Tuesday（3／15）－11：00 AM to Wednesday（3／16）－11：00 AM	$A A D T=$	29971	0.95	28472
2．Wednesday（3／16）－11：00 AM to Thursday（3／17）－11：00 AM	AADT $=$	30405	0.95	28885
2．Thursday（3／17）－11：00 AM to Friday（3／18）－11：00 AM	AADT $=$	34826	0.95	33085
Southbound				
1．Tuesday（3／15）－11：00 AM to Wednesday（3／16）－11：00 AM	AADT $=$	25730	0.95	24444
2．Wednesday（3／16）－9：00 AM to Thursday（3／17）－9：00 AM	AADT $=$	25721	0.95	24435
3．Thursday（3／17）－11：00 AM to Friday（3／18）－11：00 AM	AADT $=$	28178	0.95	26769

1－75 PD\＆E Study－Pasco，Hernando，Sumter Counties 24－hour Machine Count Data Times

	Count Location 8－1－75 at SR 50 bridge										NB	SB
	Northbound					Southbound						
Time	$\begin{aligned} & \text { Kon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & (3 / 17) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Fri} \\ (3 / 18) \end{gathered}$	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & (3 / 17) \end{aligned}$	$\begin{aligned} & F r i \\ & (3 / 18) \end{aligned}$		
12：00 AM					3x m_{6}							
1：00 AM			640953		96398复							
2：00 AM							Fickex	3timict				
3：00 AM										緻动8888		
4：00 AM										468987		
5：00 AM			Fiticy									
6：00 AM												
7：00 AM							\％					
8：00 AM							5					
9：00 AM												
10：00 AM			35						50104730			
11：00 AM			Wefenem									
12：00 PM		5470249					\％			4825x	－20．41\％	－2．34\％
1：00 PM		Etismat							\％mance			
2：00 PM				8535993			20，					
3：00 PM		－	3ncter				Wherex					
4：00 PM		56， 5	Stiste									
5：00 PM	3，${ }^{\text {g }}$											
6：00 PM：												
7：00 PM	Eisichat	－							E\％			
8：00 PM		－					8，					
9：00 PM		Werex										
10：00 PM		Hescors										
11：00 PM				5699x		S谷569			推B638		．7．81\％	－51．44\％
Sum	10792	13175	24036	18026	15792	9485	21351	10547	14854	12500		
Northbound												
1．Wednesday（3／16）－12：00 AM to Thursday（3／17）－12：00 AM								AADT $=$	24036	． 0.95	22.834	
2．Thursday（3／17）－10：00 AM to Friday（3／18）－10：00 AM								AADT $=$	2667	10.95	25337	
Southbound												
1．Tuesday（3／15）－12：00 AM to Wednesday（3／16）－12：00 AM								AADT $=$	21351	10.95	20283	
3．Thursday（3／17）－10：00 AM to Friday（3／18）－10：00 AM								AADT $=$	22626	\％ 0.95	21495	

1－75 PD\＆E Study－Pasco，Hernando，Sumter Counties 24－hour Machine Count Data Times

	Count Location 9－1－75 between SR 50 and Withlacoochee River									
			orthboun					authboun		
Time	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & (3 / 17) \end{aligned}$	$\begin{gathered} \mathrm{Fn} \\ (3 / 18) \end{gathered}$	$\begin{gathered} \text { Mon } \\ (3 / 14) \end{gathered}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	Wed （3／16）	$\begin{aligned} & \text { Thurs } \\ & (3 / 17) \end{aligned}$	$\begin{aligned} & F \pi \\ & (3 / 18) \end{aligned}$
12：00 AM							7444939			1359837
1：00 AM							44420	823478		
2：00 AM			\％asigien				584429			
3：00 AM										
4：00 AM			Emag							
5：00 AM							\％	5 510967		\％
6：00 AM				Finctide						\％
7：00 AM							Hegesex			
8：00 AM				416259				3620第		动6，
9：00 AM			\％					5685		atime
10：00 AM			58					鿉 6 6206		
11：00 AM										－
12：00 PM				22298积				构5997	要衰4595	
1：00 PM		22alder	5xatid							
2：00 PM		4＊93：								－
3：00 PM		4983	29989							
4：00 PM		，				垒46809				
5：00 PM			369\％			6atara				
6：00 PM						1023积				
7：00 PM			2298超							
8：00 PM		Pricht				管			5ateget	
$9: 00 \mathrm{PM}$							（zaxix			
10：00 PM			－${ }^{\text {che }}$			\％ 68585	－			
11：00 PM										

| Sum | 14711 | 14851 | 30981 | 14051 | 0 | 11811 | 26446 | 14633 | 17496 | 18737 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Northbound

1．Tuesday $(3 / 15)-1: 00$ PM to Wednesday $(3 / 16)-1: 00 \mathrm{PM}$
2．Wednesday $(3 / 16)-1: 00 \mathrm{PM}$ to Thursday $(3 / 17)-1.00 \mathrm{PM}$

Southbound

1．Tuesday（3／15）－12：00 AM to Wednesday（3／16）－ 1200 AM
3．Thursday（3／17）－11：00 AM to Friday $\{3 / 18\}-11: 00$ AM
AADT $=31112 \quad 0.95$

AADT	$=26446$	0.95	25124
AADT	$=29754$	0.95	28266

APPENDIX ' B '

CROSS STREET AADT TRAFFIC COUNT SUMMARIES \&

1－75 PD\＆E Study－Pasco，Hernando，Sumter Counties
24－hour Machine Count Data Times

	Count Location 2－CR 41 West of 1－75 interchange									
	Eastbound					Westbound				
Time	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	Thurs $(3 / 17)$	$\begin{gathered} \mathrm{Fri} \\ (3 / 18) \end{gathered}$	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Twes } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wod } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & \text { (3/17) } \end{aligned}$	$\begin{gathered} \text { Fri } \\ (3 / 18) \\ \hline \end{gathered}$
12：00 AM										
1：00 AM								Wayky		
2：00 AM		Wextchate								
3：00 AM										
4：00 AM										
5：00 AM										
6：00 AM										
7：00 AM		Oferin								
8：00 AM										
9：00 AM										
10：00 AM										
11：00 AM										
12：00 PM										
1：00 PM				要紋噱						
2：00 PM							5 ${ }^{5}$			
3：00 PM							W30，			
4：00 PM										
5：00 PM				3－468						
6：00 PM				－\％			E4tat			
7：00 PM		5zaters						納大\％等		
8：00 PM									（6）	
9：00 PM										
10：00 PM		57\％					H69\％要			
11：00 PM										

Sum	0	2575	2586	2414	0	0	2508	2554	2377	0

Eastbound

1．Tuesday（3／15）
2．Wednesday（3／16）
3．Thursday（3／17）
Average

Westbound

1．Tuesday $(3 / 15)$	AADT $=$	2508	0.95	0.89	2121
2．Wednesday $(3 / 16)$	AADT $=$	2554	0.95	0.89	2159
3．Thursday $(3 / 17)$	AADT $=$	2377	0.95	0.89	2010
Average					2097
Total					4231

1.75 PD\&E Study - Pasco, Hernando, Sumter Counties 24 -hour Machine Count Data Times

1-75 PD\&E Study - Pasco, Hernando, Sumter Counties 24-hour Machine Count Data Times

1．75 PD\＆E Study－Pasco，Hernando，Sumter Counties
24－hour Machine Count Data Times

	Count Location 7－SR 50 East of 1－75 Interchange									
	Eastbound					Westbound				
Time	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{gathered} \text { Wed } \\ (3 / 16) \end{gathered}$	Thurs $(3 / 17)$	$\begin{gathered} \mathrm{Fri} \\ (3 / 18) \end{gathered}$	$\begin{aligned} & \text { Mon } \\ & (3 / 14) \end{aligned}$	$\begin{aligned} & \text { Tues } \\ & (3 / 15) \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & (3 / 16) \end{aligned}$	$\begin{aligned} & \text { Thurs } \\ & (3 / 17) \end{aligned}$	$\begin{gathered} \text { Fri } \\ (3 / 18) \end{gathered}$
12：00 AM				5499］						
1：00 AM										
2：00 AM				6絞69\％						
3：00 AM										
4：00 AM										
5：00 AM										
6：00 AM		\％${ }^{\text {cky }}$							－629x	
7：00 AM		\％\％\％¢	\％eptax							
8：00 AM										
9：00 AM										
10：00 AM				\％						
11：00 AM				－				Extegix		
12：00 PM				Whathatix						
1：00 PM										
2：00 PM			Whaty	程（4）						
3：00 PM							，5x ${ }^{5}$			
4：00 PM				94tery						
5：00 PM		6888菏								
6：00 PM										
7：00 PM				Haydy						
8：00 PM		E－8，	\％							
9：00 PM		548，\％\％	－				5xick		，	
10：00 PM			－						\％	
11：00 PM｜										

| Sum | 0 | 14648 | 14392 | 14419 | 0 | 0 | 14086 | 13914 | 13831 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Eastbound

1．Tuesday（3／15）
2．Wednesday（3／16）
3．Thursday（3／17）
Average

Westbound

1．Tuesday（3／15）	AAOT $=$	14086	0.95	0.89	11910
2．Wednesday $(3 / 16)$	AADT $=$	13914	0.95	0.89	11764
3．Thursday $(3 / 17)$	AADT $=$	13831	0.95	0.89	11694
Average					11789
					24038

BAYSIDE ENGINEERING INC.

PEDESTRIAN MOVEMENT SUMMARY

Section:
Milepost: Time Periods:

BAYSIDE ENGINEERING INC.

BICYCLE MOVEMENT SUMMARY

Bayside Engineering, fnc.

Counted by Ron

Board \ddagger : 1320
Weather cool/rainy

1105 East Twiggs Street
Tampa, FL 33602

File Name : S81-75 Ramps@ CR 41 Site Code : 00000000 Start Date : 03/15/2005 Page No 1

Groups Printed- Passenger Vehicles

Southbound					CR 41 Westbound				SETनI OFF TMAMP Northbound				CR 41 Eastbound				
Stan Time		Thru	Fing!	$\begin{aligned} & \text { RDp } \\ & \text { Tc:al\| } \end{aligned}$	Len	Tha!	Riçn!	$\begin{aligned} & \mathrm{ADDO} \\ & \text { Yotal } \end{aligned}$	Lett	Frru	Figrs	$\begin{aligned} & \text { RpQ: } \\ & \text { Tctai } \end{aligned}$	Ler	Ther !	fignt	$\begin{aligned} & \mathrm{ROF} \\ & \mathrm{Tclal}^{\prime} \end{aligned}$	An Total
73act	TO!	0.	T01		10	T0:	T1		T	U1	10		T]	101	1.0		
05.00	0	0	0	0	41	13	0	54	0	0	0	01	0	18	65	87	141
06.15	0	0	0	0	32	25	0	57	1	0	1	2	0	13	77	90	149
06:30	0	0	0	0	40	22	0	62	0	0	2	2	0	23	56	79	143
06:45	0	0	0	0	26	13	0	39 !	1	0	3	4	0	18	42	60 !	103
Total	0	0	0	01	139	73	0	212	2	U	6	B]	0	72	244	370	536

07.00	0	0	0	0	18	16	0	34	,	0	0	,	0	18	36	54	89
$07 \cdot 15$	0	0	0	0	34	21	0	55	6	0	2	8	0	29	40	69	132
07.30	0	0	0	0	24	29	0	53	1	0	3	4	0	35	33	68	125
07:45	0	0	0	0	20	25	0	45	1	0	2	3	0	23	46	69	117
Total	0	0	0	0	96	91	0	187	5	0	7	16	0	105	155	260	463

$08: 00$	0	0	0	0	16	25	0	41 !	2	0	2	4	0	25	31	561	101
08:15	0	0	0	0	17	22	0	39	1	0	5	6	0	17	25	42	87
08:30	0	0	0	0	8	20	0	28:	1	0	2	3	0	23	26	491	80
08.45	0	0	0	0	20	22	0	42	0	0	1.	1	0	19	36	55	98
Tola	0	0	0	0	61	89	0	$750!$	4	0	10	14	0	84	178	202%	366

16.00	0	0	0	0	13	49	0	62	2	0	5	7 !	0	16	11	27	96
16:15	0	0	0	0	6	60	0	661	0	0	5	51	0	38	16	54	125
16:30	0	0	0	0	9	70	0	79	2	0	5	7	0	22	18	40	126
16.45	0	0	0	0	19	75	0	94	3	0	7	10^{1}	0	33	15	48 :	152
Total	U	0	0	0	47	254	0	301:	7	U	22	29	0	105	6	769	499
1700	0	0	0	0:	15	78	0	931	1	0	3	$4!$	0	25	10	35	132
17/15	0	0	0	0	8	72	0	20	3	0	0	3	0	25	9	34	117
17:30	0	0	0	0	12	62	0	781	3	0	5	8	0	23	7	30	112
17.45	0	0	0	01	5	63	0	68	2	0	2	4	0	18	9	27 :	99
Total	0	U	0	0	40	275	U	315	प	O	10	इ]	U	91	35	126:	पह0

$18: 00$	0	0	0	0	10	56	0	66	1	0	5	$6:$	0	21	4
$18: 15$	0	0	0	0	13	49	0	62	2	0	3	51	9	16	13
$18: 30$	0	0	0	0	10	53	0	63	1	0	2	39	0	12	12
$18: 45$	0	0	0	0	6	54	0	60	2	0	3	$5:$	0	15	10
101	0	0	0	01	39	272	0	251	6	0	13	19	0	64	39

Grand Total	0	0	0	0	422	994	0	1416	37	0	68	105 :	0	525	651	1176	2697
Apprch \%	0.0	0.0	0.0		29.8	70.2	0.0		35.2	0.0	64.8		0.0	44.5	55.4	,	
Total \%	0.0	0.0	0.0	0.0	15.6	36.9	0.0	52.5	1.4	0.0	2.5	3.9	0.0	19.5	24.1	43.6:	

	Southbound				CR4: Westoound				SETF5 OFF RAMP Nonthbound				CR41 Eastbound				
Stant Thte	tef	Trra	Right	Topel	Len!	Thre:	Right	$\begin{aligned} & \text { Apo } \\ & \text { Total } \end{aligned}$	Let	thas	Right 1	$\begin{aligned} & \text { Rop } \\ & \text { Totat } \end{aligned}$	Lett !	thrs	Pight	Rop,	lnt Fetat
Intersection	$06: 00$,				;				!					
Volume	0	0	0	01	139	73	0	212:	2	0	6	8 \%	0	72	24.4	316	536
Percent	0.0	0.0	0.0		65.6	34.4	0.0		25.0	0.0	75.0		0.0	22.8	77.2		
Volume	0	0	0	0	139	73	0	212	2	0	6	8	0	72	244	316	536
Volume	0	0	0	0	32	25	0	57	1	0	1	2	0	13	77	90	149
Peak Factor																	0.899
High Int.	5-45.00				$06: 30$				06:45				06:15				
Volume	0	0	0	01	40	22	0	62 !	1	0	3	4	0	13	77	90	
Peak Factor								0.855				0.500				0.878	

Bayside Engineering. Inc 1105 East Twiggs Street

Tampa, FL 33602
File Name: SB $1-75$ Ramps @ CR 41
Site Code : 00000000
Stan Date : 03/1 5/2005
Page No : 2

	Southbound				CR 9 Westbound				SBT-75 OFF FAMMF Northoound				CR 41 Eastbound				
Stantor	Leter	Thru	Right	${ }_{\text {Rotal }}^{\text {Rop }}$	Len f	Tons:	Fight	Soc.	Len	Trau!	Rigra !	${ }_{\text {Thag }}$	L.en	Thes	Right	Abpi	int Totas
Prathorficm																	
Volume	0	0	0	0	49	283	0	332	6	0	20	26	0	118	59	177	535
Percent	0.0	0.0	0.0		14.8	85.2	00		23.1	0.0	76.9		0.0	66.7	33.3		535
Volume	0	0	0	0	49	283	0	332	5	0	20	26	0	118	59	177	
Volume	0	0	0	0	19	75	0	94	3	0	7	10	0	33	15	48	152
Peak Factor																4	0.880
High int.					16:45				16:45				6.15				
Volume Peak Factor	0	0	0	0	19	75	0	94	3	0	7	10	0	38	16	54	
Peak Factor								0.883				0.650				0.819	

File Name : SE 1-75Ramps © CR 41 Site Code : 00000000 Stan Date : 03/15/2005 Page No

Groups Frinted-Trucks 8 Buses

	Southoound				CR41 Westbound				SET. 75 UFF RAMP Northbound				CR 41 Eastbound				
Stan Tme i	Lets	Thu	Rign !	$\begin{aligned} & \text { Acp } \\ & \text { rotal } \end{aligned}$	ten	true	Fignt	$\begin{aligned} & \mathrm{x}, \mathrm{cos} \\ & \mathrm{Totait} \end{aligned}$	Let	Tras	Rigr	$\begin{aligned} & \text { Acp } \\ & \text { Total } \end{aligned}$	Len	thes	Rixint	$\begin{aligned} & \text { AqP } \\ & \text { Tetad } \end{aligned}$	191. Totat
${ }^{\text {Facar }}$	T1	101	10		10	101	TV		ro	10	10	\square !	101	$10:$	10		
06.00	U	0	0	$0]$	0	U	0	U1	0	0	0	01	0	0	T	1	1
06:15	0	0	0	0	0	3	0	3	0	0	1	1	0	0	1	1	5
06:30	0	0	0	0	1	1	0	2	0	0	0	0	0	0	0	0	2
06:45	0	0	0	$0!$	1	0	0	1	0	0	0	01	0	0	0	0	1
Total	0	0	0	01	2	4	0	6	0	0	1	1	0	0	2	2	9

07:15	0	0	0	$0:$	\ddagger	1	0	21	0	0	0	0	0	2	0	2	4
07.30	0	0	0	0	0	1	0	1	0	0	0	0	0	2	0	2	3
07:45	0	0	0	0	1	2	0	3	1	0	0	i	0	2	0	2	6
Total	0	U	0	U:	2	4	0	$6:$	1	0	0	1	0	0	0	6	13

08:00	0	0	0	01	0	0	0	01	0	0	0	0	0	2	1	31	3
08:15	0	0	0	0	0	1	0	$1{ }^{\prime}$	1	0	2	3	0	1	0	1	5
08:30	0	0	0	01	0	2	0	2	0	0	0	0	0	1	1	2	4
08:45	0	0	0	0 ?	3	3	0	6	1	0	0	1	0	0	1	$1:$	8
Total	0	0	0	U	3	6	0	9:	2	0	2	4.	0	4	3	1	2

16.00	0	0	0	0	0	0	0	01	0	0	0	0	0	1	1	2	2
16.15	0	0	0	0	0	2	0	2	0	0	1	i	0	3	1	4	2
16.30	0	0	0	0 :	1	2	0	3	0	0	2	2	0	0	0	0 -	5
16.45	0	0	0	0.	1	2	0	3	0	0	0	0	0	3	1	4	7
Tolal	0	U	0	U:	2	6	0	8	U	0	3	3	0	7	3	$10:$	$2{ }^{-1}$
17.00	0	0	0	0 ;	1	2	0	3	0	0	0	0	0	3	0	31	6
1715	0	0	0	0	\dagger	1	0	2	0	0	0	0 ;	0	0	2	2	4
17:30	0	0	0	0	0	1	0	1	0	0	0	0 :	0	0	0	0	1
17:45	0	0	0	0	0	0	0	01	0	0	1	1	0	0	0	0	1
Total	0	U	0	\square	2	4	0	$6!$	0	0	I	T:	U	3	2	5	12
18.00	0	0	0	01	1	1	0	2	1	0	0	1 1	0	0	0	0:	3
18:15	0	0	0	$0!$	0	1	0	1	0	0	0	0	0	2	4	6	7
18:45	0	0	0	0.	0	1	0	1	1	0	0	11	0	0	0	0	2
Total	0	0	0	0	1	3	0	4	2	\%	0	2	0	2	4	$6:$	12
Grand Total	0	0	0	01	12	27	0	391	5	0	7	12	0	22	14	361	87
Apprch \%	0.0	0.0	0.0		30.8	69.2	0.0		41.7	0.0	58.3		0.0	61.1	38.9		
Total \%	0.0	0.0	0.0	0.0	13.8	31.0	0.0	44.8 :	5.7	0.0	8.0	138	0.0	25.3	16.1	41.4	

	Southbound				CR41 Westbound				SBT. 75 OFF RAMP Northbound				CR 41 Eastbound				
S Stan Time	tent	thre i	Fignt	top.	Let	Thrs	Rignt	Prat	Len	Trus	Righr	7par	Len	True 1	Rigrst	Top.	Ins Totat
Volume	0	0	0	0	3	6	0	9	2	0	2	4	0	4	3	7	20
Percent	0.0	0.0	0.0		333	66.7	0.0		50.0	0.0	50.0		0.0	57.1	42.9		
Volume	0	0	0	0°	3	6	0	9	2	0	2	4	0	4	3	7	20
Volume	0	0	0	0	3	3	0	61	1	0	0	1	0	0	1	1	8
Peak Factor																	0.625
High int.	5:45:00				08:45				08:15				8:00				
Volume	0	0	0	0	3	3	0	6	1	0	2	31	0	2	1	3	
Peak Factor								0.375				0.333 !				$0.583{ }^{\prime}$	

Bayside Engineering, Inc. 1105 East Twiggs Street Tampa. FL 33602

File Name: SE1-75 Ramps © CR 4 Site Code : 00000000 Start Date : 03/15/2005 Page No

2

\square	Southbound				CR41 Westbound				SET-75 OFF RAMF Narthbound				CR41 Eastbound				
Stan Tume	Len	TM	Fight1	Fopp	Lent	Thou	Rught	$\begin{aligned} & \text { Rep } \\ & \text { Total } \end{aligned}$	Len 1	Trus	Figra	$\begin{aligned} & \text { Rop } \\ & \text { Tolai } \end{aligned}$	Lent	Thus 1	Rignt	App	Int. Totat
Volume	0	0	0	0	3	8	0	11	0	0	3	3	0	9	2	11	25
Percent	0.0	0.0	0.0		27.3	72.7	0.0		0.0	0.0	100.		0.0	81.8	18.2		
Volume	0	0	0	0	3	8	0	11	0	0	3	3	0	9	2	11	25
Volume	0	0	0	0	1	2	0	3	0	0	0	0	0	3	1	4	7
Peak Factor																	0.893
High Int.					$16: 30$				15:30				$16: 15$				
Volume	0	0	0	0 !	1	2	0	3	0	0	2	2	0	3	1	4	
Peak Factor								0.917				0.375				0688	

Counted by : Ron
Board \# : 1320
Weamer $:$ cool/rany

File Narne: SB 1-75Ramps @ CR 41 Site Code : 00000000 Start Date : 03/15/2005 Page No

Groups Printed- U-Turns

	Southbound				CR 71 Westbound				SET-75 OFF RAMP Northbound				CR 41 Eastbound			
Stan rma	Len!	Thro \|	Richt	Rop. Toral	Left	Thre	figer	$\begin{aligned} & \text { सpp. } \\ & \text { Tctal } \end{aligned}$	Leth	Thru	Rions	Topia	Leff ! Tra	Right	${ }_{\text {recat }}$	Int. Total
Facar	VI	07	10:		101	01	TV.		TV7	10.	To:	-	1017	1.0		

16:30	0	0	0	01	1	0	0	11	0	0	0	01	0	0	0	0	1
Tola	σ	0	0	01	1	0	0	1	0	0	0	0	0	0	U	\square	1
Grand Total	0	0	0	0	1	0	0	1	0	0	0	01	0	0	0	0	1
Apprch \%	0.0	00	0.0		100.	0.0			0.0		0.0		0.0				
Total \%	0.0	00	0.0	0.0	100 0	0.0	0.0	100.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	

	Southbound				CR 41 Westbound				SETF 750 FF RAMP Nonhbound				CR 4 Eastbound			Rbe tolat imitat	
$5 \operatorname{san}$ Tries	Leta !	Trou	${ }^{\text {Along }}$	$\begin{aligned} & \text { for } \\ & \text { fotal } \end{aligned}$	Len	Tru	Rign !	Abar:	Len !	mons	Ragt	$\begin{aligned} & 206 \\ & \text { Total } \end{aligned}$	Len!	Thus!	Rixgh !		
Intersection 06:00																	
Volume	0	0	0	0	0	0	0	01	0	0	0	0	0	0	0	0	0
Percent	0.0	00	0.0	,	0.0	0.0	0.0	+	0.0	0.0	0.0		0.0	0.0	0.0		
Volume	0	0	0	0	0	0	0	01	0	0	0	0	0	0	0	0	0
Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Factor																	0.000
High int. Volume	5:45:00				5:45:00				5:45:00				45:00				
Peak Factor																	

Peak Hour From 16:00: :0 18:45- Peak 1 of 1

intersection volume	$\begin{array}{r} 16.00 \\ 0 \end{array}$	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1
Percent	0.0	0.0	00		100	0.0	0.0		0.0		0.0	1	0.0	0.0	0.0		
Volume	0	0	0	0 !	1	0	0	1	0	0	0	0	0	0	0	0	1
Volume	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1
Peak Factor High int.					16:30												
Volume Peak Factor	0	0	0	$0!$	1	0	0										

Tampa, FL 33602

Groups Prnted- Passenger Vehicles - Trucks \& Euses - U-Turns

	Southbound				CR 41Westbound				SET75 OFF RAMPNorthbound				CR 41Eastbound				
Stan Tmo	Lem	Tru	Fignt	$\mathrm{Abp}_{\mathrm{Amop}}$	Len !	Tru:	Figrs	$x_{\text {otal }}$	Len	Trus	Rigrt	$\begin{aligned} & \text { sep } \\ & \text { Tomat } \end{aligned}$	(en)	nrs	Fight	$\begin{aligned} & \text { Roc. } \\ & \text { Total } \end{aligned}$	int Total
Farorl	4	V	T		TV	${ }^{10} 5$	10		Yo	10	T		10	10	10		
06:00	U	0	0	0	41	13	0	54	T	0	0	01	0	18	10	88	142
06:15	0	0	0	0	32	28	0	60	1	0	2	3	0	13	78	91	154
06:30	0	0	0	0	41	23	0	64	0	0	2	2	0	23	56	79	145
06:45	0	0	0	01	27	13	0	40	1	0	3	4	0	18	42	60	104
Total	0	0	0	01	141	77	0	218	2	0	7	प1	0	72	246	318	545

07:00	0	0	0	0	18	16	0	34	1	0	0	1	0	18	36	54	89
$07: 15$	0	0	0	01	35	22	0	57	6	0	2	8	0	31	40	71	136
07:30	0	0	0	01	24	30	0	54	1	0	3	4	0	37	33	70	128
07:45	0	0	0	0 :	21	27	0	48	2	0	2	4	0	25	46	71	123
Total	0	0	0	U1	98	95	0	193	10	\square	7	17	0	11	155	266	475
08:00	0	0	0	0	16	25	0	41 :	2	0	2	4	0	27	32	59	104
08:15	0	0	0	0	17	23	0	40	2	0	7	9	0	18	25	43	92
08:30	0	0	0	0	8	22	0	30	1	0	2	3	0	24	27	51	84
08:45	0	0	0	01	23	25	0	48	1	0	1	2	0	19	37	56	106
Total	0	0	0	\square	64	95	0	159	6	0	12	18.	0	88	121	209	386

16.00	0	0	0	0	13	49	0	62	2	0	5	7	0	17	12	29	98
16:15	0	0	0	01	6	62	0	68	0	0	6	6	0	41	17	58	132
16:30	0	0	0	$0!$	11	72	0	83	2	0	7	9	0	22	18	40 !	132
16.45	0	0	0	0	20	77	0	97	3	0	7	10	0	35	16	52	159
Total ${ }^{-1}$	0	0	0	0	50	260	0	अण1	7	0	25	32	\square	76	63	173	521
17.00	0	0	0	0	16	80	0	96:	1	0	3	4	0	28	10	38 :	138
17.15	0	0	0	0	9	73	0	82	3	0	0	3	0	25	11	36	121
17:30	0	0	0	$0:$	12	63	0	75	3	0	5	8	0	23	7	30	113
17:45	0	0	0	$0:$	5	63	0	68	2	0	3	5	0	18	9	27 !	100
Tolat	0	0	0	U:	42	275	0	31	-	0	IT	20	0	94	37	13	472
18:00	0	0	0	01	11	57	0	68	2	0	5	7	0	21	4	25	100
18:15	0	0	0	0	13	50	0	63	2	0	3	5	0	18	17	351	103
18:30	0	0	0	0	10	53	0	63	1	0	2	3	0	12	12	24	90
18:45	0	0	0	0	6	55	0	61	3	0	3	6	0	15	10	25	92
Total	0	0	0	01	40	215	0	255	8	0	13	21	U	66	43	109 !	385
Grand Total	0	0	0	0	435	1021	0	1456	42	0	75	117	0	547	665	1212	2785
Apprch \%	0.0	0.0	0.0		29.9	70.1	0.0		35.9	0.0	64.1		0.0	45.1	54.9		
Total \%	0.0	0.0	0.0	0.0	15.6	36.7	0.0	52.3	1.5	0.0	2.7	4.2	0.0	19.6	23.9	43.5	

	Southbound				CR41 Westbound				SET. 75 OFF RKMF Northbound				CHat Eastbound				
Stant Tme	Lent	Tru!	Right	Ropot\|	Lon :	Thru	Fight	$\begin{gathered} \operatorname{son} \\ \text { Totai } \end{gathered}$	Let	Thou 1	Rig\%	Too	Len	Trau	Rught	$\xrightarrow{\text { Rogal }}$	Int. Total
 Intersection 06:00																	
Volume	0	0	0	0	141	77	0	218	2	0	7	9	0	72	246	318	5
Percent	0.0	0.0	00		64.7	35.3	0.0		22.2	0.0	77.8		0.0	22.6	77.4		
Volume	0	0	0	0	141	77	0	218	2	0	7	9	0	72	246	318	545
Volume	0	0	0	0	32	28	0	$60:$,	0	2	3	0	13	78	91	154
Peak Factor																	0.885
High int.	5:45:00				06:30				06:45				06:75				
volume	0	0	0	0	41	23	0	64	1	0	3	4 :	0	13	78	91	
Peak Factor								$0.852^{\text {i }}$				0.563 :				0.874	

Bayside Engineering, Inc.
1105 East Twiggs Street
Tampa. FL 33602
File Name : SB I-75 Ramps @ CR 41 Site Code : 00000000
Start Date: 03/15/2005
Page No : 2

	Southbound				CR 41 Westbound				SETन 75 OFF RAMP Northbound				CR4 4 Eastbound				
Start Tme	Lat	Tmu	Right	$\begin{array}{l\|} \text { abo } \\ \text { Toatal } \end{array}$	Lent:	Tros	Fight	${ }_{\text {rapal }}^{\text {Rep. }}$	Len	Mru	Righ	$\begin{aligned} & \text { ApD ! } \\ & \text { Totas ! } \end{aligned}$	Lan!	Trus	Fighe:	${ }_{\text {Pbo }}$	In Totat
Volume	0	0	0	0	53	291	0	344	6	0	23	29	0	127	61	188	
Percent	0.0	0.0	0.0		15.4	84.6	0.0		20.7	0.0	79.3		0.0	67.6	32.4		
Volume	0	0	0	0	53	291	0	344	6	0	23	29	0	127	61	188	561
Volume	0	0	0	0	20	77	0	97	3	0	7	10	0	36	16	52	159
Feak Factor																	0.882
High int.					16:45				16:45				16:15				
Volume	0	0	0	0	20	77	0	97	3	0	7	10	0	41	17	58	
Peak Factor								0.887				0725					

BAYSIDE ENGINEERING INC.

PEDESTRIAN MOVEMENT SUMMARY

State Road: \qquad County: \qquad pasco Intersecting Road: \qquad $\frac{\text { Ryan }}{3-15.05}$ Completed By: \qquad
Count Date: Date: \qquad

BAYSIDE ENGINEERING INC.

BICYCLE MOVEMENT SUMMARY

Section:

Bayside Engineering, Inc. 1105 East Twiggs Street

Tampa. FL 33602

File Name: NB 1-75 Ramps @ CR 41 Site Code : 00000000 Stan Date: 03/15/2005 Page No

Groups Printed-Passenger Vehictes

	NET-75OFF KAMP Southbound				CR41 Westbound				Northbound				CR 41 Eastbound				
$5 \tan$ Tmete	Let!	Theo 1	Piegrt	$\begin{aligned} & \text { Rop } \\ & \text { Total } \end{aligned}$	Len ${ }^{\text {a }}$	Trru	Rigrs:	$\begin{aligned} & \text { Rop } \\ & \text { Totat } \end{aligned}$	Len	Tru -	Figre	$\begin{gathered} \mathrm{ADDD}^{\mathrm{A}=12 a l} \mid \end{gathered}$	Let!	Thrs	Right	$\begin{gathered} \text { Fop. } \\ \text { Totat } \end{gathered}$	in Yotal
Fadal	10	T01	0		01	10	0		1	प\%	$10:$		T0:		To		
06.00	2	0	5	7	0	53	0	53	J	0	0	0	T	17	0	18	78
06:15	4	0	3	7	0	52	1	53	0	0	0	0	0	15	0	15	75
06:30	10	0	5	15	0	54	,	58	0	0	0	0	2	22	0	24	97
06:45	2	0	4	6	0	34	2	36	0	0	0	0	2	19	0	21	63
Total	18	0	17	351	0	193	7	200	U	0	0	\bigcirc	5	73	0	$76!$	313
07:00	5	0	6	11	0	29	3	32	0	0	0	0	0	19	0	19	62
07:15	7	0	6	13	0	42	3	45	0	0	0	0	1	35	0	36	94
07.30	16	0	13	29	0	40	4	44	0	0	0	0	4	37	0	41	114
07.45	5	0	11	16	0	34	1	35	0	0	0	01	5	19	0	24	75
Total	33	0	36	69	0	145	11	156	0	0	0	\square	10	150	0	120:	345
08:00	4	0	13	17	0	26	5	31	0	0	0	01	2	26	0	$28:$	76
08:15	8	0	11	19	0	26	7	33.	0	0	0	0	3	14	0	17	69
08:30	8	0	6	14	0	24	2	26	0	0	0	01	4	23	0	27	67
08.45	10	0	15	25 !	0	25	3	28 !	0	0	0	0	5	14	0	191	72
Total	J0	0	45	75	0	101	17	178	0	0	0	0:	14	37	O	प1:	286

$16: 00$	22	0	34	56	0	23	1	24	0	0	0	0	3	18	0	21	107
$16: 15$	18	0	42	60	0	29	6	35	0	0	0	0	2	41	0	43	138
$16: 30$	27	0	43	70	0	35	5	40	0	0	0	0	3	25	0	28	138
$16: 45$	25	0	49	74	0	43	4	47	0	0	0	0	1	39	0	40	161
106	92	0	168	260	0	30	16	146	0	0	0	0	9	123	0	132	538

17:00	31	0	45	77	0	45	6	51	0	0	0	0	3	23	0	26.	15.4
1715	19	0	44	63	0	35	4	43	0	0	0	0	0	28	0	28	134
17.30	28	0	29	57	0	38	5	43	0	0	0	0	6	23	0	29	129
17:45	26	0	42	68 !	0	23	3	26	0	0	0	0	0	18	0	18	112
Tomal	104	0	161	263	0	145	18	163	0	0	0	01	9	92	0	101,	529
18.00	28	0	41	69	0	27	6	33	0	0	0	0	2	25	0	27	129
18:15	16	0	31	47 !	0	30	4	34	0	0	0	01	1	18	0	19 !	100
18:30	29	0	41	70	0	21	1	22	0	0	0	0	2	12	0	14	106
18:45	19	0	40	59	0	18	5	23	0	0	0	0	2	15	0	17	99
Total	92	0	153	245:	0	96	16	112	0	0	0	01	7	70	0	77	434
Grand Total	369	0	580	949	0	810	85	895	0	0	0	01	54	545	0	599	2443
Apprct \%	38.9	0.0	61.		0.0	90.5	9.5		0.0	0.0	0.0		9.0	91.0	0.0		
Total \%	15.1	0.0	23.7	38.81	0.0	33.2	3.5	36.6 !	0.0	0.0	0.0	0.01	22	22.3	0.0	24.5	

	NETFI5 OFF KAMP Southbound				CR4 1 Westbound				Northbound				CR 41 Eastbound				
Stat Tmis	Let	men	Right	totil	Lst	Tru!	Right	$\begin{aligned} & \text { Rob } \\ & \text { Total ! } \end{aligned}$	Lett:	Thu !	Rima	$\begin{aligned} & \mathrm{kcp} \\ & \text { retai } \end{aligned}$	tat	Tins	Right :	$\begin{aligned} & \text { Aop } \\ & \text { totat } \end{aligned}$	1rat. Totas
Intersection	0715			75													
Volume	32	0	43	75.	0	142	13	155	0	0	0	0	12	117	0	129	359
Percent	42.7	0.0	57.3		0.0	91.6	8.4		0.0	0.0	0.0		9.3	90.7	0.0		
Volume	32	0	43	75	0	142	13	155 ;	0	0	0	0	12	117	0	129	359
Volume	16	0	13	29	0	40	4	44.	0	0	0	0	4	37	0	41	114
Peak Factor																	0.787
High int.	07:30				$07: 15$				5:45:00				7.30				
Volume	16	0	13	29	0	42	3	45	0	0	0	0	4	37	0	41	
Peak Factor				0.647				0.861								0.787	

Bayside Engineering, inc.
1105 East Twiggs Street
Tampa, FL 33602
File Name : NE 1-75 Ramps @ CR 41 Site Code :00000000
Start Date: $03 / 15 / 2005$
Page No : 2

	NET-75 OFF RAMMSouthbound				CR 41 Westbound				Northbound				CR4Eastbound				
Start Time	Left	True	Figm	$\begin{array}{l\|} \text { Rop } \\ \text { Total } \end{array}$	Leti	Trul	Right	Totai	Lett	Ton	Rignt	Rool	Leh	Trus	Fight	$\begin{aligned} & \mathrm{App}, \\ & \text { Yoted } \end{aligned}$	int Toral
Fonkourromib intersection	$\begin{aligned} & \text { OUTO PE:. } \\ & 16: 15 \end{aligned}$	Prax	al														
Volume	101	0	180	281	0	152	21	173 :	0	0	0	0	9	128	0	137	
Percent	35.9	0.0	64.1		0.0	87.9	12.1		0.0	0.0	0.0		6.6	93.4	0.0		
Volume	101	0	180	281	0	152	21	173	0	0	0	0	9	128	0	137	591
Volume	25	0	49	74	0	43	4	47	0	0	0	0	1	39	0	40	161
Peak Factor																	0.918
High int.	1700				17:00								16:15				
Volume	31	0	46	77	0	45	6	51	0	0	0	01	2	41	0	43	
Peak Factor				0912 !				0.848								0.797	

Bayside Engineering, inc. 1105 East Twiggs Street Tampa. FL 33602

File Name : NB 1-75Ramps @ CR 41 Site Code : 00000000 Start Date : 03/15/2005 Page No
Groups Printed-Trucks \& Buses

	NETFIS OFF RAMF Southbound				CR 91 Westbound				Northbound				CR 41 Eastbound				
Stan Tme	Len	Tru	Right	Top.	Let	Tru!	Fibst !	Topat	ten	Trou	Rigere !	Rotal	Len	Thru	fight	$\begin{aligned} & \text { xap } \\ & \text { Tota } \end{aligned}$	Inc Total
Facor!	\square	T0	T1		10:	10	T0:		n]	Tr	101		IV	01	T.0		
06\%0	0	0	0	0	0	0	7	1	T	0	0	0	0	7	0	0	T
06:15	;	0	3	4	0	1	0	1	0	0	0	0	0	1	0	1	6
06:30	0	0	0	0	0	1	1	2	0	0	0	0	0	0	0	0	2
06:45	1	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	2
Tota	2	U	3	5	0	3	2	5	D	0	0	0	U	T	0	1	T-

0700	0	0	0	0	0	3	1	4	0	0	0	0 :	1	0	0	1	
07:15	0	0	0	0	0	1	0	1.	0	0	0	0	0	1	0	1	5 2
07:30	0	0	0	0	0	1	0	1	0	0	0	0	0	2	\bigcirc	2	3
07.45	2	0	0	2	0	3	0	31	0	0	0	0	1	1	0	2	7
Tolal	2	U	0	2	0	${ }^{5}$	1	3	0	0	0	0	2	4	0	6	17

08:00	0	0	0	0	0	0	0	01	0	0	0	0	0	2	0	2	2
08:15	1	0	1	2	0	1	1	2	0	0	0	0	1	2	0	3	7
08:30	2	0	0	2	0	2	0	2	0	0	0	0	0	1	0	1	5
08:45	0	0	3	31	0	2	3	5	0	0	0	0	0	0	0	0	¢
Tola	3	U	4	7	0	5	4	9	T	V	0	5	1	5	0	6	22

16:00	0	0	0	0	0	0	1	1	0	0	0	0 i	1	0	0	1	2
16:15	0	0	1	1	0	0	0	0	0	0	0	0 !	2	2	0	4	5
16:30	0	0	1	1 !	0	2	0	2 !	0	0	0	0	2	0	0	2	5
16.45	0	0	2	2	0	1	1	2 .	0	0	0	0	0	3	0	3	7
Total	0	O	4	4	0	3	2	5	0	0	U	01	5	5	0	101	19
1700	0	0	0	0	0	4	0	4	0	0	0	01	0	3	0	3	7
1715	0	0	0	$0!$	0	7	1	2	0	0	0	0	0	0	0	0 -	2
17:30	0	0	1	\dagger	0	0	1	1	0	0	0	0	0	0	0	0	2
17:45	1	0	0	1	0	0	0	0	0	0	0	01	0	1	0	1:	2
Tola	1	0	1	21	0	5	2	7	O	0	0	0	0	4	0	41	13
$18: 00$	0	0	1	11	0	1	0	1	0	0	0	01	0	0	0	0	2
18:15	0	0	0	$0:$	0	1	1	2^{1}	0	0	0	0	1	1	0	2	4
18:45	0	0	0	$0:$	0	1	1	2	0	0	0	01	0	0	0	01	2
Tola	0	U	T	1	0	3	2	5	0	0	0	01	T	1	0	21	8
Grand Total	8	0	13	$21:$	0	27	13	40	0	0	0	0	9	20	0	291	90
Apprch \%	38.1	0.0	61.9		0.0	67.5	32.5	,	00	0.0	0.0		31.0	69.0	0.0		
Total \%	8.9	0.0	14.4	23.3 i	0.0	30.0	14.4	444	0.0	0.0	0.0	0.0	10.0	22.2	0.0	32.2	

	NBTन 75 OFF RAMP Southbound				CR 41 Westbound				Northbound				CR 41 Eastbound				
Stantimo	¢恠	Tiru	Righ!	Toral	Left	Thru	Rigm :	Redi	Let	Trus	Rignt	$\begin{aligned} & \text { poo } \\ & \text { Totai } \end{aligned}$	Let	thres	Fiont	Cop	int. Total
 intersection 08:00																	
Volume	3	0	4	7	0	5	4	9	0	0	0	0	1	5	0	6	22
Percent	42.9	0.0	57.1		0.0	55.6	44.4	!	0.0	0.0	0.0		16.7	83.3	0.0		
Volume	3	0	4	7	0	5	4	9 !	0	0	0	0	1	5	0	6	22
Volume	0	0	3	3 !	0	2	3	5 ;	0	0	0	0	0	0	0	0	8
Peak Factor																	0.688
High int.	08:45				9:45				:45:00				08:15				
Volume	0	0	3	3	0	2	3	5	0	0	0	0	1	2	0	3	
Peak Factor				0.583				0.450:								0.5001	

Bayside Engineering, Inc. 1105 East Twiggs Street Tampa, FL 33602

File Name: NB 1-75 Ramps @ CR 41 Site Code : 00000000
Starl Date : 03/15/2005
Page No : 2

	NET 75 OFF RAMPSouthbound				CR 41 Westbound				Northbound				CR41				
Start Tme	Lent	Tum	Rigm		L.en 1	Thas	Rignt	$\begin{aligned} & \text { Abp } \\ & \text { Teral } \end{aligned}$	Let	Trev	Ripht	$\begin{aligned} & \text { सfe: } \\ & \text { Torat } \end{aligned}$	Len	Thro	Rigra 1	${ }^{\text {Pbob. }}$	cre. Total
paik Foxi Fiom to Intersection	16:15	Peak	T														
Volume	0	0	4	4	0	7	1	8	0	0	0	0	4	8	0		
Percent	0.0	0.0	$100 .$		0.0	87.5	12.5		0.0	0.0	0.0		33.3	66.7	0.0		
Volume	0	0	4	4	0	7	1	8	0	0	0	0	4	8	0	12	
Volume	0	0	0	0	0	4	0	4	0	0	0	0	0	3	0	3	7
Peak Factor															0	3	0.857^{7}
Highint.	16:45				$17: 00$								16:15				
Volume	0	0	2	2	0	4	0	4	0	0	0	0	2	2	0	4	
Peak Factor				0.500				0500 !								0.750	

Bayside Engineering, Inc 1105 East Twiggs Street

Grouns Printad. U-Turns

	NETF5 OFF FAMP Southbound				CR 4 Westbound				Northbound				CR4 Eastbound				
Stant Time	Let	Tru	Right	Totai	Len	Toul	Right		Leti!	Tha!	Rigra	$\begin{aligned} & \mathrm{ApCO} \\ & \mathrm{rccat} \end{aligned}$	Leff	Thrs	Right	Tolat	We Total
Factor	10!	101	ग1		$\square 1$	71	17		10	T1	0 O		π	\square	ru		

08:45	0	0	0	0	0	0	0	01	0	0	0	0	1	0	0	11
Total	0	T	0	0	0	0	U	T1	0	0	0	0	1	0	0	1

Grand Total	0	0	0	0	0	0	0	0	0	0	0	01	2	0	0	2	2
Apprch \%	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0	00	1	$\begin{array}{r} 100 \\ 0 \end{array}$	0.0	0.0	!	
Total \%	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01	100.	0.0	0.0	100.0	

	NET.75 OFF RAM Southbound				CR4 Westbound				Northbound				CR41 Eastbound				
Star Tune	Letr	7has	Firat	${ }_{\text {Rep }}{ }_{\text {ctai }}$	teth	Trus	figr	$\begin{aligned} & \text { सbo } \\ & \text { Iotal } \end{aligned}$	tat!	Thes	Ringrt	70,	Lent	Thru !	Fight :	Total	Int Toma
Feat fox Fiom vovioceas- मeak \}																	
Intersection	08:00							:								!	
Volume	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1 :	1
Percent	0.0	0.0	0.0		0.0	0.0	00		0.0	0.0	00		100.	0.0	0.0		
Volume	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
Volume	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
Peak Facor																	0.250
High Int.	5:45:00				5:45:00				5:45.00				08.45				
Volume	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	
Peak Factor																0.250	

Peak Hour From 16:00 to 18:45 - Peak 1 of 1

Bayside Engineering, Inc.
1105 East Twiggs Street
Tampa, FL 33602

Counted by : Ryan
Board \# : 1321
Weather : cool/rainy

File Name: NB 1-75 Ramps @ CR 41
Site Code : 00000000
Start Date : 03/15/2005
Page No : 1

Groups Printed-Passenger Vehicies - Trucks \& Buses - U-Tums

	NETF75 OFF FRMM Southbound				CR4 Westbound				Northbound				CR 41 Eastbound				
Stan Tme	Lem	Thes 1	Rigs	$\begin{aligned} & \text { Abs } \\ & \text { Torat } \end{aligned}$	Lent	Than	Rigta	tope	L*t	Thru	Righ	Appl:	Len	Thus	Righs	$\begin{aligned} & \text { RoD } \\ & \text { Total } \end{aligned}$	tre Total
Faca	rol	10:	ri		O	101	,		π	1.0	1.0		1	T	To		
5500	2	0	5	7	0	53	1	54	0	0	0	0	T	17	0	18	79
06:15	5	0	6	11	0	53	1	54	0	0	0	0	0	16	0	16	81
06:30	10	0	5	15	0	55	5	60	0	0	0	0	2	22	0	24	99
06:45	3	0	4	7	0	35	2	37	0	0	0	0	2	19	0	21	65
Tota	20	0	20	$40!$	0	156	9	205	0	0	0	0	5	74	0	75	324

07:00	5	0	\square	11	0	32	4	36	0	0	0	0	1	19	0	20	67
07:15	7	0	6	13	0	43	3	46	0	0	0	0	1	36	0	37	96
07:30	16	0	13	29	0	41	4	45	0	0	0	0	4	39	0	43	117
07:45	7	0	11	18	0	37	1	38	0	0	0	0 !	6	20	0	26	82
Tatal	35	0	35	71	0	153	12	165	ए	0	0	01	12	114	0	126.	362
08:00	4	0	13	17	0	26	5	31	0	0	0	01	2	28	0	30	78
08:15	9	0	12	21	0	27	8	35	0	0	0	0	4	16	0	20	76
08:30	10	0	6	16	0	26	2	28	0	0	0	0	4	24	0	28	72
08:45	10	0	18	28 !	0	27	6	331	0	0	0	0	6	14	0	20	81
Total	33	0	49	82:	0	106	21	127	0	0	0	O	16	82	O	98.	307

16:00	22	0	34	561	0	23	2	25	0	0	0	0	4	18	0	22	103
16:15	18	0	43	61 ;	0	29	6	35	0	0	0	0	4	43	0	47	143
16:30	27	0	44	71	0	37	5	42	0	0	0	0	5	25	0	30	143
16:45	25	0	51	76	0	44	5	49	0	0	0	0	1	42	0	43	168
Total	52	0	172	264	0	133	18	151	0	U	U	0	14	128	0	142;	557
17:00	31	0	46	77	0	49	6	55	0	0	0	$0:$	3	26	0	29	161
17:15	19	0	44	63 !	0	40	5	45	0	0	0	0	0	28	0	28	136
17:30	28	0	30	58 !	0	38	6	44	0	0	0	0	6	23	0	25	134
17:45	27	0	42	69	0	23	3	26	0	0	0	0	1	19	0	20	115
Total	105	0	162	267	0	150	20	170	U	0	U	0	10	96	U	1061	543
18:00	28	0	42	70	0	28	6	34	0	0	0	0	2	25	0	27	131
18:15	16	0	31	47 :	0	31	5	36	0	0	0	0	2	19	0	$21!$	104
18:30	29	0	41	70 :	0	21	1	22	0	0	0	0	2	12	0	14 .	106
18:45	19	0	40	59 :	0	19	6	25	0	0	0	0	2	15	0	17	101
Totai	92	0	154	246	0	99	18	177	0	0	0	$0:$	8	71	0	79	442
Grand Total	377	0	593	970	0	837	98	935	0	0	0	0	65	565	0	630	2535
Apprch \%	38.9	0.0	61.1		0.0	89.5	10.5		0.0	0.0	0.0		10.3	89.7	0.0		
Totat \%	14.9	0.0	234	38.3	0.0	33.0	3.9	36.9	0.0	0.0	0.0	0.0	2.6	22.3	0.0	24.9	

	NET-75 OFF RAMP Southbound				CR 41 Westbound				Norhbound				CR4 Eastbound				
Start Tme	Let	Tru	Right	$\xrightarrow{\text { Pob }}$	Cent	trua	Rignt	$\begin{aligned} & \mathrm{AgF}, \\ & \mathrm{Totasi} \end{aligned}$	${ }^{\text {Let }}$:	Thru	Rignt	$\begin{aligned} & \text { spp: } \\ & \text { Total } \end{aligned}$	Len	Tma !	Rignt	${ }_{\text {Ropla }}^{\text {Rop }}$	int Totat
Intersection 07:15																	
Volurne	34	0	43	77	0	147	13	160	0	0	0	0	13	123	0	136	373
Percent	44.2	0.0	55.8		0.0	91.9	8.1		0.0	0.0	0.0		9.6	90.4	0.0		
Volume	34	0	43	77	0	147	13	160	0	0	0	0	13	123	0	136	373
Volume	16	0	13	29	0	41	4	45	0	0	0	0	4	39	0	43	117
Peak Factor																	0797
High int.	07:30				07:15				5:45:00				07:30				
Volume	16	0	13	29	0	43	3	46	0	0	0	0 -	4	39	0	43	
Peak Factor				$0.664{ }^{\text {' }}$				0.870								0.791	

Bayside tngineering, Inc.
1105 East Twiggs Street
Tampa, FL 33602
File Name : NB :-75 Ramps (0) CR 41 Site Code :00000000 Start Date : 03/15/2005 Page No : 2

	NETF5OFF RAMPSouthbound				CR 41 Westbound				Northbound				CR4Eastbound				
$5 \tan$ Toma	Lon	Tru	Rigr	$\xrightarrow{\text { fobe }}$ Torat	Left	Tras	Frich	$\underset{\mathrm{Tocal}}{\mathrm{Abp}}$	2明	Tros	Rash	$\begin{aligned} & \text { Kpop, } \\ & \text { Totai } \end{aligned}$	Lent	Thro	Right	$\begin{aligned} & \mathrm{ADD} \\ & \text { Tola: } \end{aligned}$	1 ta Totar
FEak hour From buw reas-reak ch Intersection 16:15																	
Volume	101	0	184	285	0	159	22	181	0	0	0	0	13	136	0	149	
Percent	35.4	0.0	64.6		0.0	87.8	12.2		0.0	0.0	0.0		8.7	91.3	0.0		
Volume	101	0	184	285	0	159	22	181	0	0	0	0	13	136	0	149	615
Volume	25	0	51	76	0	44	5	49	0	0	0	0	1	42	0	43	168
Peak Factor																	0.915
High int.	17:00				17.00								16:15				
Volume	31	0	46	77	0	49	6	55	0	0	0	0	4	43	0	47	
Peak Factor				0.925				0.823 ?								0.793	

BAYSIDE ENGINEERING INC.

PEDESTRIAN MOVEMENT SUMMARY

BAYSIDE ENGINEERING INC.
BICYCLE MOVEMENT SUMMARY

Section \qquad
Milepost: : $\frac{6: 00-9.00 \mathrm{Am}}{4.00-7.00 \mathrm{Pm}}$ State Road: $\frac{S B \text { I-75 RampS city: Ridge Manor }}{S R 50}$ Time Pernods:

Completed By, \qquad Date: \qquad

SR 50

Bayside Engineering. inc.
1105 East Twiggs Street

Counted by : Ron / Ryan
Board \# : 1320/1321
Weather : coof $/$ rainy

File Name: SB:-75 Ramps @ SR 50 Site Code :00000000 Start Date: 03/16/2005 Page No : 1

Groups Printed- Passenger Vehicles

	SET-750FF RAMP Southbound				SR 50 Westbound				Northbound				SR50Eastbound				
Stert Tine	Len	moul	Fignt	$\begin{aligned} & \text { xpp } \\ & \text { Tatai } \end{aligned}$	Len	Thrs	Right	$\begin{aligned} & \text { RgD } \\ & \text { Total } \end{aligned}$	Len	Thru	Fighe	$\begin{aligned} & \text { Top. } \\ & \text { Totat } \end{aligned}$	Lent	Thou 1	Right	$\begin{aligned} & \mathrm{App} \\ & \text { Fetai } \end{aligned}$	If Totat
redor	T1	0	\square		71	$1{ }^{1}$	ग!		10	T	10!		101	101	T0		
06:T0	6	0	17	23	45	67	0	112	U	0	0	01	0	65	24	93	228
06:15	11	0	21	32	41	75	0	116	0	0	0	0	0	91	24	115	263
06:30	15	0	26	41	34	108	0	142	0	0	0	0	0	92	27	119	302
06:45	14	0	18	32	33	91	0	124	0	0	0	0	0	109	21	130	286
Tolal	45	0	82	128	153	341	0	494	0	U	0	01	0	361	95	456	1079
$07: 00$	10	i	26	37	37	98	0	135	0	0	0	0	0	101	12	113	285
07:15	13	0	22	35	45	116	0	161	0	0	0	0	0	127	27	154	350
07.30	16	0	17	33	26	125	0	151	0	0	0	0 !	0	129	17	146	330
07:45	8	0	18	26	34	114	0	148	0	0	0	01	0	113	20	133	307
TOLT	4	T	83	131	142	453	0	5951	0	U	0	01	U	470	76	546	1272
08:00	13	0	29	42	31	100	0	131 :	0	0	0	0	0	121	12	133	306
08:15	17	0	8	25	19	107	0	126	0	0	0	0	0	128	24	152	303
08:30	11	0	23	34	29	109	0	138	0	0	0	0	0	138	22	160	332
08.45	9	0	26	35	46	120	0	166	0	0	0	0	0	140	19	159	360
Totat	50	0	86	1361	725	436	0	567	J	\square	V	0	0	527	77	604	1307

16.00	21	0	45	661	23	134	0	157	0	0	0	0	0	191	37	228	451
16:15	19	0	38	57	30	144	0	\$74	0	0	0	$0 \cdot$	0	177	33	210	441
16:30	26	0	39	65	26	145	0	171	0	0	0	0 :	0	159	23	182	418
16.45	20	0	28	48	24	135	0	159	0	0	0	0 :	0	161	20	181	388
Total	86	0	150	236	103	558	0	6ET!	0	0	0	0	0	588	13	801	7698
17:00	27	0	41	68	32	138	0	170	0	0	0	01	0	116	20	136	374
17.15	19	0	48	67	30	156	0	186	0	0	0	$0!$	0	145	28	173 !	426
17.30	24	0	40	64	27	135	0	162 !	0	0	0	$0!$	0	166	17	183	409
17:45	16	0	38	54	32	118	0	150 \%	0	0	0	0 \%	0	115	25	140	34.4
Totat	85	0	167	2531	121	541	0	6681	0	0	U	T	U	542	प0	632	1553
18.00	15	0	26	41	28	124	0	152	0	0	0	01	0	130	20	150 :	343
18:15	13	0	22	35	15	104	0	119	0	0	0	0	0	103	12	115	269
18:30	8	0	28	36	23	87	0	110	0	0	0	0	0	88	17	105	251
18:45	14	0	22	36	23	121	0	144 ?	0	0	0	$0!$	0	67	8	75	255
Total	50	0	98	148	प5	436	0	525	U	0	0	U	0	388	57	445	117
Grand Total	365	1	666	10321	733	2771	0	3504	0	0	0	01	0	2976	509	3485	8021
Apprch \%	35.4	0.1	64.5		20.9	79.1	0.0		0.0	0.0	0.0		0.0	85.4	14.6		
Total \%	4.6	0.0	8.3	12.9	9.1	345	0.0	43.7	0.0	0.0	0.0	0.0	0.0	37.1	6.3	43.4	

	Sसा.न50FF RAMP Southbound				SR 50 Westbound				Norihbound				SR 50Eastbound				
Stan Teme	Len	Truy	Rign!	$\begin{array}{l\|} \text { Xop } \\ \text { Total } \end{array}$	tett	Thas	Rign !	${ }_{\text {actal }}^{\text {acha }}$	Lent	Tom!	Right	$\begin{aligned} & \text { Xep } \\ & \text { icoal } \end{aligned}$	L.et	Trua	Figh	${ }_{\text {Tctal }}^{\text {Tatal }}$	In: Tctat
Intersection	08:00																
Volume	50	0	86	136	125	436	0	$561:$	0	0	0	0	0	527	77	604	1301
Percent	36.8	0.0	63.2		22.3	77.7	0.0		0.0	0.0	0.0		0.0	87.3	12.7		
Volume	50	0	86	136	125	436	0	561	0	0	0	0	0	527	77	604	1301
Volume	9	0	25	35	46	120	0	166	0	0	0	0	0	140	19	159	360
Peak Factor																	0.903
High int.	08.00				08:45				5.45 .00				08:30				
Volume	13	0	29	42	46	120	0	166	0	0	0	0	0	138	22	160	
Peak Factor				0.810				0.845								0.944	

Bayside Engineering, Inc. 1105 East Twiggs Street Tampa, FL 33602

File Name : SE 1-75 Ramps @ SR 50 Site Code : 00000000 Start Date: 03/162005 Page No : 2

	SBT-75 OFF RAMPSouthbound				SR 50 Westbound				Nonhbound			SR 50 Eastbound					
Start Time	Let	thow	Figrt		L.ent	Thea	Rigm	$\begin{aligned} & \text { Rep, } \\ & \text { Total } \end{aligned}$	Left	Tru	Rima	Sopial	Lef	7 mu	Aignt	Reat	tor rotat
Intersection 16:00																	
Votume	86	0	150	236	103	558	0	661	0	0	0	0	0	688	113	801	698
Percent	36.4	0.0	63.6		15.6	84.4	0.0		0.0	0.0	0.0		0.0	85.9	14.1		
Volume	86	0	150	236	103	558	0	661	0	0	0	0	0	688	113	801	1698
Volume	21	0	45	66	23	134	0	157	0	0	0	0	0	191	37	228	451
Peak Factor																	0.941
High Int.	10.00				16:15								16:00				
Volume	21	0	45	65	30	144	0	174	0	0	0	0	0	191	37	228	
Peak Factor				0.894				0.950								0.878	

Bayside Engineering, Inc.
1105 East Twiggs Street

Counted by: Ron/Ryan
Board\# : 1320/1321
Weather : cool/tany

File Name : S8 $1-75$ Ramps @ SR 50 Site Code :00000000
Start Date: 03/16/2005
Page No

Groups Printed-Trucks \& Buses

	SBT.75 OFF RAMP Southbound				SR 50 Westbound				Nortibound				SR 50Eastbound				
Slant Tine	Len	Tir	Fing:	Total	Len	Thru	Riogal	$\begin{aligned} & \mathrm{ADO} \\ & \text { Total } \end{aligned}$	Len	Tras	Rigra		Lef	Tru	Right	Top,	In Totat
Facori	10:	70	T0:		1.0	0	101		10	1	101			10			
165:00	2	0	3	5	4	8	0	12	0	0	0	0	0	21	10	31	48
06:15	5	0	1	6	3	17	0	20	0	0	0	0	0	33	7	40	66
06:30	2	0	9	11	7	25	0	32	0	0	,	0	0	33	8	41	84
06:45	14	0	4	18	5	20	0	25	0	0	0	0	0	26	7	33	76
Tota	23	0	77	40	19	70	0	85	0	0	0	0	6	113	32	145	274

07:00	5	0	7	12 ;	5	37	0	42	0	0	0	0	0	22	4	26	80
07:15	8	0	4	12	13	21	0	34	0	0	0	0	0	21	3	24	70
07:30	7	0	8	15	7	25	0	32	0	0	0	0	0	30	10	40	87
07:45	5	0	12	17	4	26	0	30	0	0	0	0	0	36	2	38	85
Total	25	0	3	56	29	105	0	138	U	0	0	0	0	109	15	128	322
08:00	13	0	6	19 :	11	23	0	34	0	0	0	0	0	33	7	40 :	93
08:15	4	0	12	16	8	32	0	40	0	0	0	0	0	36	10	46	102
08:30	6	0	10	16	11	28	0	39	0	0	0	0	0	29	5	34	89
08:45	4	0	8	12	4	33	0	37	0	0	0	0	0	25	3	28	77
Total	27	0	35	33	34	116	0	150	U	0	0	0	0	123	25	$148:$	361

$16: 00$	10	0	6	16	5	28	0	33	0	0	0	0	0	27	5	32	81
16:15	4	0	5	9	1	21	0	22	0	0	0	0 :	0	10	5	15 :	46
16:30	3	0	2	5	4	25	0	29	0	0	0	0	0	13	3	16	50
16:45	2	0	2	4	6	8	0	14	0	0	0	01	0	12	2	14	32
Total	15	0	15	34	15	82	0	58:	0	0	0	01	0	62	15	77	209
17.00	3	0	1	4	2	11	0	13.	0	0	0	0	0	16	2	18	35
17:15	6	1	1	θ	8	6	0	14:	0	0	0	0	0	10	2	12	34
17:30	7	0	1	\%	4	13	0	17	0	0	0	0	0	9	3	12	37
17:45	2	0	5	7	0	6	0	6	0	0	0	0	0	7	3	10 !	23
Tolal	18	1	8	27	14	36	0	50.	0	0	0	0	0	42	T0	52	129
18:00	8	0	4	12	6	8	0	14	0	0	0	0	0	4	4	8	34
18:15	8	0	0	8	3	7	0	10	0	0	0	0	0	2	2	4	22
18:30	12	0	1	$13!$	5	3	0	8 :	0	0	0	0	0	3	2	5	26
18:45	9	0	0	9	2	7	0	9	0	0	0	0	0	3	3	6	24
Total	37	0	5	42	16	25	0	41	0	0	0	0	0	12	11	231	106
Grand Total	149	1	112	262	128	438	0	$566:$	0	0	0	01	0	461	112	573 ;	1401
Apprch \%	56.9	0.4	42.7		22.6	774	0.0		0.0	0.0	0.0		0.0	80.5	19.5		
Total \%	10.6	0.1	8.0	18.7	9.1	31.3	0.0	40.4	0.0	0.0	0.0	0.0 :	0.0	32.9	8.0	40.9	

	SETF 50 FF RAMF Southbound				$5 R 50$ Westbound				Northbound				SR 50 Eastbound				
Stan Tinst	Leth	nou	Right	$\begin{gathered} \text { Rop } \\ \text { Total } \end{gathered}$	Lett	Thas!	Fight	Tref	Len	theo 1	Rignt	$\begin{aligned} & \text { Acoc } \\ & \text { Totait } \end{aligned}$				roct	int. Totai
Intersection 07.45																	
Volume	28	0	40	58	34	109	0	143	0	0	0	0	0	134	24	158	369
Percent	41.2	0.0	58.8		23.8	76.2	0.0		0.0	0.0	0.0		0.0	84.8	15.2		
Volume	28	0	40	68	34	109	0	143	0	0	0	0	0	134	24	158	369
Volume	4	0	12	16	8	32	0	40	0	0	0	0	0	36	10	46	102
Peak Factor																	0.004
High int.	08:00				08:15				5.45:00				08:15				
Volume	13	0	6	19	-	32	0	40	0	0	0	0	0	36	10	46	
Peak Factor				0.895 !				0.894								0.859	

Bayside Engineering, Inc. 1105 East Twiggs Street Tampa. FL 33602

File Name
SE1-75 Ramps@SR50 Site Code 00000000 Star Date : 03/162005 Page No :2

	SET. 75 OFF RAMP Southbound				SR 50 Westbound				Northbound				$\begin{aligned} & \text { SR } 50 \\ & \text { Eastbound } \end{aligned}$				
Start Tmm	LeH	7 me	Firgh	Tosial	Let	Itru	Rignt	$\begin{aligned} & \mathrm{R}_{\mathrm{fpp}} \\ & \text { Tolat } \end{aligned}$	Let !	Trua	Rigra	$\begin{aligned} & \text { ADP. } \\ & \text { Total } \end{aligned}$	Leh	Thu!	Right	Total	n. Total
intersection $16: 00$																	
Volume	19	0	15	34	16	82	0	98 !	0	0	0	0	0	62	15	77	209
Percent	55.9	0.0	44.1		16.3	83.7	0.0		0.0	0.0	0.0		0.0	80.5	19.5		
Volume	19	0	15	34	16	82	0	98	0	0	0	0	0	62	15	77	209
Volume	10	0	6	16	5	28	0	33	0	0	0	0	0	27	5	32	81
Peak Factor																	0.645
High int.	16:00				16:00								16:00				
Voiume	10	0	6	16	5	28	0	33	0	0	0	0	0	27	5	32	
Peak Factor				0531				0.742								0.602	

Bayside Engineering, Inc. 1105 East Twiggs Street Tampa. FL 33602

Counted by: Ron/Ryan
 Board\# : 1320/1321

Weather : cool/rainy

File Name: SB 1-75Ramps@SR 50 Ste Code :00000000
Stan Date : 03/16/2005
Page No
: 1

Groups Printed- U-Turns

File Name: SB 1-75 Ramps@SR 50 Site Code : 00000000 Star Date: 03/16/2005 Page No : 2

	SETF75 OFF RAMF Southbound Southbound				SF 50 Westbound				Northbound				SR 50 Eastbound				
Stant Time	Len:	Thrs	Rigra	${ }_{\substack{\text { Appp } \\ \text { Tolal }}}$	Left	Tin	Rignt	$\begin{aligned} & \text { Apor in } \\ & \text { Total } \end{aligned}$	Let	Tru:	Fipre	${ }_{\text {Apo }}^{\text {teata }}$	Le\%	Tros	Right	totat	:ta Tolat
реतx सot From ह6																	
Intersection	16:00																
Volume	0	0	0	0	3	0	0	3	0	0	0	01	0	0	0	0	3
Percent	0.0	0.0	0.0		100.	0.0	0.0		0.0	0.0	0.0	+	0.0	0.0	0.0		
Volume	0	0	0	0	3	0	0	3	0	0	0	0	0	0	0	0	3
Volume	0	0	0	01	1	0	0	1	0	0	0	0	0	0	0	0	1
Peak Factor												-					0.750
High Int.					16:00												
Volume	0	0	0	01	1	0	0	11									
Peak Factor								0.750									

Counted by : Ron/Ryan
Boardi\# : 1320/1321
Weather cool/rainy

Bayside Engineering, Inc.
1105 East Twiggs Street
Tampa, FL 33602

File Name: SE1-75 Ramps @ SR 50 Site Code : 00000000 Stan Date: 03/16/2005 Page No

Groups Printed- Passenger Vehicles - Trucks \& Buses - U-Turns

	SBT-75 OFF RAMF Southbound				SR 50 Westbound				Northbound				SR 50 Easthound				
5 San Tinte	Left	Trua	Right	$\begin{aligned} & \text { ADP } \\ & \text { Total } \end{aligned}$	teft	Thre !	Right		Let	Thes	Rigrt	$\begin{aligned} & \text { App, } \\ & \text { Total } \end{aligned}$	Lett	Trus	Rignt	$\begin{aligned} & \text { Repp. } \\ & \text { Fotal } \end{aligned}$	in To:at
Facor:	T3	T0:	Toi		10.	10	Ti		101	101	101		T1	1.0	T		
DE:T0	8	0	20	28	49	75	0	124	0	0	0	0	0	90	34	124	276
06:15	16	0	22	38	44	92	0	136	0	0	0	0	0	124	31	155	329
06:30	17	0	35	52	42	133	0	175	0	0	0	0	0	125	35	160	387
06:45	28	0	22	50	38	111	0	149	0	0	0	0	0	135	28	163	362
Total	69	0	99	168	$1 / 3$	41	T	584	0	0	0	0	0	474	128	602	1354

07:00	15	1	33	491	42	135	0	177	0	0	0	01	1	123	16	140!	366
07:15	21	0	26	47	58	137	0	195	0	0	0	0	0	148	30	178	420
07:30	23	0	25	48	34	150	0	184	0	0	0	0	0	159	27	186	418
07:45	13	0	30	43	39	140	0	179	0	0	0	0	0	149	22	171	393
Total	72	T	174	187	173	562	0	735 ;	0	0	U	0	1	579	95	675	1597
08:00	26	0	35	61	42	123	0	165	0	0	0	0	0	154	19	173 !	399
08:15	21	0	20	41	28	139	0	167	0	0	0	0	0	164	34	198	406
08:30	17	0	33	50	40	137	0	177	0	0	0	0	0	167	27	194	421
08:45	13	0	34	47	50	153	0	203	0	0	0	0	0	165	22	187	437
Tatal	71	U	122	189	160	552	0	712	U	0	U	0	0	650	102	752	1563

16:00	31	0	51	82	29	162	0	191	0	0	0	0	0	218	42	260	533
16:15	23	0	43	68	32	165	0	197	0	0	0	0	0	187	38	225	488
16:30	29	0	41	70	30	170	0	200	0	0	0	0 :	0	172	26	198	468
16:45	22	0	30	52	31	143	0	174	0	0	0	0	0	173	22	195	421
Total	705	0	165	270	122	640	0	7621	0	0	0	0	0	750	128	B7E:	1970
17:00	30	0	42	72	35	149	0	184	0	0	0	01	0	132	22	154:	410
17:15	25	1	49	75	38	162	0	200	0	0	0	0	0	155	30	185 :	460
17:30	31	0	41	72	31	148	0	179	0	0	0	0	0	175	20	195	446
17.45	18	0	43	61	32	124	0	156	0	0	0	0 :	0	122	28	150	367
Total	T04	1	175	280	136	583	0	719	U	0	0	0	0	584	100	584	1683
18:00	23	0	30	53	34	132	0	166	0	0	0	0	0	134	24	158	377
18:15	21	0	22	43	18	111	0	129	0	0	0	0	0	105	14	119	291
18:30	20	0	29	49	29	90	0	119	0	0	0	0	0	91	19	110	278
18:45	23	0	22	45	26	128	0	154	0	0	0	0	1	70	11	82	281
गुal	87	J	103	150:	107	$46!$	0	5581	0	0	0	0	T	400	68	465	1227
Grand Total	514	2	778	1294	871	3209	0	$4080 \cdot$	0	0	0	0	2	3437	621	4060	9434
Appreh \%	39.7	0.2	60.1		21.3	78.7	0.0		0.0	0.0	0.0		0.0	847	15.3		
Total \%	5.4	0.0	8.2	13.7	9.2	34.0	0.0	43.2	0.0	0.0	0.0	0.0	0.0	364	6.6	43.0	

	5BT75 CFFRAMP Southbound				$\begin{gathered} \text { SR } 50 \\ \text { Westbound } \end{gathered}$				Northbound				SR 50 Eastbound				
Stant Tirme	Lnit	Thr	Repre	$\begin{aligned} & \text { xppit } \\ & \text { Totail } \end{aligned}$	Ler	Ther:	Rogm	$\begin{gathered} \text { Rop } \\ \text { Tol\| } \end{gathered}$	Loth	Thes	Fight	$\begin{array}{ll} \text { Sop } \\ \text { Tolas } \end{array}$	Lat !	True	Rign	${ }_{\text {Sopat }}$	trit Totat
Volume	77	0	122	199	160	552	0	712	0	0	0	$0!$	0	650	102	752	1663
Percent	38.7	0.0	61.3		22.5	77.5	0.0		0.0	0.0	0.0		0.0	86.4	13.6		
Volume	77	0	122	199	160	552	0	712	0	0	0	0	0	650	102	752	1663
Volume	13	0	34	47	50	153	0	203	0	0	0	0	0	165	22	187	437
Peak Factor																	0.951
High int.	08:00				08:45				5:45:00				08:15				
Volume	26	0	35	61	50	153	0		0	0	0	0	0	164	34	198	
Peak Factor				0.816				0.877								0.949	

File Name: SB 1-75 Ramps @ SR 50 Site Code : 00000000 Start Date : 03/16/2005
Page No :

	SBT-75 OFFRARMPSouthbound				SR 50 Westbound				Northbound				SR 50Eastbound				
Slant rme	ten	Tras	Fign:	${ }_{\text {Potat }}^{\text {Rop }}$	Leta	Trua	Rign	$\begin{aligned} & \mathrm{Lbpl} \mid \\ & \text { Total } \end{aligned}$	Let	nim	Rigrt	ADP. fotal	Left:	man:	Rignt	$\begin{aligned} & \text { Rop } \\ & \text { rorat } \end{aligned}$	the. Total
Volume	105	0	165	270	122	640	0	762	0	0	0	0	0	750	128	878	1910
Percent	38.9	0.0	61.1		16.0	84.0	0.0		0.0	0.0	0.0		0.0	85.4	14.6		
Volume	105	0	165	270	122	640	0	762	0	0	0	0	0	750	128	878	1910
Volume	31	0	51	82	29	162	0	191	0	0	0	0	0	218	42	260	533
Peak Factor																	0.896
High Int.	16.00				16:30								16:00				
Volume	31	0	51	82	30	170	0	200	0	0	0	0	0	218	42	260	
Peak Factor				0.823				0.953								0844	

BAYSIDE ENGINEERING INC.

BICYCLE MOVEMENT SUMMARY

Bayside Engineering, inc.
1105 East Twiggs Street Tampa. FL 33602

Counted by : Ron / Ryan Board\# : 1320/1321 Weather : cool/rainy

File Name: NB $1-75$ Ramps@ SR 50 Site Code : 00000000 Start Date: 03/17/2005 Page No 1

Groups Printed- Passenger Vehicies

	Southbound				$5 R 50$ Westbound				NETन 15 OFF RAMP Northbound				5R 50 Eastbound				
Stan Tme	Lett	Trus	Pight	$\begin{gathered} x \operatorname{sop} \\ \operatorname{Totan} \end{gathered}$	Let	Trus	RigM	$\begin{aligned} & \text { Rep. } \\ & \text { Totas } \end{aligned}$	Left	Trus	frignt	$\begin{aligned} & \text { Fotp } \\ & \text { Fotat } \end{aligned}$	Let	TruT	Right	$\begin{aligned} & \text { App. } \\ & \text { rotal }^{2} \end{aligned}$	Int. Total
Facior	T01	IO	T1		10	T0	10		ता	10	T0		10	10	10		
$06: 00$	0	0	0	0	0	73	20	93	10	0	11	21	24	66	0	50	204
06:15	0	0	0	0	0	122	23	145	14	0	19	33	25	87	0	112	290
06:30	0	0	0	0	0	116	31	147	14	0	25	39	34	70	0	104	290
06:45	0	0	0	0	0	97	21	118	10	0	32	42	28	89	0	117	277
Total	0	0	5	0	0	408	55	503	48	0	ह7	135	11	3 C	\square	423	1061

07.00	0	0	0	0	0	98	32	130	15	0	41	56	30	82	0	112	298
07:15	0	0	0	0	0	105	36	141	15	0	32	47	30	95	0	125	313
07:30	0	0	0	0	0	139	31	170	9	0	32	41	31	120	0	151	362
07:45	0	0	0	0	0	143	36	179	24	1	32	57	23	108	0	131	367
Total	[]	0	0	0	0	485	135	620	63	1	137	201	77	405	0	519	1380

08:00	0	0	0	0	0	117	29	146	22	0	32	54	28	87	0	115	315
08:15	0	0	0	0	0	128	22	150	25	0	39	64	32	99	0	131	345
0830	0	0	0	0	0	126	18	144	19	0	43	62	28	104	0	132	338
08:45	0	0	0	0	0	123	33	156	16	0	58	74	26	110	0	136	366
Total	0	0	0	\square	15	494	102	556	82	0	172	254	114	400	0	514	1362

16.00	0	0	0	01	0	168	34	202	34	0	50	84	24	179	0	203	489
16:15	0	0	0	0	0	134	31	165	26	0	47	73	23	152	0	175	413
16:30	0	0	0	0	0	159	25	184	21	0	65	86	19	168	0	187	457
16:45	0	0	0	0	0	157	29	186	31	0	51	82	26	137	0	163	431
Tola	0	0	0	\square	0	678	119	737 !	172	0	213	325	92	БЗ6	\square	728	1790
17:00	0	0	0	0	0	150	21	171	30	0	60	90	27	138	0	165	426
17:15	0	0	0	0 :	0	132	30	162	23	0	56	79	26	163	0	189	430
17:30	0	0	0	0	0	155	29	184	19	0	67	86	15	117	0	132	402
17:45	0	0	0	0	0	136	30	166	23	0	51	74	19	109	0	128	368
Tolat	0	0	0	O	0	573	110	683	55	0	234	329	87	527	0	614	1626

18:00	0	0	0	0	0	119	25	144	23	0	52	75	17	120	0	137	356
18:15	0	0	0	0	0	112	21	133	17	0	39	56	13	104	0	117	306
18:30	0	0	0	0	0	143	27	170	16	0	49	65	9	89	0	98	333
18:45	0	0	0	0	0	107	25	132	16	0	56	72	17	105	0	122	326
Total	0	0	0	0	U	481	पु8	579	76	0	196	268	56	478	0	474	1321

Grand Total	0	0	0	0	0	3059	659	3718	472	1	1039	1512	574	2698	0	3272	8502
Apprch \%	0.0	0.0	0.0		0.0	82.3	17.7		31.2	0.1	68.7		17.5	82.5	0.0		
Total \%	0.0	0.0	0.0	0.0	0.0	36.0	7.8	43.7	5.6	0.0	12.2	17.8	6.8	31.7	0.0	38.5	

	Southoound				5 SF 50 Westbound				NETF5 OFF FAMPNorthbound				$\begin{aligned} & \text { SR } 50 \\ & \text { Eastbound } \end{aligned}$				
Sleet Teme	Len	tras	nignt	${ }_{\text {copa }}^{\text {Acta }}$	Len	Thos	Figta		Let	Tru!	Rigra	Tool !	Lef	Thre	Prign	tppol	697 Totat
Intersection 07:30																	
Volume	0	0	0	0	0	527	118	645	80	\dagger	135	216	114	414	0	528	1389
Percent	0.0	0.0	0.0		0.0	81.7	18.3		37.0	0.5	62.5		21.6	78.4	0.0		
Volume	0	0	0	0	0	527	118	645	80	1	135	216	114	414	0	528	1389
Volume	0	0	0	01	0	143	36	179	24	1	32	57	23	108	0	131	367
Peak Factor																	0.946
High lnt.	5:45:00				7.45				08:15				07:30				
Volume	0	0	0	$0:$	0	14.3	36	179.	25	0	39	64	31	120	0	151	
Peak Factor								0.001				0844				0.874	

Bayside Enqineering, Inc 1105 East Twiggs Street

Tampa, FL 33602

Fife Name: NB :-75 Ramps@ SR 50 Site Code : 00000000
Stan Date : 03/17/2005
Page No 2

	Southbound				SK 50Westbound				NET. 75 OFFRAMPNonthbound				5R 50Eastbound				
Stert Time	Leet	Thes	Fight	KCP Totai	Lett	Thus	Right	$\mathrm{SPC}_{\mathrm{Pb}}^{\mathrm{Total}}$	L.en	Thou	Rignt		Lem	tiru	Right	${ }_{\text {Appe }}^{\text {Aptat }}$	1 lm Total
 intersection 16:00																	
Volume	0	0	0	0	0	618	119	737	112	0	213	325	92	636	0	728	1790
Percent	0.0	0.0	0.0		0.0	83.9	16.1		34.5	0.0	65.5		12.6	87.4	0.0		
Volume	0	0	0	0	0	818	119	737	112	0	213	325	92	636	0	728	1790
Volume	0	0	0	01	0	168	34	202	34	0	50	34	24	179	0	203	489
Peak Factor																	0.915
High Int.					6:00				16:30				16:00				
Volume	0	0	0	0	0	168	34	202	21	0	65	86	24	179	0	203	
Peak Factor								0.912				0.945				0.897	

Counted by : Fon/Ryan
Board\# : 1320/1321
Weather cool rainy

Tampa, FL 33602

File Name: NB 1-75Ramps@SR 50 Site Code :00000000
Start Date: 03/17/2005
Page No : 1
Groups Printed- Tucks \& Buses

	Southbound				SR 50 Westbound				NET-75 OFF RAMP Northbound				SR 50Eastbound				
Start Tome	Let	Tho	Rignt	$\begin{gathered} \mathrm{kbp} \\ \text { ictai } \end{gathered}$	LeH	Trus	Right	Rob	tent	Trus	Fight	$\begin{aligned} & \text { Rpp } \\ & \text { Trat } \end{aligned}$	Let	mou	Right	$\begin{aligned} & \text { Rpp, } \\ & \text { ictai } \end{aligned}$	the Total
Fabar	17	101	T0:			T	To:		T0:	T0	10		0	T	ro:		
06:00	0	0	0	0	0	12	T	$13!$	2	0	4	b;	2	20	0	22	41
06:15	0	0	0	0	0	14	7	21	4	0	5	9	10	28	0	38	68
06:30	0	0	0	0	0	9	2	11 !	6	0	4	10	6	28	0	34	55
06:45	0	0	0	0	0	20	7	27 :	5	0	6	11	12	36	0	48	86
Total	0	0	0	0	0	55	17	72 !	17	0	19	36	30	112	0	142	250

07:00	0	0	0	0	0	14	3	17	4	0	7	11	4	27	0	31	59
07:15	0	0	0	0	0	21	4	25	10	0	5	15	6	28	0	34	74
07:30	0	0	0	0	0	35	2	37	9	0	8	17	6	30	0	36	90
07:45	0	0	0	0	0	32	5	37	5	1	12	18	7	26	0	33 !	88
Total	0	0	0	0	0	102	14	16	28	1	32	61	23	117	0	134	317
08:00	0	0	0	0	0	31	7	381	4	0	5	9	1	21	0	22 ;	69
08:15	0	0	0	0	0	25	5	30.	2	0	4	6	7	41	0	48	84
08:30	0	0	0	0	0	35	7	42	4	0	6	10	13	27	0	40 :	92
08:45	0	0	0	0	0	37	9	46	8	0	13	21	19	28	0	47 !	114
Total	0	0	0	0	0	128	28	155	18	0	28	46	40	17	0	157	355

16:00	0	0	0	0	0	13	11	24	7	0	6	13	11	11	0	22	59
16:15	0	0	0	0	0	16	11	27	4	0	3	7	7	20	0	27	61
16:30	0	0	0	0	0	13	6	19	6	0	2	$8!$	1	18	0	19	46
16.45	0	0	0	0	0	;1	9	20	2	0	13	15	3	18	0	21	56
Total	0	0	0	U:	0	53	31	901	19	0	24	431	22	67	0	89	222
17:00	0	0	0	01	0	11	11	22 ;	2	0	7	9	2	14	0	16	47
17:15	0	0	0	0	0	10	7	17	3	0	8	17	4	17	0	21	49
17:30	0	0	0	0	0	9	9	18	4	0	5	9	5	11	0	16	43
17:45	0	0	0	0	0	9	10	19	i	0	5	6	3	-	0	11	36
Total	0	0	0	01	\%	35	37	76	10	0	25	351	14	50	0	64	175
18:00	0	0	0	0	0	5	8	$13!$	3	0	8	11	3	12	0	15 !	39
18:15	0	0	0	0	0	9	8	17	5	0	2	7	3	10	0	13	37
18:30	0	0	0	0	0	18	8	26	2	0	3	5	1	16	0	17	48
18:45	0	0	0	0	0	17	4	21^{\prime}	3	0	6	9	0	4	0	4	34
Total	\square	0	0	01	U	49	28	77	13	0	15	$32!$	7	42	U	$4{ }^{4}$	158
Grand Total	0	0	0	01	0	426	161	587:	105	1	147	2531	136	499	0	635	1475
Apprch \%	0.0	0.0	0.0		0.0	72.6	27.4		41.5	0.4	58.1		21.4	78.6	0.0		
Total \%	0.0	0.0	0.0	0.01	0.0	28.9	10.9	398	7.1	0.1	10.0	17.2	9.2	33.8	0.0	43.1	

	Southbound				SR 50Westoound				NET-75 OFF RAKMFNonthbound				$\begin{aligned} & \text { SR 50 } \\ & \text { Eastbound } \end{aligned}$				
Stan Time	Lete		Rigm !	$\begin{aligned} & \text { zpp } \\ & \text { Tolal } \end{aligned}$	Len	Tru!	Riotra	$\begin{aligned} & \text { xpp. } \\ & \text { Tetat } \end{aligned}$	Let :	Thn :	Piph	$\begin{gathered} x_{0 \text { obp }} \\ \text { Toat } \end{gathered}$	Len:	Thus	Rignt		कn Tota
Volume	0	0	0	01	0	128	28	1561	18	0	28	48	40	117	0	157	359
Percent	0.0	0.0	0.0		0.0	82.1	17.9		39.1	0.0	60.9		25.5	74.5	0.0		
volume	0	0	0	0	0	128	28	156:	18	0	28	46	40	117	0	157	359
Volume	0	0	0	0	0	37	9	46 ;	8	0	13	21 :	19	28	0	47	114
Peak Factor																	0.787
High int.	5:45:00				08:45				$08: 45$				08:15				
Volume	0	0	0	0	0	37	9	46	8	0	13	21	7	41	0	48	
Peak Factor								0.848				0.548				0818	

Bayside Engineering, inc.
1105 East Twiggs Street Tampa, FL 33602

File Name: NB 1-75 Ramps@ SR 50
Site Code :00000000
Start Date: 03/17/2005
Page No 2

	Southbound				SR 50 Westbound				NBT.75OFF RAMPNOMBOUnd				$\begin{gathered} \text { SF } 30 \\ \text { Eastbound } \end{gathered}$				
Slart Tms	Leth	Thau	Right	Kpp,	Latt	Tru:	Right	$\mathrm{zpDP}_{\mathrm{polati}}$	cot	7no	Figh	${ }_{\text {Topal }}^{\text {ata }}$	Leff	Thes	Right	$\xrightarrow{\text { mopp }}$ Totat	int fotal
 Intersection 16:00																	
Votume	0	0	0	0	0	53	37	90	19	0	24	43	22	67	0	9	2
Percent	0.0	0.0	0.0		0.0	58.9	41.1		44.2	0.0	55.8		24.7	75.3	0.0		
Volume	0	0	0	0	0	53	37	90	19	0	24	43	22	67	0	89	222
Volume	0	0	0	0	0	16	11	27	4	0	3	7	7	20	0	27	61
Peak Factor																	0.910
High Int.					16:15				16:45				16:15				
Volume	0	0	0	0	0	16	11	27	2	0	13	15	7	20	0	27	
Peak Factor								0.833				0.717				0.824	

File Name: N8 1-75 Ramps@SR 50
Site Code :00000000
Stan Date : 03/17/2005
Page No : 1
Groups Prined-U-Turns
Groups Printed. UT

	Southbound				$\begin{gathered} \text { SF } 50 \\ \text { Westbound } \end{gathered}$				NETन5 OFF PAKAP Nontibound				5F 50 Eastbound				
Start Tme	Lath	Thu	Right	Totay	Left	mai	frant	$\begin{aligned} & \text { App. } \\ & \text { Tolai } \end{aligned}$	Len!	Thrs	Righ	$\begin{aligned} & \text { xop } \\ & \text { Yetal } \end{aligned}$	ten	Thre	Right	$\begin{aligned} & \mathrm{APD} \\ & \mathrm{~T}_{\mathrm{cl}} \mathrm{la} \end{aligned}$	in Totas
FaCol	10	0	10:		10:	m	Ti!		प	101	10		ro.	10	T0:		

0700	0	0	0	0	0	0	0	01	0	0	0	01	1	0	0	11	1
$07 \cdot 30$	0	0	0	01	0	0	0	01	0	0	0	0	1	0	0	1	1
Total	0	0	0	0	0	0	0	0	0	0	U	0	2	U	O	2	2
08:30	0	0	0	$0:$	0	0	0	$0!$	0	0	0	0	1	0	0	1:	1
Total	0	0	0	\square	0	U	0	0	J	U	0	0	1	7	0	!	T
17:15	0	0	0	0	0	0	0	0	0	0	0	01	1	0	0	1 :	1
17:30	0	0	0	0	0	0	0	0	0	0	0	0 !	1	0	0	\%	1
17:45	0	0	0	0	0	0	0	01	0	0	0	$0 \vdots$	1	0	0	1	1
Tola!	0	0	0	0	0	0	0	0	0	0	0	0 :	3	0	0	3	3
18:30	0	0	0	0	1	0	0	i	0	0	0	01	0	0	0	0 :	
18:45	0	0	0	01	0	0	0	0!	0	0	0	0	1	0	0	+	1
Total	U	0	0	01	1	U	0	1	(1)	0	0	\square	T	0	U		2
Srand Total	0	0	0	0 :	i	0	0	i:	0	0	0	0	7	0	0	71	ε
Apprch \%	0.0	0.0	0.0	,	$\begin{array}{r} 100 \\ 0 \end{array}$	0.0	0.0	!	0.0	0.0	0.0	,	$100 .$	0.0	0.0	!	
Totel $\%$	0.0	0.0	0.0	0.0^{1}	12.5	0.0	0.0	12.5:	0.0	0.0	0.0	$0.0{ }^{\text {i }}$	87.5	0.0	0.0	87.5 !	

	Wावण: 35	, ${ }^{\text {a }}$,				Yar.	-	-		7oan	-	?		Totat	硣
Intersection Volume	$\begin{array}{r} 06.45 \\ 0 \end{array}$	0	0	0	0	0	0	0	0	0	0	0		0	0	2	
Percent	0.0	0.0	0.0				0		00	00	0		100	0	0	2	2
Volume	0	0	0	0	0	0	0	0	0	0	0	0	0				
Volume	0	0	0	01	0	0	0	0	0	0	0	0	2	0	0 0	21	2
Peak Factor																	0.500
High int.	5:45:00				5:45:00				5:45:00				07:00				
Volume	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0		
Peak Factor																0.500 !	

Peak Hour From 16:00 to 18:45-Peak 1 of 1

Intersection Volume	$\begin{array}{r} 17: 00 \\ 0 \end{array}$	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	3
Percent	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0	00		100.	0.0	0.	i	
Volume	0	0	0	01	0	0	0	0	0	0	0		0	0	0		
Volume	0	0	0	0	0	0	0	0	0	0	0	0 :	1	0	0	1	3
Peak Factor																	
High int. Volume	0	0	0	0	0								17:15				
Feak Factor					0	0	0	0	0	0	0	0	1	0	0	1	

Bayside Engineering, Inc.

Counted by : Ron/Ryan
Board \# : 1320/1321
Weather cool cainy

File Name : NB 1-75 Ramps@ SR 50
Site Code : 00000000
Start Date : 03/17/2005
Page No

Groups Printed- Passenger Vehicles - Trucks \& Buses - U-Turns

	Southbound				SR 50 Westbound				NET-750FF RAMP Nonthbound				SF 50 Eastbound				
Stan Tome	Leth	Trau	Right	$\begin{aligned} & \text { Kog } \\ & \text { rocal } \end{aligned}$	Lon!	Thus	Pight		Left	Trus	Aigra	$\begin{gathered} \text { ADCD } \\ \text { Torat } \end{gathered}$	Loth	Tmis	Rigru	$\underset{\text { Toral }}{\text { abol }}$	int Tolat
Facor	0	0	0		T0:	5	T0		T0	10	T		10	T01	10		
06:00	0	0	0	0	0	85	21	706	12	0	15	27	26	86	0	112	245
06:15	0	0	0	0	0	136	30	166	18	0	24	42	35	115	0	150	358
06:30	0	0	0	0	0	125	33	158	20	0	29	49	40	98	0	138	345
06:45	0	0	0	0	0	117	28	145	15	0	38	53	40	125	0	165	363
Tolal	0	0	0	0	0	463	172	575	65	0	106	171	141	424	0	565	1317

07:00	0	0	0	0	0	112	35	147	19	0	48	67	35	109	0		
07:15	0	0	0	0	0	126	40	166	25	0	37	62	36	123	0	144	358
07:30	0	0	0	0	0	174	33	207	18	0	40	58	38	150	0	188	87
07:45	0	0	0	0	0	175	41	216	29	2	44	75	30	134	0	164	453
Tola	0	0	0	0	0	5 उ\%	49	736	41	2	169	262	139	516		55	455

$08: 00$	0	0	0	0	0	148	36	184	26	0	37	63	29	108	0	1371
$08: 15$	0	0	0	0	0	153	27	180	27	0	43	70	39	140	0	179
$08: 30$	0	0	0	0	0	161	25	186	23	0	49	72	42	131	0	173
$08: 45$	0	0	0	0	0	160	42	202	24	0	71	95	45	138	0	183
10121	0	0	0	0	0	622	130	752	100	0	200	300	155	517	0	672

16:00	0	0	0	0	0	181	45	226									
16:15	0	0	0	0	0	150	42	192	30	0	50	80	35 30	172	0	225	548 474
16:30	0	0	0	0	0	172	31	203	27	0	67	94	20	186	0		503
16:45	0	0	0	0	0	168	38	206	33	0	64	97	29	155	0	184	503
Tolat	0	0	0	0	0	671	155	827	131	0	237	368	114	703	0	81.	2072
17:00	0	0	0	0	0	161	32	193	32	0	67	99	29	152	0		
17:15	0	0	0	0	0	142	37	179	26	0	64	90	31	180	0	211	480
17:30	0	0	0	0	0	164	38	202	23	0	72	95	21	128	0	140	480 446
$17: 45$	0	0	0	0	0	145	40	185	24	0	56	80	23	117	0	140	405
Tolal	0	0	0	0	0	612	147	759	105	0	259	354	104	371	0	681	1804

$18: 00$	0	0	0	0	0	124	33	157	26	0	60	86	20	132	0	152
$18: 15$	0	0	0	0	0	121	29	150	22	0	41	63	16	114	0	130
$18: 30$	0	0	0	0	1	161	35	197	18	0	52	70	10	105	0	115
$18: 45$	0	0	0	0	0	124	29	153	19	0	62	81	18	109	0	127
1061	0	0	0	0	0	530	126	657	85	0	215	300	64	460	0	524

Grand Total	0	0	0	0	1	3485	820	4306	577	2	1186	1765	717	3197	0
Appreh \%	0.0	0.0	0.0		0.0	80.9	19.0		32.7	0.1	67.2		18.3	81.7	0.0
Total $\%$	0.0	0.0	0.0	0.0	0.0	34.9	82	43.1	5.8	0.0	11.9	17.7	7.2	32.0	0.0

	Southbound				5F50 Westbound				NE T-75 OFF सATAP Northbound				SR 50 Eastbound				
Stern Tene	let	Trus	Ripat	Rop total	Let	tru	aight	The	Len ${ }_{\text {i }}$	thrs	Rigra	Fob,	Len	Tras	Right	Repal	in. Teral
intersection	08:00																
Volume	0	0	0	01	0	622	130	752 !	100	0	200	300	155	517	0	672	1724
Percent	0.0	0.0	0.0		0.0	82.7	17.3		33.3	0.0	66.7		23.1	76.9	0.0		
Volume	0	0	0	0	0	622	130	752	100	0	200	300	155	517	0	672	
Volume	0	0	0	0	0	160	42	202	24	0	71	95	45	138	0	183	1724 480
Peak Factor																183	0.898
High int.	5:45:00				8:45				08:45				08:45				
Volume	0	0	0	0 !	0	160	42	202 :	24	0	71	95	45	138	0		
Peak Factor								0.931 :				0.789				0.918	

File Name: NB 1.75 Ramps@ SR 50
Site Code :00000000
Star Date:03/17/2005
Page No 2

	Southbound				SF50 Westbound				NET 75 OFF RAMF Northbound				SR 50Eastbound				
-reax Hoart fran te	Lef	Trus	Rien!	Rope	Len	Thu	Figh	$\begin{aligned} & \text { Rup } \\ & \text { retail } \end{aligned}$	ten	Trua	Righ	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	tht	Thru	Aigrn	${ }_{\text {Nop }}^{\text {Total }}$	Int Toras
Volume	0	0	0	0	0	671	156	227	131	0	237	368 !		703			
Percent	0.0	0.0	0.0		0.0	81.1	18.9		35.6	0.0	64.4		14.0	86.0	0	817	2012
Volume	0	0	0	0	0	671	156	827	131	0	237	368	114	703	0	817	2012
Volume	0	0	0	0	0	181	45	226	41	0	56	97	35	190	0	225	2012 548
Peak Factor																	0.918
High int Votume	0	0			16:00				16.00				16:00				
Peak Factor				0	0	181	45	226	41	0	56	97	35	190	0	225	
Peak Factor								0.915				0.948				0908	

APPENDIX ' C '

TRAFFIC RELATED CORRESPONDENCE

Traffic Projection for I-75/SR 50 / CR 41

175 PD\&E Lochner.xls
2/8/05

105		2005	$\begin{aligned} & \text { Lochner } \\ & 45 ; 800 \end{aligned}$
		2010	55,700
		2020	75.400
		2025	85,300
	AADT	2030	95,200
2005 -20,600			
2010	29.400		
2020	47,100		
2025	56,000		
2030 64,800 SR 50			

AADT

24.100	2005
34.400	2010
55.100	2020
65.500	2025
75.800	2030

2030

SR 50

2005
2010
2020
13,600 2025
$16.100 \quad 2030$

AADT
2005 筑2600
2010 64,100
2020 87,200
2025 98,900
$2030 \quad 110,400$

Sketch 1.75 with Parallel CD

MEMORANDUM

TO: \quad-75 PD\&E Study File
WPI Seg. No.: 4110141, FAP No.: 0751-1201

FROM: Herschel Conner
CC: Mark Clasgens, Frank DeLuca, Ed Bryant
DATE: 07/11/05

subJECT: Traffic Factors for 1-75 PD\&E Study Traffic Technical Memorandum

The Draft Traffic Technical Memorandum (TTM), dated May 2005, was developed using K, D, and T factors provided in F. Bitar's memo of April 18, 2005. After submission of the Draft TTM, we received a revised set of K, D, and T factors based on a review of 4 -year historical factors for Pasco, Hemando, and Sumter Counties and recommended statewide values. The revised factors were included in memo received from F. Bitar on June 15, 2005 subsequent to submitting the Draft TTM to District VII for review.

We have reviewed the memo and the justification used for revising the factors used for traffic analysis. Although, we do not disagree with the revised D and T factors, we would like to review the K factor recommended. The K factor used in the Draft TTM and originally approved by F. Bitar was 8.76 while the revised K factor is significantly higher at 10.75. Reviewing the tables reporting historical data and statewide averages, we believe that the appropriate factor is somewhere in between the original and revised number.

Since over 90% of the project length is the southern counties of Pasco and Hemando counties, and there are no study interchanges in Sumter County, historical factors from Pasco and Hernando should be emphasized in determining an appropriate K-factor for this study. The observed K-factors from the 2001 to 2004 Florida Traffic Information CD range from 8.55 to 8.94 with an average of 8.81 in Pasco and from 8.76 to 9.52 with an average of 9.23 in Hernando. These factors are less than the statewide average for urban interstates is 9.7 and are instead closer to the minimum statewide recommended
value of 9.4 . By 2030, the study corridor should primarily be a commuter roadway during the peak hour periods and thus an urban factor is more appropriate than a rural factor.

We suggest a K-factor of 9.40 be used for traffic analysis in this study. At this K-factor, design year (2030) traffic volumes will operate at LOS C for the mainline and all ramps will operate at LOS C or D. LOS D will require substantially less ramp construction than LOS E (the LOS result with a K-factor of 10.75) in order to meet the level of service standard.. Also, the Highway Capacity Software analysis results show that at a K-factor of 10.75 , the $1-75$ mainline with 6 lanes will operate at LOS D south of SR 50 and LOS C north of SR 50. Thus to meet the LOS standard of C, the lane call south of SR 50 will need to be 8 lanes and 6 lanes north of SR 50 .

After you review the above, please provide us guidance regarding which factors to use in the Final TTM. Once we receive direction from you regarding traffic factors for use in this study, we will complete the Final TTM and submit it to your office. If you have any questions for us regarding our evaluation of this issue, please get in touch with us.

MEMORANDUM
 Department of Transportation
 District Seven Planning MS 7-500

DATE: June 15, 2005

TO: Mark Clasgen, PD\&E Project Manager
FROM: Fawzi Bitar, Systems Planning Coordinator

COPTES: File

```
SUBJECT: W.P.L. : 411014-1
    State Road : 1-75 (SR 52 to CR 476B) PD&E Study
    County : Pasco/Hernando/Sumter
```

Per you request, I took a closer look the last four (4) years of K. and D factors for I-75 for Pasco, Hernando and Sumtcr counties as well as the Recommended State factors and revised the factors. The recommended K and D factors arc:

$$
K=10.75 \% \quad D=56.35 \%
$$

Please see enclosure.
/FKB
Enclosure

MEMORANDUM

Department of Transportation
District Seven Planning MS 7.300

DATE: April] 18. 2005
TO: Mark Glasgens. PD\&E Project Manager
FROM: Fawzi Bitar, Systems Planning Coordinator

COPIES: File
SUBJECT: W.P.I. : 411014-1
State Road : I-75 (SR 52 to CR 476B) PD \&E Study
County : Pasco/Hernando/Sumter
Per your request dated February 11: 2005, enclosed is a sketch of the existing 2005 AADT and projected 2010.2020 .2025 and 2030 AADT , the (K.D\&T) factors, for the above referenced section.

$$
\begin{aligned}
\mathrm{K} & =8.79 \% \\
\mathrm{D} & =53.67 \% \\
24 \mathrm{Hr} \mathrm{~T} & =27.00 \% \\
\text { Design } \mathrm{Hr} \mathrm{~T} & =13.50 \%
\end{aligned}
$$

The projected traffic was developed after reviewing:
A) The January 2005 District Five PD \&E Study prepared by Ghyabi \& Associates. (1-75 Hernando/Sumter Co. Line to SR 44).
B) The 2000 Model outputs of the Tampa Bay Regional Planning Model (TBRPM).
C) The results of the 2025 TBRPM run using the 2025 socioeconomic data and the Adopted 2025 Long Range Transportation Plan (LRTP) network.
D) The model traffic was smoothed and converted to AADT.
E) The projected 2010, and 2020 AADTs are interpolated and the 2030 extrapolated between 2005 and 2025 AADT .

I have followed The FDOT Project Traffic Forecasting Procedure.
/FEB
Enclosure

I-75 (SR 52 to CR 476B) PD\&E Study

	Pasco		Hernando		Sumter	
Year	K	D	K	D	K	D
2001	8.94	55.00	8.52	57.42	10.94	57.94
2002	8.99	56.15	8.98	56.15	11.69	54.81
2003	8.76	53.67	8.76	53.67	11.14	55.41
2004	8.55	55.03	9.83	56.22	10.60	57.12
4 Avg	8.81	54.96	9.23	55.87	11.09	56.32

APPENDIX 'D'

EXISTING YEAR (2005) INTERSECTION LOS ANALYSIS

Vehicle Volumes and Adjustments						
Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		110	110	90	219	
Peak-Hour Factor, PHF	1.00	0.88	0.88	0.95	0.95	1.00
Hourly Flow Rate, HFR (veh/h)	0	125	125	94	230	0
Percent Heavy Vehicles	0	--	-	3	-	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	1	1	0
Configuration			TR	L	T	
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
olume (veh/h)	38		32			
Peak-Hour Factor, PHF	0.89	1.00	0.89	1.00	1.00	1.00
Hourly Flow Rate, HFR (veh/h)	42	0	35	0	0	0
Percent Heavy Vehicles	10	0	10	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L	L		R			
v(veh/h)		94	42		35			
C (m) (veh/h)		1310	415		834			
v/c		0.07	0.10		0.04			
95% queue length		0.23	0.34		0.13			
Control Delay (s/veh)		8.0	14.6		9.5			
LoS	A	B		A				
Approach Delay (s/veh)	-	-	12.3					
pproach LOS	-	-	B					

HCS + ${ }^{\text {* }}$ DETAILED REPORT

General Information

Analyst	CRH
gency or Co.	FDOT
	Date Performed 10/26/06 Time Period

Site Information

Intersection	I-75 NB Ramps @ SR 50
Area Type	All other areas
Jurisdiction	Hernando
Analysis Year	
Project ID	1-75 PD\&E Study - 2005 SR50 NB Ramps

SR50 NB Ramps

Volume and Timing Input

Phasing	EW Perm	Thru \& RT	03	04	NB Only	06	07	08
Timing	$G=11.0$	$G=21.3$	G =	G=	$G=12.7$	$\mathrm{G}=$	G =	G =
	$Y=5$	$Y=5$	$Y=$	$Y=$	$Y=5$	$Y=$	$Y=$	$Y=$
Duration of Analysis, $T=0.25$						Cycle Length, $C=60.0$		

-		EB			WB			NB			SB	
	LT	TH	RT									
Adjusted Flow Rate, v	256	932			1145	242	269		173			
Lane Group Capacity, c	298	2899			1640	1442	341		305			
v/c Ratio, X	0.86	0.32			0.70	0.17	0.79		0.57			
Total Green Ratio, g/C	0.18	0.62			0.35	1.00	0.21		0.21			
Uniform Delay, d_{1}	23.7	5.4			16.6	0.0	22.4		21.2			
Progression Factor, PF	1.000	1.000			1.000	0.950	1.000		1.000			
Delay Calibration, K	0.39	0.11			0.26	0.11	0.34		0.16			
Incremental Delay, α_{2}	21.5	0.1			1.3	0.1	11.8		2.5			
Initial Queue Delay, d_{3}	0.0	0.0			0.0	0.0	0.0		0.0			
T.ontrol Delay	45.2	5.4			17.9	0.1	34.1		23.7			
Lane Group LOS	D	A			B	A	c		C			
Approach Delay	14.0			14.8			30.0					
	B			B			C					

Approach LOS				
Intersection Delay	16.7	$X_{c}=0.76$	Intersection LOS	B

Jyright © 2005 University of Florida. All Rights Reserved

Approach LOS				
Intersection Delay	10.0	$X_{C}=0.65$	Intersection LOS	B
pyrigh s 2005 University of Florida. All Rights Reserved	HCS + TM Version 5.2	Generated: 11/14/2006 9.15 AM		

APPENDIX 'E'

EXISTING YEAR (2005) FREEWAY SEGMENT AND RAMP LOS

DDHV-Directional design hour volume	LOS, S, FFS, v - Ex		f_{10} - Exhib	3-7
Copyright 3005 University of Florida, All Rights Reserved	HCS+TM Version 52		ed: 11/14/2006	9:12 AM

General Information

`alculate Flow Adjustments

$\left.\right\|^{\text {p }}$	0.95		E_{R}	1.		
E_{T}	1.5		$\mathrm{f}_{\mathrm{HV}}=$			
Speed Inputs			Calc Speed Adj and FFS			
Lane Width		f	$\mathrm{f}_{\text {Lw }} 0$		m / h	
	6.0	ft			min	
Interchange Density	0.50		f_{LC}	0.0	mi/h	
Number of Lanes, N	2	1/mi	f_{10}	0.0	milh	
FFS (measured)		mi/h	f_{N}	0.0	mi / h	
Base free-flow Speed, BFFS	75.0	m / h	FFS	75.0	m / h	
LOS and Performance Measures			Design (N)			
Operational (LOS)$\mathrm{v}_{\mathrm{P}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times\right.$		$\mathrm{pe} / \mathrm{h} / \mathrm{ln}$	Design (N)			
		Design LOS				
$v_{\mathrm{p}}=(\mathrm{VorDDHV}) /\left(\mathrm{PHF} \times \mathrm{NX} \mathrm{f}_{\mathrm{HV}} \times\right.$			$v_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}} \times\right.$		pc / h	
S			m / h			m / h
$D=v_{p} / S$		pc/mi/ln				
LOS	c		$D=$		$\mathrm{pc} / \mathrm{mi} / \mathrm{n}$	
			Required Number of Lanes, N			
Glossary			Factor Location			
- Number of lanes	S - Speed		E_{R} - Exhibits23-8, 23-10			
- - Hourly volume	D - Density		E_{T} - Exhibits 23-8, 23-10, 23-11		$\mathrm{f}_{\text {LC }}$ - Exhibit $23-5$	
v_{p} - Flow rate	BFFS - Base free-flow speed					
LOS - Level of service			f_{p} - Page 23-12		f_{N} - Exhibit 23-6	

DDHV - Directional design hour volume	LOS, S, FFS, v_{p} - Exhibits 23-2, 23-3	f_{10} - Exhibit $23-7$
Copyright (e) 2005 University of Florida, All Rights Reserved	HCS+TM Version 5.2 Ge	ed: 11/14/2006 9:13

General Information
Analyst EJB
$\begin{array}{ll}\text { Agency or Company } & \text { HW Lochner, Inc. } \\ \text { Date Performed } & 7 / 28 / 2005\end{array}$ Analysis Time Period

Site Information

Highway/Direction of Travel	1 1-75 Southbound
From/To	North of SR 50
Jurisdiction	Hernando County
Analysis Year	2005

1-75 Southbound North of SR 50 Hernando County 2005

Project Description 1-75 PD\&E -2005 SB North of SR 50 ($1-75=4$ Lanes)

DDHV - Directional design hour volume	LOS, S, FFS, V_{p} - Exhibits 23-2, 23-3	f_{B} - Exhibit 23-7
Copyright © 2005 University of Florida. All Rights Reserved	HCS+ TM Version 5.2 Gen	ed: 11/14/2006 9:13

DOHV - Directional design hour volume
Copyright (c) 2005 University of Florida. All Rights Reserved

Appliction	mput	Output
Oprational (LOS)	FFS, $\mathrm{N}, \mathrm{r}_{\mathrm{j}}$	LOS, S, D
Design (N)	FFS LOS y_{0}	N, S, D
Design (v)	FFS, LOS, NT	$v_{p} \mathrm{~S}$ S D
Planning (LOS)	FFS, N, A, $\mathrm{D}^{\text {d }}$	LOS, S. D
Plasming (f)	FFS LOS, AADT	N, S, D
Planning (l_{p})	FFS. LOS, A	$v_{v} \mathrm{~s}, 0$

alculate Flow Adjustments

RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information Site Information

Analyst		
Agency or Company		
Date Performed		
Analysis Time Period		
Project Description		
Inputs		
Upstream Adj Ramp		
TYes TOn		
FNo 「Off		
$L_{u p}=\mathrm{ft}$		
	=	veh/h

EJB
HW Lochner, Inc.
$7 / 28 / 2005$
DHV

Freeway/Dir of Travel	1-75 Northbound
Junction	CR 41/Blanton Road Off-Ramp
Jurisdiction	Pasco County
Analysis Year	2005

RAMPS AND RAMP JUNCTIONS WORKSHEET
General Information
Site Information

Conversion to pc/h Under Base Conditions

RAMPS AND RAMP JUNCTIONS WORKSHEET		
General Information		Site Information
Analyst	EJB Freeway/Dir of Travel	1.75 Southbound
Agency or Company	HW Lochner, hnc. Junction	CR 41/Blanton Rd Off-Ramp
Date Periormed	7/28/2005 Jurisdiction	Pasco County
Analysis Time Period	DHV Analysis Year	2005
Project Description 1-75 PD\&E Study - SB Off Ramp at CR 41		
Inputs		
Upstream Adj Ramp	Tertain: Level	Downstream Adj Ramp
		FYes Fon
F No TOff		TNo TOff
$L_{u p}=\mathrm{ft}$		$\mathrm{L}_{\text {down }}=700 \mathrm{ft}$
$v_{u}=\mathrm{veh} / \mathrm{h}$	$\begin{gathered} S_{F F}=70.0 \mathrm{mph} \\ \text { Sketch (show lanes, } L_{A}, L_{0}, V_{R}, V_{0} \text {) } \end{gathered}$	$\mathrm{V}_{\mathrm{D}}=200 \mathrm{veh} / \mathrm{h}$
$v_{u}=\quad \mathrm{veh} / \mathrm{h}$		D $\quad 200 \mathrm{veh} / \mathrm{h}$

Conversion to pc/h Under Base Conditions

Level of Service Determination (if not F)	Level of Service Determination (if not F)
$D_{R}=5.475+0.00734 \mathrm{~V}_{R}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}$	$\mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{~V}_{12}-0.0009 \mathrm{~L}_{\mathrm{D}}$
$\mathrm{D}_{\mathrm{R}}=$	(pc/mi/ln)
LS $=$	(Exhibit 25-4)

(pch)	V (Vehfr)	PHF	Terain	$\%$ Truck	$\% R V$	$f_{H V}$	f_{p}	$V=\mathrm{VPHF} \times$ $\mathrm{F}_{\mathrm{HV}} \times \mathrm{p}_{\mathrm{p}}$
Freeway	1960	0.94	Level	14	1	0.933	0.95	2353
Ramp	200	0.89	Level	10	1	0.951	0.95	249
UpStream	70	0.89	Level	10	1	0.951	0.95	87
DownStream								

Estimation of V_{12}
$\qquad V_{12}=V_{F}\left(P_{F M}\right)$
$L_{E O}=$ (Equation 25-2 or 25-3)
$P_{F M}=1.000$ using Equation (Exhibit 25-5)
$V_{12}=2353$ pch

Capacity Checks
Capacity Checks

KAMPS AND RAMP IUNC I IUNS WURKSHEE

Conversion to pc/h Under Base Conditions

Level of Service Determination (if not F)	Level of Service Determination (if not F)
$\mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{~V}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}$	$D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.0009 \mathrm{~L}_{\mathrm{D}}$
$\mathrm{D}_{\mathrm{R}}=$ (pc/mi/n)	$\mathrm{D}_{\mathrm{R}}=31.5(\mathrm{pc} / \mathrm{mi} / \mathrm{m})$
LOS = (Exhibit 25-4)	LOS $=0$ (Exhibit 25-4)
Speed Estimation	Speed Estimation
$M_{S}=$ (Exibit 25-19)	$\mathrm{D}_{5}=0.498$ (Exhibil 25-19)
$S_{R}=$ mph(Exhibit $\left.25-19\right)$	$S_{2}=56.1 \mathrm{mph}$ (Exhibit $\left.25-19\right)$
$S_{0}=$ mph (Exhibit 25-19)	$S_{0}=\quad$ N/Amph (Exhibit 25-19)
$s=\quad \operatorname{mph}($ Exhibit $25-14$)	$S=56.1 \mathrm{mph}$ (Exhibit 25-15)

RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information
Site Information

Analyst	EJB	Freeway/Dir of Travel	1-75 Norlhbound
Agency or Company	HW Lochner, Inc.	Junction	SR 50/Conez Blvd. On-Ramp
Date Performed	$7 / 28 / 2005$	Jurisdiction	Hernando County
Analysis Time Period	DHV	Analysis Year	2005

Project Description 1-75 PD\&E Study - 2005 NB On Ramp al SR 50 (1-75 $=4$ Lanes)
inputs

Conversion to pc/h Under Base Conditions

(po/h)	$\begin{gathered} V \\ \text { (Veh/hr) } \end{gathered}$	PHF	Terrain	\%Truck	\%RV	f_{HV}	f_{p}	$\begin{aligned} & V=V / P H F x \\ & f_{H V} \times f_{D} \end{aligned}$
Freeway	1520	0.94	Leve	14	2	0.931	0.95	1828
Ramp	510	0.89	Level	19	2	0.910	0.95	663
UpStream	350	0.89	Level	19	2	0.910	0.95	455
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & V_{12}=V_{F}\left(P_{F M}\right) \\ & L_{E O}=\text { (Equation 25-2 or 25-3) } \\ & P_{F M}=1.000 \text { using Equation (Exhibit 25-5) } \\ & V_{12}=1828 \mathrm{pch} \end{aligned}$					$\begin{aligned} & \quad V_{12}=V_{R}+\left(V_{F} \cdot V_{R}\right) P_{F D} \\ & L_{E 0}=\text { (Equation 25-8 or 25-9) } \\ & P_{F D}=\text { using Equation (Exhibit 25-11) } \\ & V_{12}=\text { pch } \end{aligned}$			

Capacity Checks
Capacity Checks

	Actual	Maximum	LOSF?		Actual	Maximum	LOSF?			
$V_{\text {Fo }}$	2491	See Exhibit 25-7	No	$V_{\text {Fl }}=V_{F}$						
				V_{12}						
$V_{R 12}$	2491	4600:All	No	$\begin{gathered} V_{F O}=V_{F}- \\ V_{R} \end{gathered}$						
				V_{R}						
Level of Service Determination (if not F)				Level of Service Determination (if not F)						
$\begin{aligned} & \quad D_{R}=5.475+0.00734 \mathrm{~V}_{R}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}} \\ & \mathrm{D}_{\mathrm{R}}= \\ & \mathrm{L}=\mathrm{C}=\mathrm{C}(\text { Exinibit } 25-4) \end{aligned}$				$\begin{array}{ll} & D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.0009 \mathrm{~L}_{\mathrm{D}} \\ \mathrm{D}_{\mathrm{R}}= & \text { (polmi/l/ }) \\ \mathrm{LOS}= & \text { (Exhibit 25-4) } \end{array}$						
Speed Estimation				Speed Estimation						
$S_{S}=$ 0.324 (Exibit 25-19) $S_{R}=$ 60.9 mph (Exhibit 25-19) $S_{0}=$ N/A mph (Exthbi 25-19) $S=$ 60.9 mph (Exnibit 25-14)				$D_{S}=$ (Exhibit 25-19) $S_{R}=$ mph (Exhibit 25-19) $S_{0}=$ mph (Exhibit $25-19)$ $S=$ mph (Exhibit 25-15)						

APPENDIX ' F '

OPENING YEAR (2010) NO-BUILD INTERSECTION LOS

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	JAS
Agency/Co.	HW Lochner. Inc.
Date Performed	$11 / 03 / 2006$
Analysis Time Period	DHV

Intersection	1-75 SB RampS/CR 41
Uurisdiction	Pasco County
Analysis Year	Opening Year

Project Description No Build Alternative - 2010 EastWest Street: CR 41/Blanton Road Intersection Orientation: East-West
North/South Street: $1-75$ SB Ramp
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		185	184	176	357	
Peak-Hour Factor, PHF	1.00	0.88	0.88	0.95	0.95	1.00
Hourly Flow Rate, HFR (veh/h)	0	210	209	185	375	0
Percent Heavy Vehicles	0	--	--	3	-	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	1	1	0
Configuration			TR	L	T	
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	75		65			
Peak-Hour Factor, PHF	0.89	1.00	0.89	1.00	1.00	1.00
Hourly Flow Rate, HFR (veh/h)	84	0	73	0	0	0
Percent Heavy Vehicles	10	0	10	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		1	L		R			
v (veh/h)		185	84		73			
C (m) (veh/h)		1135	201		708			
v / c		0.16	0.42		0.10			
95\% queue length		0.58	1.91		0.34			
Control Delay (s/veh)		8.8	35.2		10.7			
LOS		A	E		B			
Approach Delay (s/veh)	--	\cdots	23.8					
Approach LOS	-	-	C					

Approach Delay	50.8	27.0	67.4	
Approach LOS	D	C	E	
Intersection Delay	42.5	$X_{C}=0.85$	Intersection LOS	D
Copyright © 2005 University of Florida. All Rights Reserved	HCS ${ }^{\text {TM }}$ Version 5.2	Generated: 1/8/2006	$1: 49 \mathrm{PM}$	

Approach Delay	21.3	20.3		91.2
Approach LOS	C	C	F	
Intersection Delay	29.9	$X_{C}=0.92$	Intersection LOS	C
Copyrign: 2005 University of Florida, All Rights Reserved	HCS+TM Version 52	Generaled: $11 / 8 / 2006$ 1:53 PM		

APPENDIX ' G '

INTERIM YEAR (2020) NO-BULLD INTERSECTION LOS

HCS ${ }^{\text {'* }}$ DETAILED REPORT														
General Information							Site Information							
Analyst \quad JASAgency or Co. FDOTDate Performed $11 / 08 / 2006$Time Period							Intersection I-75 NB Ramps @ SR 50 Area Type All other areas Jurisdiction Hernando Analysis Year Project ID No Build Alternative - 2020							
Volume and Timing Input														
			EB			WB			NB			SB		
		LT	TH	R		LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes, N_{1}			3				3	1	1		1			
Lane Group			T				T	R	L		R			
Volume, V (vph)			1882				2362	200	504		756			
\% Heavy Vehicles, \%HV			6				6	6	6		6			
Peak-Hour Factor, PHF			0.90				0.91	0.91	0.95		0.95			
Pretimed (P) or Actuated (A)		(A) A	A				A	A	A		A			
Start-up Lost Time, It		2.0	2.0				2.0	2.0	2.0		2.0			
Extension of Effective Green,			2.0				2.0	2.0	2.0		2.0			
Arrival Type, AT			3				3	3	3		3			
Unit Extension, UE			3.0				3.0	3.0	3.0		3.0			
Filtering/Metering. 1			0 1.000				1.000	1.000	-1.000		1.000			
Initial Unmet Demand, $\mathrm{Qb}^{\text {b }}$			0.0				0.0	0.0	0.0		0.0			
Ped / Bike / RTOR Volumes		es 0	0			0	0	0	0	0	220			
Lane Width		12.0	12.0				12.0	12.0	12.0		12.0			
Parking / Grade / Parking		N	0	N		N	0	N	N	0	N			
Parking Maneuvers, Nm														
Buses Stopping, NB			0				0	0	0		0			
Min. Time for Pedestrians, Gp			3.2			3.2			3.2					
Phasing	EW Perm	Thru \& RT	03		04			NB Only		06	07		08	
Timing	$G=27.5$	$G=70.4$	$G=$			G =		$G=37.1$		G =	G =		$\mathrm{G}=$	
	$Y=5$	$\mathrm{Y}=5$	$Y=$			=		$Y=5$	Y		$Y=$		$Y=$	
Duration of Analysis, $T=0.25$										Cycle Length, $C=150.0$				
Lane Group Capacity, Control Delay, and LOS Determination														
		EB			WB				NB			SB		
		LT	TH	RT	L		TH	RT	LT	TH	RT	LT	TH	RT
Adjusted Flow Rate, v		622	2091				2596	549	531		564			
Lane Group Capacity, c		312	3350				2292	1524	421		377			
v/c Ratio, X		1.99	0.62				1.13	0.36	1.26		1.50			
Total Green Ratio, g/C		0.18	0.69				0.47	1.00	0.25		0.25			
Uniform Delay, d_{1}		61.3	12.9				39.8	0.0	56.5		56.5			
Progression Factor, PF		1.000	1.000				1.000	0.950	1.000		1.000			
Delay Calibration, k		0.50	0.21				0.50	0.11	0.50		0.50			
Incremental Delay, d_{2}		458.4	0.4				65.8	0.1	135.5		236.8			
Initial Queue Delay, d_{3}		0.0	0.0				0.0	0.0	0.0		0.0			
Control Delay		519.7	13.3				105.6	0.1	191.9		293.2			
Lane Group LOS		F	B				F	A	F		F			

Approach Delay	129.4	87.2	244.1	
Approach LOS	F	F	F	F
Intersection Delay	128.4	$X_{C}=1.41$	\ln tersection LOS	

Approach Delay 28.1 72.0 257.0 Approach LOS C E F Intersection Delay 79.7 $X_{C}=3.78$ Intersection LOS E

APPENDIX 'H'

DESIGN YEAR (2030) NO-BUILD INTERSECTION LOS

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	436	246			713	114
Peak-Hour Factor, PHF	0.85	0.85	1.00	1.00	0.85	0.85
Hourly Flow Rate, HFR (ven/h)	512	289	0	0	838	134
Percent Heavy Vehicles	10	--	--	0	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	1	1	0	0	1	0
Configuration	L	T				TR
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				546		714
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.91	1.00	0.91
Hourly Flow Rate. HFR (veh/h)	0	0	0	599	0	784
Percent Heavy Vehicles	0	0	0	9	0	6
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	1	0	1
Configuration				L		R

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L					L		R
v (veh/h)	512					599		784
C (m) (veh/h)	678					11		329
v / c	0.76					54.45		2.38
95\% queue length	6.94					76.44		61.64
Control Delay (s/veh)	24.8					24716		656.6
LOS	C					F		F
Approach Delay (s/veh)	--	--				11077		
Approach LOS	-	-					F	

TWO-WAY STOP CONTROL SUMMARY			
General Information	Site Information		
Analyst	JAS	Intersection	I-75 SB Ramps/CR 41
Agency/Co.	HW Lochner. Inc.	Pasco County	
Date Performed	$11 / 03 / 2006$	Design Year	
Analysis Time Period	DHV		

Project Description No Build Altermative - 2030
East/West Street: CR 41/Blanton Road
North/South Street: 1-75 SB Ramp
Intersection Orientation: East-West
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments						
Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		484	480	510	918	
Peak-Hour Factor, PHF	1.00	0.88	0.88	0.95	0.95	1.00
Hourly Flow Rate, HFR (veh/h)	0	550	545	536	966	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	1	1	0
Configuration			TR	L	T	
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	232		198			
Peak-Hour Factor, PHF	0.89	1.00	0.89	1.00	1.00	1.00
Hourly Flow Rate, HFR (veh/h)	260	0	222	0	0	0
Percent Heavy Vehicles	10	0	10	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	1	0	1	0	0	0
Configuration	L		R			

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L	L		R			
v(veh/h)		536	260		222			
C(m)(veh/h)		634	3		362			
v/c		0.85	86.67		0.61			
95\% queue length		9.32	34.92		3.89			
Control Delay (s/veh)		33.9	40933		29.5			
LOS		D	F		D			
Approach Delay (s/veh)	\cdots	\cdots	22094					
ApproachLOS	\cdots	\cdots	F					

Approach Delay 214.0 240.7 497.7 Approach LOS F F F Intersection Delay 271.5 $X_{c}=1.98$ Intersection LOS F

Approach Delay 92.0 114.5 488.1 Approach LOS F F F Intersection Delay 156.7 $X_{c}=5.75$ Intersection LOS F

APPENDIX 'I'

OPENING YEAR (2010) NO BUILD FREEWAY SEGMENT AND RAMP LOS

BASIC FREEWAY SEGMENTS WORKSHEET

Calculate Flow Adjustments

BASIC FREEWAY SEGMENTS WORKSHEET					
General Information \quad Site Information					
Analyst Agency or Company Date Performed Analysis Time Period	CRH HW Lochner, Inc. $\begin{aligned} & 10 / 26 / 06 \\ & \mathrm{DHV} \end{aligned}$	Highwa From/T Jurisdic Analys	tion of Travel	1-75 Northboun North of SR 50 Hernando Coun 2010	
Project Description 1-75 PD\&E - 2010 NB North of SR 50 (1-75 = 4 Lanes)					
$\sqrt{ }$ Oper.(LOS)		es.(N)		P Planning	
Flow Inputs					
volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT $\times K \times D$ Jriver type adjustment	2900 veh/h veh/day 0.95 veh/h	Peak-H \%Truck \%RVs. Genera Grade	tor, PHF Buses, P_{T} n: Length p/Down \%	$\begin{aligned} & \hline 0.94 \\ & 14 \\ & 2 \\ & \text { Level } \\ & \text { mi } \end{aligned}$	
Calculate Flow Adjustments					
E_{p}	0.95 1.5	E_{R} $f_{H V}=$	$\left.11+P_{R}\left(E_{R}-1\right)\right]$	1.2 0.931	
Speed Inputs		Calc Speed Adj and FFS			
Lane Width Rt-Shoulder Lat. Clearance interchange Density Number of Lanes, N FFS (measured) Base free-flow Speed, BFFS	12.0 ft 6.0 ft 0.50 lmi 2 mi / h 75.0 mi / h	$\begin{aligned} & f_{L W} \\ & f_{L C} \\ & f_{1 D} \\ & f_{N} \\ & F F S \end{aligned}$		0.0 0.0 0.0 0.0 75.0	mi / h mi / h mi / h milh mi / h
LOS and Performance Measures		Design (N)			
Operational (LOS)		Desion (N) Design LOS $\begin{array}{ll} v_{p}=(V \text { or } D D H V) /\left(P H F \times N \times f_{H V} \times\right. & \mathrm{pc} / \mathrm{h} \\ \left.f_{p}\right) & \mathrm{mi} / \mathrm{h} \\ S & \mathrm{pcimi} / \mathrm{ln} \end{array}$ Required Number of Lanes, N			
$3 l o s s a r y$		Factor Location			
$\begin{cases}\mathrm{N} \text { - Number of lanes } & \mathrm{S} \text { - Speed } \\ \mathrm{V} \text { - Hourly volume } & \text { D - Density } \\ \mathrm{V}_{\mathrm{p}} \text { - Flow rate } & \text { FFS - Free-flow speed } \\ \text { LOS - Level of service } & \text { EFFS - Base free-flow speed }\end{cases}$		$E_{R}-$ Exhibits23-8, 23-10 $f_{L W}-$ Exhibit 23-4 E_{T} - Exhibits 23-8, 23-10, 23-11 $f_{L C}-$ Exhibit 23-5 f_{0}-Page 23-12 $f_{N}-$ Exhibit 23-6			

Calculate Flow Adjustments

DDDHV - Directional design hour volume LOS. S. FFS, v_{p} - Exhibits 23-2, 23-3 $\quad f_{10}$ - Exhibit 23-7Copyright © 2005 University of Florida, All Rights Reserved

RAMPS AND RAMP JUNCTIONS WORKSHEET
General Information

Site Information

Analyst	CRH	Freeway/Dir of Travel	1.75 Northbound
Agency or Company	HW Lochner, inc.	Junction	CR 41/Blanton Rd On-Ramp
Date Performed	7/28/2005	Jurisdiction	Pasco County
Analysis Time Period	DHV	Analysis Year	2010
Project Description 1-75 FD\&E Study - 2010 NB On Ramp at CR 41 (1-75 $=4$ Lanes)			
Inputs			
Upstream Adj Ramp	Terrain: Level		
			Downstream Adj Ramp
F yes Ton			Γ ves 「on
TNo Foff			FNo TOH
			$L_{\text {down }}=\mathrm{ft}$
$v_{u}=460 \mathrm{veh} / \mathrm{h}$	$\begin{array}{r} \mathrm{S}_{\mathrm{fF}}=70.0 \mathrm{mph} \\ \text { Sketch } \end{array}$	$S_{F R}=35.0 \mathrm{mph}$ lanes, $L_{A}, L_{D}, V_{R} \cdot V_{\mathrm{t}}$)	$v_{0}=\quad \mathrm{veh} / \mathrm{h}$

Conversion to pc/h Under Base Conditions

(pch)	V (Veh/hr)	PHF	Terrain	\%Truck	\%Rv	Itiv	f_{p}	$\begin{aligned} & v=\mathrm{V} / \mathrm{PHF} \times \\ & \mathrm{H}_{1+} \times i_{p} \end{aligned}$
Freeway	2910	0.94	Leve!	14	1	0.933	0.95	3493
Ramp	180	0.91	Level	10	1	0.951	0.95	219
UpStream	460	0.91	Level	10	1	0.951	0.95	560
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$V_{12}=V_{F}\left(P_{F M}\right)$					$V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D}$			
$L_{E O}=$ (Equation $25-2$ or $25-3$)					$L_{E O}=$ (Equation $25-8$ or 25-9)			
$P_{F M}=1.000$ using Equation (Exhibit 25-5)					$P_{F D}=$ using Equation (Exhibit 25-11)			

Capacity Checks

Capacity Checks

Conversion to pc/h Under Base Conditions

(pch)	$\begin{gathered} V \\ (V \in h / h r) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	I_{HV}	i_{p}	$\begin{aligned} & V=V / P H F x \\ & F_{H V} \times f_{p} \end{aligned}$
Freeway	2250	0.94	Level	14	1	0.933	0.95	2701
Ramp	360	0.89	Level	10	1	0.951	0.95	448
UpSitream	140	0.89	Level	10	1	0.951	0.95	174
DownSIream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$V_{12}=V_{F}\left(P_{F M}\right)$					$V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D}$			
$L_{E O}=$ (Equation 25-2 or 25-3)					$L_{E O}=$ (Equation 25-8 or 25-9)			
$\mathrm{P}_{\mathrm{FM}}=1.000$ using Equation (Exhibit 25-5)					$\mathrm{P}_{\mathrm{FD}}=$ using Equation (Exhibit 25-11)			
$V_{12}=2701 \mathrm{pch}$					$v_{12}=p c h$			

Capacity Checks
Capacity Checks

	Actual	Maximum	LOS F?		Actual	Maximum	LOS F?
$V_{\text {FO }}$	3149	See Exhibit 25-7	No	$\mathrm{V}_{\mathrm{Ft}}=\mathrm{V}_{\mathrm{F}}$			
				V_{12}			
$V_{\text {R12 }}$	3149	4600:All	No	$\begin{gathered} V_{F O}=V_{F} . \\ V_{R} \end{gathered}$			
				V_{R}			
Level of Service Determination (if not F)				Level of Service Determination (if not F)			
$\begin{aligned} & \quad D_{R}=? \\ & D_{R}= \\ & L_{S}= \end{aligned}$	0.00734 (${ }^{\text {a }}$ (mi/n) bit 25-4)	${ }_{R}+0.0078 V_{12}-0$.		$\begin{cases}D_{R}= & \text { (pc/mi/n) } \\ \text { LOS }= & \text { (Exhibit } 25-4)\end{cases}$			
Speed Estimation				Speed Estimation			
$\begin{array}{ll} M_{S}= & 0.3 \\ S_{R}= & 60 \\ S_{0}= & \mathrm{N} / 2 \\ S= & 60 \end{array}$	bit 25-19) (Exhibit 29 Exhibit 25 Exhibit 2			$\begin{array}{ll}D_{S}= & \text { E } \\ S_{R}= & m p \\ S_{0}= & m p \\ S= & m p\end{array}$	25-19) xhibit 25 xhibit 25 xhibi 25		

Conversion to pc/h Under Base Conditions

($\mathrm{pch} / \mathrm{h}$	V (Vehihr)	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\begin{aligned} & V=V / P H F \times \\ & f_{H V} \times f_{p} \end{aligned}$
Freeway	1720	0.94	Level	14	2	0.931	0.95	2069
Ramp	670	0.89	Level	19	2	0.910	0.95	871
UpStream	520	0.89	Level	19	2	0.910	0.95	676
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & V_{12}=V_{F}\left(P_{F M}\right) \\ & L_{E O}=\text { (Equation 25-2 or 25-3) } \\ & P_{F M}=1.000 \text { using Equation (Exhibit 25-5) } \\ & V_{12}=2069 \mathrm{pch} \end{aligned}$					$\begin{aligned} & \quad V_{12}=V_{R}+\left(V_{F} \cdot V_{R}\right) P_{F D} \\ & L_{E O}=\text { (Equation 25-8 or 25-9) } \\ & P_{F D}=\text { using Equation (Exhitit 25-11) } \\ & V_{12}=\text { pc/h } \end{aligned}$			

Capacity Checks
Capacity Checks

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& Actual \& Maximum \& LOS F? \& \& Actual \& Maximum \& LOS F?

\hline \multirow[b]{2}{*}{$V_{\text {Fo }}$} \& \multirow[b]{2}{*}{2940} \& \multirow[b]{2}{*}{See Exhibit 25-7} \& \multirow[b]{2}{*}{No} \& $V_{\text {Fl }}=V_{F}$ \& \& \&

\hline \& \& \& \& V_{12} \& \& \&

\hline \multirow[t]{2}{*}{$V_{\text {R12 }}$} \& \multirow[t]{2}{*}{2940} \& \multirow[t]{2}{*}{4600:All} \& \multirow[t]{2}{*}{No} \& $$
\begin{gathered}
V_{\mathrm{FO}}=V_{F} . \\
V_{R}
\end{gathered}
$$ \& \& \&

\hline \& \& \& \& V_{R} \& \& \&

\hline \multicolumn{4}{|l|}{Level of Service Determination (if not F)} \& \multicolumn{4}{|l|}{Level of Service Determination (if not F)}

\hline $$
\begin{aligned}
& \quad D_{R}= \\
& D_{R}= \\
& \operatorname{LOS}=
\end{aligned}
$$ \& 0.00734

dillin)

bit 25-4) \& $+0.0078 \mathrm{~V}_{12}-0$. \& \& \multicolumn{2}{|l|}{\[
$$
\begin{cases}D_{R}= & \text { (pc/milin) } \\ \text { LOS }= & \text { (Exhibit 25-4) }\end{cases}
$$

\]} \& \[

36 V_{12}-0.000
\] \&

\hline \multicolumn{4}{|l|}{Speed Estimation} \& \multicolumn{2}{|l|}{Speed Estimation} \& \&

\hline $$
\begin{array}{ll}
M_{S}= & 0 . \\
S_{R}= & 60 \\
S_{0}= & N \\
S= & 60
\end{array}
$$ \& Eit $25-19$ \& \& \& $\begin{array}{ll}\mathrm{D}_{\mathrm{s}}= & \text { E } \\ S_{R}= & \mathrm{m} \\ S_{0}= & \mathrm{m} \\ \mathrm{S}= & \mathrm{m}\end{array}$ \& $25-19)$

xhibit 25
xhibit 25
xhibit 25 \& \&

\hline
\end{tabular}

APPENDIX ' J '

INTERIM YEAR (2020) NO BUILD FREEWAY SEGMENT AND RAMP LOS

BASIC FREEWAY SEGMENTS WORKSHEET

Calculate Flow Adjustments

[^0]

BASIC FREEWAY SEGMENTS WORKSHEET

Calculate Flow Adjustments

General Information		Site Information	
Analyst	CRH	Highway/Direction of Travel	I-75 Southbound
Agency or Company	HW Lochner, Inc.	From/To	CR 41 to SR 50
Date Performed	$10 / 26 / 06$	Jurisdiction	Hernando County
Analysis Time Period	DHV	Analysis Year	2020

Project Description 1-75 PD\&E Study-2020 SB CR 4110 SR 50 ($1-75=4$ Lanes)

Calculate Flow Adjustments

f_{p}	0.95		E_{R} 1.2 $f_{H V}=1 / 1+P_{T}\left(E_{f}-1\right)+P_{R}\left(E_{R}-1\right)$ 0.933	
Speed Inputs			Calc Speed Adj and FFS	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured) Base free-flow Speed, BFFS	$\begin{aligned} & 12.0 \\ & 6.0 \\ & 0.50 \\ & 2 \\ & \\ & 75.0 \end{aligned}$	ft ft l / mi mi / h mi / h	$f_{L W}$ 0.0 $f_{L C}$ 0.0 f_{LD} 0.0 f_{N} 0.0 $F F S$ 75.0	mi / h
LOS and Performance Measures			Design (N)	
Operational (LOS) $\left\{\begin{array}{l} v_{p}=(V \text { or } D D H V) /(P H F \times N \times \\ \left.f_{p}\right) \\ S \\ D=v_{p} / S \\ \text { LOS } \end{array}\right.$	$\begin{array}{ll} \mathrm{f}_{\mathrm{HV}} \mathrm{x} & 1921 \\ & \\ & 68.8 \\ & 27.9 \\ & \mathrm{D} \end{array}$	$\mathrm{pc} / \mathrm{h} / \mathrm{hn}$ mi / h $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	$\begin{aligned} & \text { Design (N) } \\ & \text { Design LOS } \\ & v_{p}=(V \text { or DDHV }) /\left(P H F \times N \times f_{H V} \times\right. \\ & \left.f_{p}\right) \\ & S \\ & D=v_{p} / S \end{aligned}$ Required Number of Lanes, N	milh $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Glossary			Factor Location	
N - Number of lanes N - Houfly volume v_{p} - Flow rate LOS - Level of service	S. Speed D - Density FFS - Free-flow speed BFFS - Base free-flow speed		$\begin{aligned} & E_{R} \text { - Exhibits23-8, 23-10 } \\ & E_{T} \text { - Exhibits } 23-8,23-10,23-11 \\ & f_{D} \text { - Page 23-12 } \end{aligned}$	$\begin{aligned} & f_{\text {LW }}-\text { Exhibit } 23-4 \\ & f_{L C}-\text { Exhibit } 23-5 \\ & f_{N} \text { - Exhibit } 23-6 \end{aligned}$

Input	Oupput
FFS, $\mathrm{N}, \mathrm{v}_{\mathrm{p}}$	LOS.S.D
FFS, LOS, v_{0}	N, S, D
FFS, LOS, H	Y_{6}, S, D
FFS, N, AB ${ }^{\text {d }}$	LOS. S. D
FFS, LOS, AADT	M, S. D
FFS, LOS, N	$V_{1 F} S .0$

General Information
Analyst
Agency or Company
Date Performed
Analysis Time Period
Project Description 1-75 PD\&E - 2020 SB South of CR 41 (1-75 = 4 Lanes)
FOper.(LOS) \quad Des.(N) F Planning Data
Flow Inputs

Volume. V	3590	veh/h veh/day	Peak-Hour Factor, PHF \%Trucks and Buses, P			$\begin{aligned} & 0.94 \\ & 14 \end{aligned}$
AADT						
Peak-Hr Prop. of AADT, K		veh/h	\%RVs, P_{R}			1
Peak-Hr Direction Prop, D	0.95		General Terrain:			Level
DDHV = AADT $\times K \times D$			Grade	\%	Length	mi
Driver type adjustment					/Down	

Calculate Flow Adjustments

RAMPS AND RAMP JUNCTIONS WORKSHEET			
General Information		Site Information	
Analyst	CRH	Freeway/Dir of Travel	1.75 Norihbound
Agency or Company	HW Lochner, Inc.	Junction	CR 41/Bianton Road Off-Ramp
Date Performed	$10 / 26106$	Jurisdiction	Pasco County
Analysis Time Period	DHV	Analysis Year	2020
Project Description 1.75 PD\&E Study - 2020 NB Off Ramp at CR 41 (1-75 $=4$ Lanes)			
Inputs			
Upstream Adj Ramp	Terrain: Level		Downstream Adj
Tres Ton			Ramp
FVo TOff			$\begin{array}{ll}\text { FYes } & \text { Fon } \\ \text { 「No } & \text { roft }\end{array}$
$=\mathrm{ft}$			$\mathrm{d}_{\text {down }}=620 \mathrm{ft}$
$v_{u}=v e h / h$	$S_{\text {FF }}=70.0 \mathrm{mph}$	$S_{F R}=35.0 \mathrm{mph}$	$\mathrm{V}_{\mathrm{D}}=370 \mathrm{veh} / \mathrm{h}$

Conversion to pc/h Under Base Conditions

(pchin)	$\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\begin{aligned} & =\mathrm{V} / \mathrm{PHF} \times \\ & f_{H V} \times f_{p} \end{aligned}$
Freeway	4530	0.94	Level	14	1	0.933	0.95	5438
Ramp	860	0.91	Leve!	10	1	0.951	0.95	1047
UpStream								
DownStream	370	0.91	Level	10	1	0.951	0.95	450
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & L_{E O}=\text { Equ } \\ & P_{F M}=\text { using } \\ & V_{12}=p \mathrm{c} / \mathrm{h} \end{aligned}$	tion 25- Equation	$\begin{aligned} & =V_{F}(F \\ & 25-3) \end{aligned}$ Exhibit?			$L_{\text {EO }}=$ $P_{\text {FD }}=1$ $V_{12}=5$	uation	$V_{R}+$ $25-9$	$\left.-V_{R}\right) P_{F D}$ it 25-11)

Capacity Checks
Capacity Checks

	Actual	Maximum	LOSF?		Actual	Maximum	LOSF?
$V_{\text {Fo }}$				$V_{F 1}=V_{F}$	5438	4800	Yes
				V_{12}	5438	4400:All	Yes
$V_{R 12}$				$\begin{gathered} V_{F O}=V_{F}- \\ V_{R} \end{gathered}$	4391	4800	No
				V_{R}	1047	2000	No
Level of Service Determination (if not F)				Level of Service Determination (if not F)			
$D_{R}=5.475+0.00734 V_{R}+0.0078 V_{12}-0.00627 L_{A}$				D $D_{R}=$ $L O S$ L	($252+$	$6 V_{12}-0$.	
Speed Estimation				Speed Estimation			
$\begin{array}{ll} M_{S}= & \text { (Exibit 25-19) } \\ S_{R}= & \text { mph (Exhibit 25-19) } \\ S_{0}= & \text { mph (Exhibit 25-19) } \\ S= & \text { mph (Exhibit 25-14) } \end{array}$				$\begin{array}{ll} \mathrm{D}_{\mathrm{S}}= & 0.522(\text { Exhibit 25-19) } \\ S_{R}= & 55.4 \mathrm{mph}(\text { Exhibit 25-19) } \\ S_{0}= & \text { N/A mph (Exhibit 25-19) } \\ S_{=}= & 55.4 \mathrm{mph}(\text { Exhibit } 25-15) \end{array}$			

Florida Department of Transportation

605 Sumonee 5 tree
Tollohosse Fl 32399.0450

SECRETAKy

October 20. 2006

Thomas Neyet P E

Regiona Vice President
H W LOCHNER INC
5850 T. G. Lee Blva, Sulte 320
mmando Forda 32822

Dea! M Neye:
The Fiorma Department of Thanspontath has reviewed you appication for qualication package and detommed Hat the data summed is adequate to quatity your firm for the followng types of work

Group 2	- Project Development and Enviromental (PD\&E) Sudies
Groum 3	- Hignway Design - Roadway
31	- Mnor Highway Design
32	- Major Highway Design
33	- Complex Highway Design
Groun *	- Highway Design Bridges
$4: 1$	- Miscellaneous Structures
412	- Minor Bridge Design
421	- Maror Bridge Design - Concrete
422	- Major Bridge Design - Stee
Group 5	- Bridge Inspection
51	- Conventionat Endge Inspection
52	- Moveble Bridge Inspection
53	- Complex Bricge Inspection
54	- Bndge Load Rating
Group 5	- Traffic Engmeerng and Operatons Studies
61	- Tratic Engineering Studes
52	- Traffic Signal Tming
631	- Inteligen Transpontation Systems Araiysis and Design
632	- Intelligent Transportation Systems Implementation
Grom?	Trafic Operations Design
$7 \cdot$	Signing. Pavement Markig and Chamelization
72	Lightug
73	Signamzation

101 - Roadway Construction Engmeenng Inspection
103 - Construction Materals Inspection
104 - Minor Bridge \& Miscellaneous Structures CEI
Group 11 - Engineering Contract Admnistration and Management

Group 13 - Planning

133 - Policy Planning
134 - Systems Planning
135 - SubarealCorridor Plannng
136 - Land Planning/Engineering
137 - Transportation Statistics

Your Unlimited Notice of Qualfication shall be valid unt Octooer 31,2007 at such time as your April 30,2007 overhead audt will be due to comply with the Department's requirement on overhead audits. We will automatically notify your firm 45 to 60 days prior to your update deadine

On the basis of data submited the Department has approved your accounting system and considers the rates inted below as acceptable rates for qualification purposes

Overhead Rate

Home/Branch	Field
$\frac{\text { Office }}{16555 \%}$	$\frac{\text { Office }}{127.94 \%}$

Facinties Capital Cost of Money	
0.396%	Direct Expense

Should you have any questions, please feet free to contact me at 850/414-4485

Sincerely.

Roeraine E Odom

Lorraine E. Odom
Professional Services
Qualification Administrator

LEOSm

Conversion to pc/h Under Base Conditions

APPENDIX ' K '

DESIGN YEAR (2030) NO BUILD FREEWAY SEGMENT AND RAMP LOS

Calculate Flow Adjustments

DDHV - Directional design hour volume	LOS, S, FFS, v_{p} - Exhibits 23-2, 23-3	$\mathrm{f}_{1 \mathrm{D}}$ - Exhibit 23-7

Calculate Flow Adjustments

DDHV - Directional design hour volume	LOS, S, FFS, v_{p} - Exhibits 23-2, 23-3	f_{10} - Exhibit 23-7
Copyright © 2005 University of Florida. All Rights Reserved	$\mathrm{HCS}+^{\text {TM }}$ Version 5.2 Ge	3ted: 11/8/2006 3:46 PM

Gle://C:Documents $\% 20$ and $\% 20$ Settings rhucbschmanLocal $\% 20$ SettingsTemp f2k510.tmp

Calculate Flow Adjustments

DODHV - Directional design hour volume \quad LOS, S, FFS, v. - Exhibits 23-2.23-3 f_{10} - Exhibit 23-7

RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information
Site Information

(pc/h)	$\begin{gathered} v \\ \text { (Vehhr) } \end{gathered}$	PHF	Terrain		\%Truck	\%Rv	f_{HV}		f_{0}	$\begin{aligned} & V=\mathrm{VIPHF} x \\ & \mathrm{fH}_{\mathrm{H} \times \mathrm{f}_{\mathrm{p}}} \end{aligned}$					
Freeway	3520	0.94	Level		14	1	0.933		0.95	4226					
Ramp	990	0.89	Level		10	1	0.951		0.95	1232					
UpStream	430	0.89	Level		10	1	0.951		0.95	535					
DownStream															
Merge Areas						Diverge Areas									
Estimation of v_{12}						Estimation of v_{12}									
$\begin{aligned} & \quad V_{12}=V_{F}\left(P_{F M}\right) \\ & L_{E O}=\text { (Equation 25-2 or 25-3) } \\ & P_{F M}=1.000 \text { using Equation (Exhibit 25-5) } \\ & V_{12}=4226 \text { pch } \end{aligned}$						$\begin{aligned} & \quad V_{12}=V_{R}+\left(V_{F} \cdot V_{R}\right) P_{F D} \\ & L_{E O}=\text { (Equation 25-8 or 25-9) } \\ & P_{F D}=\text { using Equation (Extibi1 25-11) } \\ & V_{12}=\mathrm{pch} \end{aligned}$									
Capacity Checks						Capacity Checks									
	Actual	Maximum		LOS F?		\square			Maximum		LOSF?				
$V_{\text {Fo }}$	5458	See Exhibit 25-7		Yes		$\mathrm{V}_{\mathrm{Fl}}=\mathrm{V}_{\mathrm{F}}$									
				V_{12}											
$V_{\text {R12 }}$	5458					Yes		$\begin{gathered} V_{F O}=V_{F} \\ V_{R} \end{gathered}$							
				$V_{\text {R }}$											
Level of Service Determination (if not F)						Level of Service Determination (if not F)									
$\begin{aligned} & \quad D_{R}=5.475+0.00734 \mathrm{~V}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}} \\ & \mathrm{O}_{\mathrm{R}}= \\ & \mathrm{H}= \\ & \mathrm{Cl}=\mathrm{F}(\text { Exhibil 25-4) }) \end{aligned}$						$\begin{aligned} & D_{R}= \\ & \text { LOS }= \end{aligned}$	$\begin{aligned} & \quad D_{R}= \\ & \text { pcimilin } \\ & \text { Exhibit } 25 \end{aligned}$	$\begin{aligned} & =4.252 \\ & 25-4) \end{aligned}$	0.008	2. 0.000					
Speed Estimation						Speed Estimation									
M ${ }_{\text {S }}=1.180$ (Exibil 25.19$)$$S_{R}=$						$\begin{array}{ll} \mathrm{D}_{\mathrm{s}}= & \text { (Exhibit 25-19) } \\ \mathrm{S}_{\mathrm{R}}= & \text { mph (Exhibit 25-19) } \end{array}$									
$\begin{array}{ll} S_{0}= & \text { N/A mph (Exhibit 25-19) } \\ S= & 37.0 \mathrm{mph} \text { (Exhibit 25-14) } \end{array}$						$s_{00}=\quad \mathrm{mph}($ Exhibit 25-19)									
						$s=\operatorname{mph}($ Exhibit 25-15)									

Conversion to pc/h Under Base Conditions

(pc / h)	V (Veh/hr)	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\begin{aligned} & V=V / P H F x \\ & f_{H V} \times f_{p} \end{aligned}$
Freeway	2640	0.94	Level	14	2	0.931	0.95	3175
Ramp	1310	0.89	Level	19	2	0.910	0.95	1703
UpStream	1150	0.89	Leve!	19	2	0.910	0.95	1495
DownStrean								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & \quad V_{12}=V_{F}\left(P_{F M}\right) \\ & L_{E O}=\text { (Equation 25-2 of 25-3) } \\ & P_{F M}=1.000 \text { using Equation (Exhibii 25-5) } \\ & V_{12}=3175 \mathrm{pch} \end{aligned}$					$\begin{aligned} & \quad V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D} \\ & L_{E 0}=\text { (Equation 25-8 or 25-9) } \\ & P_{F D}=\text { using Equation (Exhibit 25-11) } \\ & V_{12}=\text { pch } \end{aligned}$			

Capacity Checks
Capacity Checks

	Actual	Maximum	LOS F?		Actual	Maximum	LOS F?
$V_{\text {FO }}$	4878	See Exhibit 25-7	Yes	$V_{\text {Fl }}=V_{\text {F }}$			
				V_{12}			
$V_{\text {R12 }}$	4878	4600:All	Yes	$\begin{gathered} V_{F O}=V_{F} \\ V_{R} \end{gathered}$			
				V_{R}			
Level of Service Determination (if not F)				Level of Service Determination (if not F)			
$\begin{aligned} & D_{R}= \\ & D_{R}= \\ & L O S= \end{aligned}$	0.00734	$+0.0078 \mathrm{~V}_{12}-0.0$		$\mathrm{O}_{\mathrm{R}}=1 \mathrm{pc}$ LOS $=1 \mathrm{E}$	$=4.252$ $25-4)$	$6 \mathrm{~V}_{12}-0.00$	
Speed Estimation				Speed Estimation			
$\begin{array}{ll} M_{S}= & 07 \\ S_{R}= & 47 . \\ S_{0}= & N / R \\ S= & 47 . \end{array}$	dit 25-19)				$25-19)$ xhibit 25 (

APPENDIX 'L'
OPENING YEAR (2010) BUILD INTERSECTION LOS

Detailed Report
Page 1 of 2

Approach Delay	5.7	12.0		14.2
Approach LOS	A	B	B	
Intersection Delay	11.3	$X_{C}=0.34$	Intersection LOS	B
Copyright © 2005 University of Florida, All Rights Reserved	HCS+			

Approach Delay 12.3 18.3 21.7 Approach LOS B B C Intersection Delay 18.3 $X_{C}=0.32$ Intersection LOS B

Approach Delay	6.4	15.7	17.8	
Approach LOS	A	B	B	
Intersection Delay	13.5	$x_{c}=0.37$	Intersection LOS	B

Copyright 2005 University of Florida. All Rights Reserved

Approach Delay Approach LOS A A C Intersection Delay 6.5 $X_{C}=0.26$ Intersection LOS A

Lane Group LoS					
Approach Delay	22.5	20.8	57.2		
Approach LOS	C	C	E		
Intersection Delay	27.1	$x_{c}=0.62$	Intersection LOS	C	

HCS ${ }^{\text {** }}$ DETAILED REPORT		
General Information	Site informatio	
Analyst JAS	Intersection	1-75Ramps@SR50
Agency or Co. FDOT	Area Type	All other areas
Date Performed 11/08/2006	Jurisdiction	Hernando
Time Period	Analysis Year Project ID	SPUI Alternative - 2010

Volume and Timing Input

	EB			WB			NB			SB		
	LT	TH	RT									
Number of Lanes, N_{1}	2	3	1	2	3	1	3		2	3		2
Lane Group	L	T	R	L	T	R	L		R	L		R
Volume, V (vph)	346	875	312	358	1124	314	340		510	311		209
\% Heavy Vehicles, \%HV	6	6	6	6	6	6	6		6	6		6
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.91	0.91	0.91	0.95		0.95	0.90		0.90
Pretimed (P) or Actuated (A)	A	A	A	A	A	A	A		A	A		A
Start-up Lost Time, 11	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0
Extension of Effective Green, e	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0
Arrival Type, AT	3	3	3	3	3	3	3		3	3		3
Unit Extension, UE	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0
Filtering/Metering, 1	1.000	1.000	1.000	1.000	1.000	1.000	1.000		1.000	1.000		1.000
Initial Unmet Demand, Qs	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
Ped / Bike / RTOR Volumes	0	0	0	0	0	0	0	0	220	0	0	0
Lane Width	12.0	12.0	12.0	12.0	12.0	12.0	12.0		12.0	12.0		12.0
Parking / Grade / Parking	N	0	N	N	0	N	N	0	N	N	0	N
Parking Maneuvers, Nm												
Buses Stopping, NB	0	0	0	0	0	0	0		0	0		0
Min. Time for Pedestrians, Gp_{p}	3.2			3.2			3.2			3.2		

Phasing	Excl. Left	Thru \& RT	03	04	NS Perm	06	07	08
Timing	$G=29.0$	$G=73.6$	G =	G =	$G=30.4$	$\mathrm{G}=$	G =	$\mathrm{G}=$
	$Y=5$	$Y=7$	$Y=$	$Y=$	$Y=5$	Y=	$Y=$	$Y=$
Duration	nalysis. $T=$					Cycle L	$\mathrm{C}=$	

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB			NB			SB		
	LT	TH	RT									
Adjusted Flow Rate, v	384	972	347	393	1235	345	358		305	346		232
Lane Group Capacity, c	639	2396	1128	639	2396	1128	940		547	940		547
v/c Ratio, X	0.60	0.41	0.31	0.62	0.52	0.31	0.38		0.56	0.37		0.42
Total Green Ratio, g/C	0.19	0.49	0.74	0.19	0.49	0.74	0.20		0.20	0.20		0.20
Uniform Delay, ${ }_{1}$	55.2	24.3	6.6	55.4	26.0	6.6	51.7		53.8	51.5		52.2
Progression Factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000		1.000	1.000		1.000
Delay Calibration, k	0.19	0.11	0.11	0.20	0.12	0.11	0.11		0.15	0.11		0.11
Incremental Delay, d_{2}	1.6	0.1	0.2	1.8	0.2	0.2	0.3		1.3	0.2		0.5
Initial Queue Delay, d_{3}	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
Control Delay	56.8	24.4	6.7	57.2	26.2	6.7	51.9		55.0	51.8		52.7
Lane Group LOS	E	C	A	E	C	A	D		E	D		D

Approach Delay	28.1	29.0	53.4	52.1
Approach LOS	C	C	D	D
Intersection Delay	34.7	$X_{c}=0.55$	Intersection LOS	C

Copyright © 2005 University of Florida. All Righls Reserved

HCS ${ }^{\text {* }}$ DETAILED REPORT														
General Information							Site Information							
Analyst JAS Agency or Co. FDOT Date Performed 11/09/2006 Time Period							Intersection Area Type Jurisdiction Analysis Year Project ID		I-75 NB Ramps @ SR 50 All other areas Hernando WB to SB Loop Ramp Alternative (WB Thru Only) 2010 NB=FF					
Volume and Timing Input														
			EB			WB			NB			SB		
			LT	TH	RT									
Number of Lanes, N_{1}			2	3			3		3					
Lane Group			L	T			T		L					
Volume, V (vph)			346	1186			1124		340					
\% Heavy Vehicles, \%HV			6	6			6		6					
Peak-Hour Factor, PHF			0.90	0.90			0.91		0.95					
Pretimed (P) or Actuated (A)			A	A			A		A					
Start-up Lost Time, II			2.0	2.0			2.0		2.0					
Extension of Effective Green, e			2.0	2.0			2.0		2.0					
Arrival Type, AT			3	3			3		3					
Unit Extension, UE			3.0	3.0			3.0		3.0					
Filtering/Metering, 1			1.000	1.000			1.000		1.000					
Initial Unmet Demand, Qu			0.0	0.0			0.0		0.0					
Ped / Bike / RTOR Volumes			0	0		0	0		0	0				
Lane Width			12.0	12.0			12.0		12.0					
Parking / Grade / Parking			N	0	N	N	0	N	N	0	N			
Parking Maneuvers, Nm														
Buses Stopping. N_{B}			0	0			0		0					
Min. Time for Pedestrians. Gp			3.2			3.2			3.2					
Phasing	EB Only	Thru Only		03		04		NB Only	06		07		08	
Timing	$G=27.3$	$\mathrm{G}=72.3$		$\mathrm{G}=$		G =		$\mathrm{G}=15.4$	G =		$\mathrm{G}=$		G =	
	$Y=5$	$Y=$		$Y=$		$Y=$		$Y=5$	$Y=$		$Y=$		$Y=$	
Duration of Analysis, $T=0.25$									Cycle Length, $\mathrm{C}=130.0$					
Lane Group Capacity, Control Delay, and LOS Determination														
		EB				WB			NB			SB		
			T	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted Flow Rate, v			84	1318			1235		358					
Lane Group Capacity, c		69		3929			2716		550					
v/C Ratio, X		0.5		0.34			0.45		0.65					
Total Green Ratio, g/C		0.2		0.80			0.56		0.12					
Uniform Delay, d_{1}		45.		3.4			17.1		54.7					
Progression Factor, PF		1.00	.000	1.000			1.000		1.000					
Delay Calibration, k		0.1		0.11			0.11		0.23					
Incremental Delay, d_{2}			. 0	0.1			0.1		2.7					
Initial Queue Delay, d_{3}		0.0		0.0			0.0		0.0					
Control Delay		46	6.9	3.4			17.3		57.5					
				A			B		E					

Lane Group LOS					
Approach Delay	13.2	17.3	57.5		
Approach LOS	B	B	E		
Intersection Delay	19.6	$x_{c}=0.50$	Intersection LOS	B	

Lane Group LOS						
Approach Delay	46.9	7.0				
Approach LOS	D	A				
Intersection Delay	20.7	$X_{c}=0.37$	Intersection LOS	C		

Approach Delay	19.0	19.5	52.8	
Approach LOS	B	B	D	
Intersection Delay	22.7	$X_{c}=0.50$	Intersection LOS	C

HCS+ ${ }^{\text {' }}$ DETAILED REPORT														
General Information							Site information							
Analyst JAS Agency or Co. FDOT Date Performed $11 / 08 / 2006$ Time Period							Intersection Area Type Jurisdiction Analysis Year Project ID		1.75 SB Ramps @ SR 50 All other areas Hernando Lane Improvement Alternative - 2010					
Volume and Timing Input														
				EB			WB			NB			SB	
			LT	TH	RT									
Number of Lanes, N_{1}				3	1	2	3					2		2
Lane Group				T	R	L	T					L		R
Volume, V (vph)				1221	312	358	1464					311		209
\% Heavy Vehicles, \%HV				6	6	6	6					6		6
Peak-Hour Factor, PHF				0.88	0.88	0.95	0.95					0.89		0.89
Pretimed (P) or Actuated (A)				A	A	A	A					A		A
Start-up Lost Time, 11				2.0	2.0	2.0	2.0					2.0		2.0
Extension of Effective Green. e				2.0	2.0	2.0	2.0					2.0		2.0
Arrival Type, AT				3	3	3	3					3		3
Unit Extension, UE				3.0	3.0	3.0	3.0					3.0		3.0
Fittering/Metering, 1				1.000	(1.000	17.000	11.000					1.000		1.000
Initial Unmet Demand, $\mathrm{Qb}^{\text {b }}$				0.0	0.0	0.0	0.0					0.0		0.0
Ped / Bike / RTOR Volumes			0	0	250	0	0					0	0	70
Lane Width				12.0	12.0	12.0	12.0					12.0		12.0
Parking / Grade / Parking			N	0	N	N	0	N				N	0	N
Parking Maneuvers, Nm_{m}														
Buses Stopping, N_{8}				0	0	0	0					0		0
Min. Time for Pedestrians, Gp			3.2			3.2						3.2		
Phasing	EW Perm	Thru \& RT		03		04		SB Only		06	07		08	
Timing	$G=21.0$	$G=90.2$		G =		G =		$G=33.8$		G $=$	G =		G =	
	$Y=5$	$Y=$	5	$Y=$		$Y=$		$Y=5$			Y		$Y=$	
Duration of Analysis, $T=0.25$										Cycle Length, $\mathrm{C}=160.0$				
Lane Group Capacity, Control Delay, and LOS Determination														
		EB				WB			NB			SB		
				TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted Flow Rate, v				1388	70	377	1541					349		156
Lane Group Capacity, c				2753	1524	434	3546					699		570
v/c Ratio, X				0.50	0.05	0.87	0.43					0.50		0.27
Total Green Ratio, g/C				0.56	1.00	0.13	0.73					0.21		0.21
Uniform Delay, d_{1}				21.3	0.0	68.1	8.8					55.6		52.8
Progression Factor, PF				1.000	0.950	1.000	1.000					1.000		1.000
Delay Calibration, k				0.11	0.11	0.40	0.11					0.11		0.11
Incremental Delay, d_{2}				0.2	0.0	17.0	0.1					0.6		0.3
Initial Queue Delay, d_{3}				0.0	0.0	0.0	0.0					0.0		0.0
Control Delay				21.4	0.0	85.1	8.8					56.2		53.1
				c	A	F	A					E		D

Approach Delay	8.6	9.5	42.0	
Approach LOS	A	A		D
Intersection Delay	13.8	$X_{c}=0.46$	Intersection LOS	B

Approach Delay 11.7 13.6 41.4 Approach LOS B B D Intersection Delay 17.6 $X_{c}=0.42$ Intersection LOS BCopyright 02005 University of Florida, Al Rights Reserved$\quad \mathrm{HCS}+\mathrm{TM}$ Version 5.2

HCS ${ }^{\text {* }}$ DETAILED REPORT														
General Information							Site Information							
Analyst JAS Agency or Co. FDOT Date Performed 11/08/2006 Time Period							Intersection Area Type Jurisdiction Analysis Year Project ID		I-75 SB Ramps @ SR 50 All other areas Hernando NB to WB Flyover Alternative -2010					
Volume and Timing Input														
			EB			WB			NB			SB		
			LT	TH	RT									
Number of Lanes, N_{1}				3	1	2	3					3		2
Lane Group				T	R	L	T					L		R
Volume, V (vph)				875	 12	358	1124					311		209
\% Heavy Vehicles, \%HV				6	6	0	6					6		6
Peak-Hour Factor, PHF				0.88	0.88	0.90	0.95					0.89		0.89
Pretimed (P) or Actuated (A)				A	A	A	A					A		A
Start-up Lost Time. 11				2.0	2.0	2.0	2.0					2.0		2.0
Extension of Effective Green, e				2.0	2.0	2.0	2.0					2.0		2.0
Arrival Type, AT				3	3	3	3					3		3
Unit Extension, UE				3.0	3.0	3.0	3.0					3.0		3.0
Filtering/Metering, I				1.00	1.000	[1.000	(1.000					1.000		1.000
Initial Unmet Demand, $\mathrm{Qb}^{\text {d }}$				0.0	0.0	0.0	0.0					0.0		0.0
Ped / Bike / RTOR Volumes			0	0	250	0	0					0	0	70
Lane Width				12.0	12.0	12.0	12.0					12.0		12.0
Parking / Grade / Parking			N	0	N	N	0	N				N	0	N
Parking Maneuvers, Nm_{m}														
Buses Stopping, $\mathrm{NB}^{\text {a }}$				0	0	0	0					0		0
Min. Time for Pedestrians, G_{p}			3.2			3.2						3.2		
Phasing	WB Only	Thru \& RT		03		04		SB Only	06		07		08	
Timing	$\mathrm{G}=34.3$	$\mathrm{G}=71.1$		G =		G =		$\mathrm{G}=29.6$	$G=$		$\mathrm{G}=$		$\mathrm{G}=$	
	$Y=5$	$\mathrm{Y}=$	5	$Y=$		$Y=$		$Y=5$		$\mathrm{Y}=\quad \mathrm{Y}=\mathrm{Y} \quad \mathrm{Y}=$				
Duration of Analysis, $T=0.25$														
Lane Group Capacity, Control Delay, and LOS Determination														
		EB				WB			NB			SB		
		L		TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted Flow Rate, v				994	70	398	1183					349		156
Lane Group Capacity. c				2315	1074	801	3594					915		532
v/c Ratio, X				0.43	0.07	0.50	0.33					0.38		0.29
Total Green Ratio, g/C				0.47	0.70	0.23	0.74					0.20		0.20
Uniform Delay, d_{1}				26.1	6.9	50.3	6.9					52.3		51.3
Progression Factor, PF				1.000	1.000	1.000	1.000					1.000		1.000
Delay Calibration, k				0.11	0.11	0.11	0.11					0.11		0.11
Incremental Delay, d_{2}				0.1	0.0	0.5	0.1					0.3		0.3
Initial Queue Delay. ${ }_{3}$				0.0	0.0	0.0	0.0					0.0		0.0
Control Delay				26.2	6.9	50.8	7.0					52.5		51.6
				c	A	D	A					D		D

file://C:Documents and SettingstjschirripaiLocal SettingsiTemp:2k849.tmp

APPENDIX 'M'

INTERIM YEAR (2020) BUILD INTERSECTION LOS

Approach Delay	8.6	18.4		13.5
Approach LOS	A	B		B
Intersection Delay	13.6	$X_{c}=0.67$	Intersection LOS	B

Approach Delay	19.0	29.1		24.6
Approach LOS	B	C		C
Intersection Delay	24.3	$x_{c}=0.63$	Intersection LOS	C

HCS +** DETAILED REPORT														
General Information							Site Information							
Analyst JAS Agency or Co. FDOT Date Performed 11/08/2006 Time Period							Intersection 1-75 NB Ramps @ CR 41 Area Type All other areas Jurisdiction Pasco County Analysis Year mNB Loop Ramp Altemative Project ID SBRT=FF)							
Volume and Timing Input														
			EB			WB			NB			SB		
			LT	TH	RT									
Number of Lanes, N_{1}			1	1			1					1		
Lane Group			L	T			T					L		
Volume, V (vph)			291	177			493					372		
\% Heavy Vehicles, \%HV			10	5			4					9		
Peak-Hour Factor, PHF			0.85	0.85			0.85					0.91		
Pretimed (P) or Actuated (A)			A	A			A					A		
Start-up Lost Time, il			2.0	2.0			2.0					2.0		
Extension of Effective Green, e			2.0	2.0			2.0					2.0		
Arrival Type, AT			3	3			3					3		
Unit Extension, UE			3.0	3.0			3.0					3.0		
Filtering/Metering. 1			1.000	1.000			1.000					1.000		
Initial Unmet Demand, Qb			0.0	0.0			0.0					0.0		
Ped / Bike / RTOR Volumes			0	0		0	0					0	0	
Lane Width			12.0	12.0			12.0					12.0		
Parking / Grade / Parking			N	0	N	N	0	N				N	0	N
Parking Maneuvers, Nm														
Buses Stopping, NB			0	0			0					0		
Min. Time for Pedestrians, Gp_{p}			3.2			3.2						3.2		
Phasing	EB Only	EW P	Perm	03		04		SB Only	06		07		08	
Timing	$\mathrm{G}=35.1$	$\mathrm{G}=59.9$		G =		G =		$\mathrm{G}=40.0$	$G=$		G =		G =	
	$Y=5$	$Y=5$		$Y=$		$\mathrm{Y}=$		$Y=5$	$Y=$		$Y=$		$Y=$	
Duration of Analysis, $T=0.25$										Cycle Length, $C=150.0$				
Lane Group Capacity, Control Delay, and LOS Determination														
		EB				WB			NB			SB		
		LT		TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted Flow Rate, v		34		208			580					409		
Lane Group Capacity, c		55		1207			730					442		
v/c Ratio. X		0.62		0.17			0.79					0.93		
Total Green Ratio, g/C		0.67		0.67			0.40					0.27		
Uniform Delay, d_{1}		16.9		9.4			39.6					53.5		
Progression Factor, PF		1.000		1.000			1.000					1.000		
Delay Calibration, k		0.21		0.11			0.34					0.44		
Incremental Delay, d_{2}		2.2		0.1			6.1					25.4		
Initial Queue Delay, d_{3}		0.0		0.0			0.0					0.0		
Control Delay		19.		9.5			45.7					78.9		
		B		A			D					E		

Lane Group LOS					
Approach Delay	15.5	45.7		78.9	
Approach LOS	B	D		E	
Intersection Delay	43.7	$X_{c}=0.86$	Intersection LOS	D	

Approach Delay	10.0	17.9	20.5	C
Approach LOS	A	B	C	
Intersection Delay	16.2	$X_{c}=0.72$	Intersection LOS	B

Copyright © 2005 University of Ftorida, All Rights Reserved HCS + TM Version 5.2 Generated: 11/8/2006 7:38 PM

Duration of Analysis, $T=0.25$
Lane Group Capacity, Control Delay, and LOS Determination

		EB			WB			NB			SB	
	LT	TH	RT									
Adjusted Flow Rate, v		380		356	676		175		134			
Lane Group Capacity, c		1710		658	2275		274		502			
v/c Ratio, X		0.22		0.54	0.30		0.64		0.27			
Total Green Ratio, g/C		0.49		0.67	0.67		0.17		0.34			
Uniform Delay, d_{1}		8.7		4.4	4.2		23.3		14.3			
Progression Factor, PF		1.000		1.000	1.000		1.000		1.000			
Delay Calibration, k		0.11		0.14	0.11		0.22		0.11			
Incremental Delay, d_{2}		0.1		0.9	0.1		4.9		0.3			
Initial Queue Delay, d_{3}		0.0		0.0	0.0		0.0		0.0			
Control Delay		8.8		5.3	4.2		28.2		14.6			
Lane Group LOS		A		A	A		C		B			
	8.8			4.6			22.3					

Approach Delay				
Approach LOS	A	A	C	
Intersection Delay	8.7	$X_{c}=0.51$	Intersection LOS	
Copyrigh1 © 2005 University or Florida. All Rights Reserved	HCS ${ }^{\text {TM }}$ Version 5.2	Generated	1/1/8/2006 $8: 24 \mathrm{PM}$	

Approach Delay 38.6 37.4 81.3 56.5 Approach LOS D D F E Intersection Delay 46.2 $X_{c}=0.92$ Intersection LOS D

Approach Delay	32.4	26.9	56.0	E
Approach LOS	C	C	E	
Intersection Delay	32.2	$X_{C}=0.82$	Intersection LOS	C

Copyright O2005 Universify of Florica. All Righs Reserved

Lane Group LOS	\mid					
Approach Delay	16.0	B				
Approach LOS	B	B				
Intersection Delay	13.2	$X_{c}=0.66$	Intersection LOS	B		

Approach Delay	10.9	14.1		46.7
Approach LOS	B	B		D
Intersection Delay	17.5	$X_{C}=0.74$	Intersection LOS	B
Copyright 2005 University or Florida, All Rights Reserved	HCS +TM Version 5.2	Generated: $11 / 9 / 2006$ 7:08 PM		

Approach Delay 13.8 20.4 43.7 Approach LOS B C D Intersection Delay 22.3 $X_{C}=0.68$ Intersection LOS C

Lane Group Capacity, Control Delay, and LOS Determination

APPENDIX ' N '

DESIGN YEAR (2030) BUILD INTERSECTION LOS

HCS ${ }^{\text {tw }}$ DETAILED REPORT	
General Information	Site Information
Analyst \quad CRH	Intersection
Agency or Co. FDOT	Area Type Ramps @ CR 41
Date Performed 11/03/2006	Allareas
Time Period	Jurisdiction
	Pasco County
	Analysis Year
	Project ID

Volume and Timing Input

	EB			WB			NB			SB		
	LT	TH	RT									
Number of Lanes, N_{1}	1	2			2					2		2
Lane Group	L	T			T					L		R
Volume, V (vph)	436	246			713					546		714
\% Heavy Vehicles, \%HV	10	5.			4					9		6
Peak-Hour Factor, PHF	0.85	0.85			0.85					0.91		0.91
Pretimed (P) or Actuated (A)	A	A			A					A		A
Start-up Lost Time, IT	2.0	2.0			2.0					2.0		2.0
Extension of Effective Green, e	2.0	2.0			2.0					2.0		2.0
Arrival Type, AT	3	3			3					3		3
Unit Extension, UE	3.0	3.0			3.0					3.0		3.0
Filtering/Metering, I	1.000	1.000			1.000					1.000		1.000
Initial Unmet Demand, Qb	0.0	0.0			0.0					0.0		0.0
Ped / Bike / RTOR Volumes	0	0		0	0					0	0	0
Lane Width	12.0	12.0			12.0					12.0		12.0
Parking / Grade / Parking	N	0	N	N	0	N				N	0	N
Parking Maneuvers, N_{m}												
Buses Stopping. NB	0	0			0					0		0
Min. Time for Pedestrians, G_{p}		3.2			3.2						3.2	

Phasing	EB Only	EW Perm	03	04	SB Only	06	07	08
Timing	$\mathrm{G}=15.9$	$\mathrm{G}=16.4$	$\mathrm{G}=$	$\mathrm{G}=$	$\mathrm{G}=12.7$	$\mathrm{G}=$	$\mathrm{G}=$	$\mathrm{G}=$
	$\mathrm{Y}=5$	$\mathrm{Y}=5$	$\mathrm{Y}=$	$\mathrm{Y}=$	$\mathrm{Y}=5$	$\mathrm{Y}=$	$\mathrm{Y}=$	$\mathrm{Y}=$

Duration of Analysis, $T=0.25$
Lane Group Capacity, Control Delay, and LOS Determination

		EB			WB			NB			SB	
	LT	TH	RT									
Adjusted Flow Rate, v	513	289			839					600		785
Lane Group Capacity, c	555	2142			951					681		1510
v/c Ratio, X	0.92	0.13			0.88					0.88		0.52
Total Green Ratio, g/C	0.62	0.62			0.27					0.21		0.56
Uniform Delay, d_{1}	13.8	4.7			20.9					22.9		8.2
Progression Factor, PF	1.000	1.000			1.000					1.000		1.000
Delay Calibration, k	0.44	0.11			0.41					0.41		0.13
Incremental Delay, d_{2}	21.4	0.0			9.8					12.9		0.3
Initial Queue Delay, d_{3}	0.0	0.0			0.0					0.0		0.0
Control Delay	35.3	4.7			30.6					35.8		8.5
Lane Group LOS	D	A			C					D		A

Approach Delay	24.3	30.6		20.3
Approach LOS	C	C		C
Intersection Delay	24.2	$x_{c}=0.83$	Intersection LOS	C

HCS + ${ }^{\text {T }}$ DETAILED REPORT		
General Information	Site Information	
Analyst CRH	Intersection	1-75 NB Ramps@ CR 41
Agency or Co. FDOT	Area Type	All other areas
Date Performed 11/03/2006	Jurisdiction	Pasco County
Time Period	Analysis Year	
	Project iD	NB Loop Ramp Alternative 2030 (WBT $=2$. SBLT=1)

Volume and Timing input

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB			NB			SB		
	LT	TH	RT									
Adjusted Flow Rate, v	513	289			839					600		785
Lane Group Capacity, c	480	2073			1098					522		1620
v/c Ratio, X	1.07	0.14			0.76					1.15		0.48
Total Green Ratio, g/C	0.60	0.60			0.32					0.31		0.60
Uniform Delay, d_{1}	33.7	10.4			37.0					41.1		13.5
Progression Factor, PF	1.000	1.000			1.000					1.000		1.000
Delay Calibration, k	0.50	0.11			0.32					0.50		0.11
Incremental Delay, d_{2}	60.7	0.0			3.3					87.6		0.2
Initial Queue Delay, d_{3}	0.0	0.0			0.0					0.0		0.0
Control Delay	94.4	10.4			40.3					128.7		13.7
Lane Group LoS	F	B			D					F		B

Approach Delay	64.1	40.3		63.5
Approach LOS	E	D		E
Intersection Delay	57.2	$X_{c}=1.21$	Intersection LOS	E

HCS + ${ }^{\text {T }}$ DETAILED REPORT														
General Information							Site Information							
Analyst \quad CRHAgency or Co. FDOTDate Performed $11 / 03 / 2006$Time Period							Intersection l-75 NB Ramps @ CR 41 Area Type All other areas Jurisdiction Pasco County Analysis Year Project ID NB Loop Ramp Alternative - SBR (WBT $=F F)$							
Volume and Timing input														
				EB			WB			NB			SB	
			LT	TH	RT									
Number of Lanes, N_{1}			1	1			1					1		
Lane Group			L	T			T					L		
Volume, V (vph)			436	246			713					546		
\% Heavy Vehicles, \%HV			10	5			4					9		
Peak-Hour Factor, PHF			0.85	0.85			0.85					0.91		
Pretimed (P) or Actuated (A)			A	A			A					A		
Start-up Lost Time, I1			2.0	2.0			2.0					2.0		
Extension of Effective Green, e			2.0	2.0			2.0					2.0		
Artival Type, AT			3	3			3					3		
Unit Extension, UE			3.0	3.0			3.0					3.0		
Filtering/Metering, 1			1.000	1.000			1.000					1.000		
Initial Unmet Demand, Qb			0.0	0.0			0.0					0.0		
Ped / Bike / RTOR Volumes			0	0		0	0					0	0	
Lane Width			12.0	12.0			12.0					12.0		
Parking / Grade / Parking			N	0	N	N	0	N				N	0	N
Parking Maneuvers, Nm														
Buses Stopping. NB			0	0			0					0		
Min. Time for Pedestrians, G_{p}			3.2			3.2						3.2		
Phasing	EB Only	EW Perm		03		04		SB Only		06	07		08	
Timing	$G=35.1$	$\mathrm{G}=59.9$		G =		G =		$G=40.0$		$\mathrm{G}=$	G =		G =	
	$Y=5$	$Y=5$		$Y=$		$Y=$		$Y=5$			Y		$Y=$	
Duration of Analysis, $T=0.25$										Cycle Length, $C=150.0$				
Lane Group Capacity, Control Delay, and LOS Determination														
		EB				WB			NB			SB		
			T	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted Flow Rate, v		51		289			839					600		
Lane Group Capacity, c		47		1207			730					442		
v/c Ratio, X		1.0		0.24			1.15					1.36		
Total Green Ratio, g/C		0.6		0.67			0.40					0.27		
Uniform Delay, d_{1}		42.9		9.9			45.0					55.0		
Progression Factor, PF		1.00	. 000	1.000			1.000					1.000		
Delay Calibration, K		0.5		0.11			0.50					0.50		
Incremental Delay. d_{2}		66.		0.1			82.6					175.1		
Initial Queue Delay, d_{3}		0.0		0.0			0.0					0.0		
Control Delay		109	9.8	10.0			127.7					230.1		
		$\lceil F$		B			F					F		

Approach Delay 61.7 26.6 32.6 Approach LOS E C C Intersection Delay 39.4 $X_{C}=1.19$ Intersection LOS Copyright 62005 University of Florida. All Rights Reserved\quad HCS+7M Version 5.2

Approach Delay				
Approach LOS	B	A	C	
Intersection Delay	14.1	$X_{c}=0.79$	Intersection LOS	B

Lane Group LOS						
Approach Delay	103.7	F	157.6	201.9	F	
Approach LOS	F	F				
Intersection Delay	143.7	$X_{c}=1.43$	Intersection LOS	F		

Approach Delay	76.3	109.1	190.0	70.7
Approach LOS	E	F	F	E
Intersection Delay	104.8	$X_{C}=1.30$	Intersection LOS	F

Lane Group LOS					
Approach Delay	44.6	64.0	199.1		
Approach LOS	D	E	F		
Intersection Delay	67.2	$x_{c}=1.13$	Intersection LOS	E	

HCS + ${ }^{\text {* }}$ DETAILED REPORT															
General Information								Site Information							
Analyst $\quad \mathrm{CRH}$ Agency or Co. FDOT Date Performed 10/26/2006 Time Period								Intersection l-75 NB Ramps @ SR 50 Area Type Jurisdiction All other areas Hernando Analysis Year WB to SB Loop Ramp Project ID Alternative (WB Lane to Ramp Only)- 2030							
Volume and Timing input															
			EB				WB			NB			SB		
			LT		TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes, N_{1}			2					1	1						
Lane Group			L					T	R						
Volume, V (vph)			774					627	686						
\% Heavy Vehicles, \%HV			6					6	6						
Peak-Hour Factor, PHF			0.90					0.91	0.91						
Pretimed (P) or Actuated (A)			A					A	A						
Start-up Lost Time, It			2.0					2.0	2.0						
Exiension of Effective Green, e			2.0					2.0	2.0						
Arrival Type, AT			3					3	3						
Unit Extension, UE			3.0					3.0	3.0						
Filtering/Metering, I			1.000					1.000	11.000						
Initial Unmet Demand, Qb			0.0					0.0	0.0						
Ped / Bike / RTOR Volumes			0		0		0	0	0						
Lane Width			12.0					12.0	12.0						
Parking / Grade / Parking			N		0	N	N	0	N						
Parking Maneuvers, Nm															
Buses Stopping, N_{B}			0					0	0						
Min. Time for Pedestrians, G_{p}			3.2				3.2								
Phasing	EB Only	WB Only		03			04		05		06	07		08	
Timing	$G=27.3$	$G=92.7$		G =			G =		G $=$		$\mathrm{G}=$	G =		G =	
		$Y=$			$Y=$		$Y=$		$Y=$		$Y=$	$Y=$		$Y=$	
Duration of Analysis, $T=0.25$											Cycle Length, $\mathrm{C}=130.0$				
Lane Group Capacity, Control Delay, and LOS Determination															
		EB					WB			NB			SB		
		LT	T	TH			LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted Flow Rate, v		86						689	754						
Lane Group Capacity, c		69						1278	1087						
v/c Ratio, X		1.2						0.54	0.69						
Total Green Ratio, g/C		0.2						0.71	0.71						
Uniform Delay, d_{1}		51.4						8.7	10.6						
Progression Faclor, PF		1.000						1.000	1.000						
Delay Calibration, k		0.50						0.14	0.26						
Incremental Delay, d_{2}		119	19.7					0.5	1.9						
Initial Queue Delay. d_{3}		0.0						0.0	0.0						
Control Delay		171						9.2	12.5						
		F						A	B						

Lane Group LOS					
Approach Delay	171.1	10.9			
Approach LOS	F	B			
Intersection Delay	70.7	$X_{c}=0.82$	Intersection LOS	E	

Approach Delay	72.9	85.2	63.1	
Approach LOS	E	F	E	
Intersection Delay	77.6	$X_{C}=1.13$	Intersection LOS	E

Lane Group Capacity, Control Delay, and LOS Determination

	EB			WB			NB			SB		
	LT	TH	RT									
Adjusted Flow Rate, V	860	2871			2906	762						
Lane Group Capacity. c	705	4883			3516	1097						
v/c Ratio, X	1.22	0.59			0.83	0.69						
Total Green Ratio. g/C	0.21	1.00			0.72	0.72						
Uniform Delay, d_{1}	59.0	0.0			14.5	11.8						
Progression Factor, PF	1.000	0.950			1.000	1.000						
Delay Calibration, k	0.50	0.18			0.36	0.26						
Incremental Delay. d_{2}	111.5	0.2			1.7	1.9						
Initial Queue Delay, d_{3}	0.0	0.0			0.0	0.0						
Control Delay	170.5	0.2			16.3	13.7						
	F	A			B	B						

Lane Group LOS					
Approach Delay	39.4	15.7			
Approach LOS	D	B			
Intersection Delay	27.7	$x_{c}=0.92$	Intersection LOS	C	

Lane Group LOS					
Approach Delay	74.8	76.3		107.1	
Approach LOS	E	E		F	
Intersection Delay	79.9	$x_{c}=1.16$	Intersection LOS	E	

Approach Delay	18.0	45.2		67.4		
Approach LOS	B	D	E			
Intersection Delay	36.8	$X_{c}=1.02$	Intersection LOS	D		Copyrigh © 2005 University of Florida, All Rights Reserved
:---	\quad HCS+IM Version 5.2					

HCS ${ }^{* *}$ DETAILED REPORT														
General Information							Site Information							
Analys! JAS Agency or Co. FDOT Date Performed 10/26/2006 Time Period							Intersection Area Type Jurisdiction Analysis Year Project ID		$\begin{aligned} & \text { 1-75SB Ramps@SR } 50 \\ & \text { All other areas } \\ & \text { Hernando } \\ & \text { WB to SB Flyover Alternative } \\ & -2030 \\ & \hline \end{aligned}$					
Volume and Timing input														
				EB			WB			NB			SB	
			LT	TH	RT									
Number of Lanes, N_{1}				3			3					3		2
Lane Group				T			T					L		R
Volume, V (vph)				1895			3287					689		461
\% Heavy Vehicles, \%HV				6			6					6		6
Peak-Hour Factor, PHF				0.88			0.95					0.89		0.89
Pretimed (P) or Actuated (A)				A			A					A		A
Start-up Lost Time, II				2.0			2.0					2.0		2.0
Extension of Effective Green,				2.0			2.0					2.0		2.0
Arrival Type, AT				3			3					3		3
Unit Extension. UE				3.0			3.0					3.0		3.0
Filtering/Metering, I				1.000			1.000					1.000		1.000
Initial Unmet Demand, Qu				0.0			0.0					0.0		0.0
Ped / Bike / RTOR Volumes			0	0		0	0					0	0	70
Lane Width				12.0			12.0					12.0		12.0
Parking / Grade / Parking			N	0	N	N	0	N				N	0	N
Parking Maneuvers, Nm_{m}														
Buses Stopping. NB				0			0					0		0
Min. Time for Pedestrians, G_{p}			3.2			3.2						3.2		
Phasing	Thru Only		02	03		04		SB Only		06		07	08	
Timing	$G=97.3$	G =		$\mathrm{G}=$		G =		$\mathrm{G}=42.7$		$\mathrm{G}=$		G =	G =	
	$Y=5$	$Y=$		$Y=$		$Y=$		$Y=5$		$Y=$		$Y=$	$\mathrm{Y}=$	
Duration of Analysis, $T=0.25$										Cycle Length, $\mathrm{C}=150.0$				
Lane Group Capacity, Control Delay, and LOS Determination														
			EB			WB			NB			SB		
		LT		TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted Flow Rate, v				2153			3460					774		439
Lane Group Capacity, c				3167			3167					1321		768
v/c Ratio, X				0.68			1.09					0.59		0.57
Total Green Ratio, g/C				0.65			0.65					0.28		0.28
Uniform Delay, ${ }_{\text {d }}$				16.6			26.3					46.1		45.8
Progression Factor, PF				1.000			1.000					1.000		1.000
Delay Calibration, K				0.25			0.50					0.18		0.17
Incremental Delay, d_{2}				0.6			47.5					0.7		1.0
Initial Queue Delay, d_{3}				0.0			0.0					0.0		0.0
Control Delay				17.2			73.9					46.7		46.9
Lane Group LOS				B			E					D		D

Approach Delay	17.2	73.9		46.8
Approach LOS	B	E		D
Intersection Delay	51.2	$X_{C}=0.94$	Intersection LOS	D

Copyright 02005 Universily of Fiorida. All Rights Reserved

Abstract

APPENDIX ' O ' OPENING YEAR (2010) BUILD FREEWAY SEGMENT AND RAMP LOS

Calculate Flow Adjustments

Calculate Flow Adjustments

file://C:Documents $\% 20$ and $\% 20$ Settings rhuebschman'Local $\% 20$ Settings \backslash Temp $\backslash 2 \mathrm{k} 180 . \mathrm{tmp}$

BASIC FREEWAY SEGMENTS WORKSHEET

Calculate Flow Adjustments

Calculate Flow Adjustments

BASIC FREEWAY SEGMENTS WORKSHEET

Calculate Flow Adjustments

RAMPS AND RAMP JUNCTIONS WORKSHEET
Page 1 of 1

Conversion to $p c / h$ Under Base Conditions

(pch ${ }^{\text {c }}$	$\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\begin{aligned} & V=\text { VIPHF } x \\ & f_{H V} \times f_{p} \end{aligned}$
Freeway	3090	0.93	Level	14	2	0.931	0.95	3756
Ramp	850	0.95	Level	19	2	0.910	0.95	1035
UpStream								
DownStream	660	0.95	Level	19	2	0.910	0.95	804
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of V_{12}			
$V_{12}=V_{F}\left(P_{F M}\right)$					$V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D}$			
$L_{E O}=$ (Equation $25-2$ or $25-3$)					$L_{\text {EO }}=$ (Equation $25-8$ or 25-9)			
$P_{\text {FM }}=$ using Equation (Exhibit 25-5)					$\mathrm{P}_{\mathrm{FD}}=0.450$ using Equation (Exhibit 25-11)			
$V_{12}=\mathrm{pc} / \mathrm{h}$					$v_{12}=2259 \mathrm{pc} / \mathrm{h}$			

Capacity Checks
Capacity Checks

	Actual	Maximum	LOS F?		Actual	Maximum	LOS F?
$V_{\text {FO }}$				$V_{F I}=V_{F}$	3756	7200	No
				V_{12}	2259	4400:All	No
$V_{R 12}$				$\begin{gathered} V_{F O}=V_{F}- \\ V_{R} \end{gathered}$	2721	7200	No
				V_{R}	1035	3800	No

Level of Service Determination (if not F) Level of Service Determination (if not F)
$D_{R}=5.475+0.00734 V_{R}+0.0078 V_{12}-0.00627 L_{A}$
$D_{R}=(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$
LOS $=$ (Exhibit 25-4)

Speed Estimation

$M_{S}=$ (Exibit 25-19)
$S_{R}=\quad$ mph (Exhibit 25-19)
$S_{0}=\quad \operatorname{mph}$ (Exhibit 25-19)
$s=\quad$ mph (Exhibit 25-14)
$D_{R}=4.252+0.0086 V_{12}-0.0009 L_{D}$
$D_{R}=5.7(\mathrm{pc} / \mathrm{mi} / \mathrm{m})$
LOS $=A$ (Exhibit 25-4)
Speed Estimation
$\mathrm{D}_{\mathrm{s}}=0.521$ (Exhibit 25-19)
$S_{R}=\quad 55.4 \mathrm{mph}$ (Exhibit 25-19)
$S_{0}=\quad 74.9 \mathrm{mph}$ (Exhibit 25-19)
61.8 mph (Exhibit 25-15)

RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information

Site Information

Analyst	
Agency or Company	
Date Performed	
Analysis Time Period	
Project Description 1.75 P	
Inputs	
Upstream Adj Ramp	
fr Yes	Fon
TNo	5 Of
$L_{u p}=$	2360 ft
$\mathrm{Va}_{0}=$	850 veh/h

Terrain: Level	$\begin{cases}\text { Downstream Adj Ramp } \\ \Gamma \text { Yes } & \Gamma \text { On } \\ \Gamma \text { No } & \Gamma \text { Off } \\ \Gamma_{\text {down }}= & \#\end{cases}$
$\begin{array}{cc} \mathrm{S}_{\mathrm{FF}}=70.0 \mathrm{mph} & \mathrm{~S}_{\mathrm{FR}}=35.0 \mathrm{mph} \\ \text { Sketch (show lanes, } L_{A}, \mathrm{~L}_{\mathrm{O}}, V_{\mathrm{R}}, V_{i} \text {) } \end{array}$	$V_{D}=\quad \mathrm{veh} / \mathrm{h}$

Conversion to pc/h Under Base Conditions

(pCH)	V (Veh/hr)	PHF	Terrain		\%Truck	\%RV	f_{HV}		f_{p}	$\begin{aligned} & \mathrm{V}=\mathrm{V} \\ & \mathrm{~F}_{\mathrm{HV}} \times \end{aligned}$	
Freeway	2240	0.94	Level		14	2	0.931		0.95		
Ramp	660	0.95	Level		19	2	0.910		0.95		
UpStream	850	0.95	Level		19	2	0.910		0.95		
DownStream											
Merge Areas						Diverge Areas					
Estimation of v_{12}						Estimation of v_{12}					
$\begin{aligned} & V_{12}=V_{F}\left(P_{F M}\right) \\ & L_{E O}=\text { (Equation 25-2 or 25-3) } \\ & P_{F M}=0.315 \text { using Equation (Exhibit 25-5) } \\ & V_{12}=848 \mathrm{pch} \end{aligned}$						$\begin{aligned} & \qquad V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D} \\ & E_{\mathrm{EO}}=\text { (Equation 25-8 or 25-9) } \\ & P_{\mathrm{FD}}=\text { using Equation (Exhibit 25-11) } \\ & V_{12}=\text { pc/h } \end{aligned}$					
Capacity Checks						Capacity Checks					
	Actual	Maximum		LOS F?		Actual			Maximum		LOS F?
$V_{\text {FO }}$	3498		25-7	No	No	$V_{F l}=V_{F}$					
						V_{12}					
$V_{R 12}$	1652			No		$\begin{gathered} V_{F O}=V_{F} \\ V_{R} \end{gathered}$					

Level of Service Determination (if not F)

	$D_{R}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0$
$\mathrm{O}_{\mathrm{R}}=$	$14.1($ pc/mi/n $)$
$\mathrm{LOS}=$	$\mathrm{B}($ Exhibit $25-4)$
Speed Estimation	
$M_{S}=$	$0.298($ Exibit $25-19)$
$S_{R}=$	$61.7 \mathrm{mph}($ Exhibit $25-19)$
$S_{0}=$	$68.5 \mathrm{mph}($ Exhibit $25-19)$
$S=$	$65.1 \mathrm{mph}($ Exhibit $25-14)$

Level of Service Determination (if not F)

$$
\mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{~V}_{12}-0.0009 \mathrm{~L}_{\mathrm{D}}
$$

$D_{R}=(\mathrm{pc} / \mathrm{m} / \mathrm{l} / \mathrm{n})$
LOS = (Exhibit 25-4)
Speed Estimation
$D_{\mathrm{s}}=$ (Exhibit 25-19)
$S_{R}=\quad \quad \mathrm{mph}($ Exhibit $25-19$)
$S_{0}=\quad \quad \mathrm{mph}($ Exhibit 25-19)
$s=\operatorname{mph}($ Exhibit 25-15)

Conversion to pc/h Under Base Conditions

Level of Service Determination (if not F)	Level of Service Determination (if not F)
$\mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{~V}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}$	$\mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{~V}_{12}-0.0009 \mathrm{~L}_{\mathrm{D}}$
$\mathrm{D}_{\mathrm{R}}=$ ($\mathrm{pc} / \mathrm{mi} / \mathrm{m}$)	$\mathrm{D}_{\mathrm{R}}=13.2(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$
LOS= (Exhibit 25-4)	LOS = B (Exhibit 25-4)
Speed Estimation	Speed Estimation
$M_{s}=$ (Exibit 25-19)	$\mathrm{D}_{\mathrm{s}}=0.489$ (Exhibit 25-19)
$S_{R}=$ mph (Exhibit 25-19)	$S_{R}=56.3 \mathrm{mph}$ (Exhibit 25-19)
$S_{0}=\quad \mathrm{mph}$ (Exhibit 25-19)	$S_{0}=76.8 \mathrm{mph}$ (Exhibil 25-19)
$s=\quad \mathrm{mph}$ (Exhibit 25-14)	$S=63.5 \mathrm{mph}$ (Exhibil 25-15)

APPENDIX ' P '

INTERIM YEAR (2020) BUILD FREEWAY SEGMENT AND RAMP LOS

DDOHV - Directional design hour volume \quad LOS, S, FFS, v_{p} - Exhibits 23-2, 23-3 $\quad f_{10}$ - Exhibit 23-7

DOHV - Directional design hour volume	LOS, S, FFS, V_{p} - Exhibits 23-2, 23-3	f_{10} - Exhibit 23-7
Copyright © 2005 University of Florida, All Rights Reserved	HCSt ${ }^{\text {IM }}$ Version 5.2	d: 11/9/2006 12:1

BASIC FREEWAY SEGMENTS WORKSHEET

file:/C:Documents\%20and\%20SettingsthucbschmanLocal $\% 20$ SettingsTemprek $4 \mathrm{Al} . \mathrm{mmp}$

DDHV - Directional design hour volume	LOS, S, FFS, v ${ }_{\text {p }}$ - Exhibits 23-2, 23-3	f_{10} - Exhibit 23-7

RAMPS AND RAMP JUNCTIONS WORKSHEET

General Information
Site Information

Analyst	CRH	Freeway/Dir of Travel	1-75 Northbound
Agency or Company	HW Lochner, Inc.	Junction	CR 41/Blanton Road Off-Ramp
Date Performed	10126/06	Jurisdiction	Pasco County
Analysis Time Period	DHV	Analysis Year	2020
Project Description 1-75 PD\&E Study-2020 NB Off Ramp at CR 41 (1.75 $=8$ Lanes)			
Inputs			
Upstream Adj Ramp	Terrain: Level		Downsiream Adj Ramp
			FYes Fon
FNo TOff			TNo 「Off
$L_{u p}=\mathrm{ft}$			$\mathrm{L}_{\text {down }}=620 \mathrm{ft}$
$v_{u}=\quad \mathrm{veh} / \mathrm{h}$	$\begin{array}{r} \mathrm{S}_{\mathrm{FF}}=70.0 \mathrm{mph} \\ \text { Sketch } \end{array}$	$S_{F R}=35.0 \mathrm{mph}$ lanes, $L_{A}, L_{0}, V_{R}, V_{1}$)	$\mathrm{V}_{\mathrm{D}}=370 \mathrm{veh} / \mathrm{h}$

Conversion to pc/h Under Base Conditions

RAMPS AND RAMP JUNCTIONS WORKSHEET
Page 1 of 1

RAMPS AND RAMP JUNCTIONS WORKSHEET
Page 1 of 1

Conversion to pc/h Under Base Conditions

(pch)	$\begin{gathered} V \\ \text { (Vehhr) } \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	$f_{\text {HV }}$	f_{0}	$\begin{aligned} & V=\mathrm{V} / \mathrm{PHF} \times \\ & f_{H V} \times f_{p} \end{aligned}$
Freeway	3040	0.93	Level	14	2	0.931	0.95	3695
Ramp	830	0.89	Level	19	2	0.910	0.95	1079
UpStream								
DownStream	990	0.89	Level	19	2	0.910	0.95	1287
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$V_{12}=V_{F}\left(P_{F M}\right)$					$V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D}$			
$\mathrm{EEO}=$ (Equation 25-2 or 25-3)					$L_{E Q}=$ (Equation $25-8$ or 25-9)			
$\mathrm{P}_{\mathrm{FM}}=$ using Equation (Extibit 25-5)					$\mathrm{P}_{\mathrm{FD}}=0.618$ using Equation (Extibit 25-11)			
$V_{12}=\mathrm{pc} / \mathrm{h}$					$V_{12}=2696 \mathrm{pc} / \mathrm{h}$			

Capacity Checks
Capacity Checks

	Actual	Maximum	LOSF?		Actual	Maximum	LOSF?
$V_{\text {FO }}$				$V_{F 1}=V_{F}$	3695	7200	No
				V_{12}	2696	4400:All	No
$V_{\text {R12 }}$				$\begin{gathered} V_{F O}=V_{F} . \\ V_{R} \end{gathered}$	2616	7200	No
				V_{R}	1079	2000	No
Level of Service Determination (if not F)				Level of Service Determination (if not F)			
$\begin{aligned} & \mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{~V}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}} \\ & \mathrm{D}_{\mathrm{R}}= \\ & \text { (pc/mi//n) } \\ & \mathrm{L}= \\ & \text { (Exhibit } 25-4) \end{aligned}$				$\begin{aligned} & D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.0009 \mathrm{~L}_{\mathrm{D}} \\ & \mathrm{D}_{\mathrm{R}}=\quad 27.4(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \\ & \mathrm{LOS}= \\ & C(\text { Exhibit } 25-4) \end{aligned}$			
Speed Estimation				Speed Estimation			
$M_{S}=$ (Exibit 25-19) $S_{R}=$ mph (Exhibit $25-19)$ $S_{0}=$ mph (Exhibit $25-19)$ $S=$ mph (Exhibit 25-14)				$\begin{array}{ll} D_{S}= & 0.525(\text { Exhibit } 25-19) \\ S_{R}= & 55.3 \mathrm{mph}(\text { Exhibit } 25-19) \\ S_{0}= & 76.8 \mathrm{mph} \text { (Exhibit } 25-19) \\ S_{S}= & 598 \mathrm{mph} \text { (Exhibit } 25-15) \end{array}$			

RAMPS AND RAMP JUNCTIONS WORKSHEET					
		General Information Site Information			
Analyst Agency or Company Date Performed Analysis Time Period	CRH HW Lochner, inc. 10/26/06 DHV	FreewayIDir of Travel Junction Jurisdiction Analysis Year	1.75 Southbound SR 50/Cortez Blvd. On-Ramp Hernando Counly 2020		
Project Description 1-75 PD8E Study - 2020 SB On Ramp at SR $50(1.75=8$ Lanes)					
Inputs					
Upstream Adj Ramp F yes ГOn O No F Off $L_{u p}=$ 2360 ft $v_{u}=$ 830 veh/h	Terrain: Level			Downstream Adj Ramp$\left\lvert\, \begin{array}{ll} \Gamma \text { Yes } & \Gamma \text { On } \\ \Gamma \text { No } & \Gamma \text { off } \\ \sigma_{\text {down }}= & H \end{array}\right.$	
	$\begin{array}{r} \mathrm{S}_{\mathrm{FF}}=\begin{array}{r} 70.0 \mathrm{mph} \\ \text { Sketch } \end{array} \end{array}$	$\begin{aligned} & \mathrm{S}_{\mathrm{FRR}}=35.0 \mathrm{mph} \\ & \left.V_{\mathrm{V}}, V_{\mathrm{f}}\right) \end{aligned}$		$\mathrm{V}_{0}=$	veh/h

Conversion to pc/h Under Base Conditions

(pch ${ }^{\text {\% }}$	$\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{0}	$\begin{aligned} & V=V / P H F x \\ & f_{H V} \times f_{p} \end{aligned}$
Freeway	2210	0.94	Level	14	2	0.931	0.95	2658
Ramp	990	0.89	Level	19	2	0.910	0.95	1287
UpSitream	830	0.89	Level	19	2	0.910	0.95	1079
DownStrean								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$V_{12}=V_{F}\left(P_{F M}\right)$					$V_{12}=V_{R}+\left(V_{F} \cdot V_{R}\right) P_{F D}$			
$L_{\text {EO }}=$ (Equation 25-2 or 25-3)					$L_{\text {EO }}=$ (Equation 25-8 or 25-9)			
$\mathrm{P}_{\mathrm{FM}}=0.258$ using Equation (Exthibit 25-5)					$\mathrm{P}_{\mathrm{FD}}=$ using Equation (Exhibit 25-11)			
$\mathrm{V}_{12}=685 \mathrm{pch}$					$V_{12}=\mathrm{pc} / \mathrm{m}$			

Capacity Checks
Capacity Checks

	Actual	Maximum	LOS F?		Actual	Maximum	LOS F?
$V_{\text {Fo }}$	3945	See Exhibit 25-7	No	$V_{F 1}=V_{F}$			
				V_{12}			
$V_{\text {R12 }}$	1972	4600:All	No	$\begin{gathered} V_{F O}=V_{F} \\ V_{R} \\ \hline \end{gathered}$			
				V_{R}			
Level of Service Determination (if not F)				Level of Service Determination (if not F)			
$\begin{aligned} & D_{R}= \\ & D_{R}= \\ & \text { LOS }= \end{aligned}$	(e.00734	+ $0.0078 \mathrm{~V}_{12}-0.0$		$\begin{cases}O_{R}= & \text { (pc/milln) } \\ \text { LOS }= & \text { (Exhibit 25-4) }\end{cases}$			
Speed Estimation				Speed Estimation			
$M_{S}=0.305$ (Exibit 25-19)				$\mathrm{D}_{5}=$ (Exhibit 25-19)			
$S_{R}=61.5 \mathrm{mph}($ Exhibit 25-19)				$S_{R}=$ mph (Exhibit 25-19)			
$S_{0}=\quad 68.3 \mathrm{mph}($ Exhibit $25-19)$				$S_{R}=\quad \begin{aligned} & \text { mph (Exhibit } 25-19)\end{aligned}$			
$S=64.7 \mathrm{mph}$ (Exhibit 25-14)				$\begin{cases}S_{0}= & \text { mph (Exhibit 25-19) } \\ S_{=}= & \text {mph (Exhibit 25-15) }\end{cases}$			

APPENDIX 'Q'

DESIGN YEAR (2030) BUILD FREEWAY SEGMENT AND RAMP LOS

General Information

salculate Flow Adjustments

DDHV - Directional design hour volume \quad LOS, S, FFS, V_{p} - Exhibits 23-2, 23-3 f_{10} - Exhibit 23-7

General Information

Analyst	EJB
Agency or Company	HW Lochner, Inc.
Date Performed	$7 / 28 / 2005$
Analysis Time Period	DHV

Project Description 1-75 PD\&E - 2030 NB CR 41 to SR 50 (1-75 = 6 Lanes)

F Oper.(LOS)		Γ Des.(N)		T Planning Data
Flow Inputs				
volume, V	4980	veh/h	Peak-Hour Factor, PHF	0.93
AADT		veh/day	\%Trucks and Buses, P_{T}	14
Peak-Hr Prop. of AADT, K			\%RVs, $P_{\text {R }}$	2
Peak-Hr Direction Prop, D			General Terrain:	Level
DDHV $=$ AADT $\times K \times D$	005	veh/h	Grade \% Length	mi

こalculate Flow Adjustments

salculate Flow Adjustments

f_{p}	0.95		E_{R}	1.2		
E_{T}	1.5		$\mathrm{f}_{\mathrm{HV}}=1$	0.93		
Speed Inputs			Calc Speed Adj and FFS			
Lane Width	12.0	ft	${ }_{t}{ }_{\text {L }}$	0.0	mi / h	
Rt-Shoulder Lat. Clearance	6.0	ft				
Interchange Density	0.50	$1 / \mathrm{mi}$	$\mathrm{fic}_{\text {L }}$	0.0	mi / h	
Number of Lanes, N	3		$\mathrm{f}_{\text {ID }}$	0.0	mih	
FFS (measured)		mi/h	f_{N}	0.0	mi / h	
Base free-flow Speed, BFFS	75.0	mi / h	FFS	75.0	mi / h	
LOS and Performance Measures			Design (N)			
Operational (LOS)			Design (N)			
$v_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} \times\right.$		$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$	Design LOS			
			$v_{p}=(V \text { or DDHV }) /\left(\mathrm{PHF} \times N \times f_{\mathrm{HV}} \times\right.$		pc / h	
5		mi / h			mi / h $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	
$D=v_{p} / \mathrm{S}$		$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$				
Los	D		Required Number of Lanes, N			
Glossary			Factor Location			
\checkmark - Number of lanes	S - Speed		E_{R} - Exhibits23-8, 23-10		$f_{\text {Lw }}$ - Exhibit 23-4	
v - Hourly volume	D - Density					
v_{0} - Flow rate	FFS - Free-llow speed		E_{T} - Exhibits 23-8, 23-10, 23-11		$f_{\text {LC }}$ - Exhibit 23-5	
LOS -Level of service	BFFS - Base free-flow speed		f_{p}-Page 23-12		f_{N} - Exhibit 23-6	

BASIC FREEWAY WORKSHEET

Calculate Flow Adjustments

Irput	Outpu1
FFS, M, \%	LOS, S, D
FFS, LOS, \% ${ }_{p}$	N, S, D
FFS, LOS, A	$V_{0}, S, 0$
FFS, M, AXDT	LOS. S. 0
FFS, LOS, AADT	$\mathrm{N}, \mathrm{S}, \mathrm{D}$
FFS, L0S, M	$y_{1} \cdot 5.0$

General Information

Calculate Flow Adjustments

Calculate Flow Adjustments

Calculate Flow Adjustments

file:/C:Documens $\% 20$ and $\% 20$ Setingsthuebschman Local $\% 20$ SettingsTempi2k4F6.mp

DDHV - Directional design hour volume \quad LOS, S, FFS, v_{p} - Exhibits 23-2, 23-3 $f_{\text {ID }}$ - Exhibil 23-7

Calculate Flow Adjustments

DDDHV - Directional design hour volume	LOS, S, FFS, V_{p}-Exhibits 23-2, 23-3	$\mathrm{flor}_{\text {ID }}$ - Exhibit 23-7
	HCstim version 53	

Calculate Flow Adjustments

LDDHV - Directional design hour volume	LOS, S, FFS, $V_{p}-$ Exhibits 23-2, 23-3

Calculate Flow Adjustments

DOHV - Directional design hour volume LoS, S, FFS, v_{p}-Exhibits 23-2, 23-3 $\quad f_{I D}$-Exhibit 23-7

Calculate Flow Adjustments

LDDHV - Directional design hour volume \quad LOS, S. FFS, V_{p} - Exhibits 23-2, 23-3 $f_{t 0}$ - Exhibit 23-7
Copyright © 2005 University of Florida, All Rights Reserved HCS +M Version 5.2 Generated $11 / 8 / 2006$ 3:22 PM

Conversion to pc/h Under Base Conditions

(pch $)$	$\begin{gathered} V \\ \text { (Vehfhr) } \end{gathered}$	PHF	Terrain		\%Truck	\%Rv	$\mathrm{f}_{\text {HV }}$		$f_{\text {p }}$	$\begin{aligned} & V=\text { VIPHF } x \\ & H_{H V} \times f_{p} \end{aligned}$	
Freeway	3310	0.94	Level		14	2	0.931		0.95	3981	
Ramp	1460	0.95	Level		19	2	0.910		0.95	1778	
UpStream	1680	0.95	Level		19	2	0.910		0.95	2046	
DownStrean											
Merge Areas						Diverge Areas					
Estimation of v_{12}						Estimation of v_{12}					
$\begin{aligned} & \quad V_{12}=V_{F}\left(P_{F M}\right) \\ & L_{E O}=935.91 \quad \text { (Equation 25-2 or 25-3) } \\ & P_{F M}=0.595 \text { using Equation (Exhibit 25-5) } \\ & V_{12}=2368 \mathrm{pc} / \mathrm{h} \end{aligned}$						$\begin{aligned} \quad & \quad V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D} \\ E_{E Q} & =\text { (Equation 25-8 or 25-9) } \\ P_{F D}= & \text { using Equation (Exhibit 25-11) } \\ V_{12}= & \text { pc/h } \end{aligned}$					
Capacity Checks						Capacity Checks					
	Actual	Maximum		LOS F?		0			Maximum		LOS F?
$V_{\text {FO }}$	5759	See Exhibil 25-7		No		$V_{F 1}=V_{f}$					
$V_{R 12}$	4146			No		$\begin{gathered} V_{F O}=V_{F} \\ V_{R} \end{gathered}$					
						V_{R}					
Level of Service Determination (if not F)						Level of Service Determination (if not F)					
$\begin{aligned} & \quad D_{R}=5.475+0.00734 \mathrm{~V}_{R}+0.0078 \mathrm{~V}_{12} \cdot 0.00627 \mathrm{~L}_{A} \\ & \mathrm{D}_{\mathrm{R}}= \\ & \mathrm{L}=\mathrm{33.1} \mathrm{(pc/mi/m)} \\ & \mathrm{~L}= \\ & \mathrm{D}(\text { Exhibit } 25-4) \end{aligned}$						$\begin{array}{ll} & D_{R}=4.252+0.0086 \mathrm{~V}_{12} \cdot 0.0009 \mathrm{~L}_{0} \\ D_{R}= & \text { (pc/mil/n) } \\ L O S= & \text { (Exhibit 25-4) } \end{array}$					
Speed Estimation						Speed Estimation					
$M_{S}=0.524$ (Exibil 25-19)$S_{R}=055.3 \mathrm{mph}($ Exhibit 25-19)						$\begin{array}{ll} \mathrm{D}_{5}= & \text { (Exhibit } 25-19) \\ S_{R}= & \text { mph }(\text { Extubit } 25-19) \end{array}$					
$S_{R}=\quad 55.3 \mathrm{mph}$ (Exhibit 25-19)											
$\begin{array}{ll} S_{0}= & 66.0 \mathrm{mph}(\text { Exhibit 25-19) } \\ S= & 58.0 \mathrm{mph}(\text { Exhibit 25-14) } \end{array}$						$s_{0}=\quad \mathrm{mph}($ Exhibil 25-19)					
						$S=\quad \mathrm{mph}($ Exhibit 25-15)					

Conversion to pc/h Under Base Conditions

(pc / h)	V (Veh/hr)	PHF	Terrain	\%Truck	\%Rv	I_{HV}	f_{p}	$\begin{aligned} & V=V P H F \times \\ & f_{H V} \times f_{p} \end{aligned}$
Freeway	3310	0.94	Level	14	2	0.931	0.95	3981
Ramp	1460	0.95	Level	19	2	0.910	0.95	1778
UpStream	1680	0.95	Level	19	2	0.910	0.95	2046
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & V_{12}=V_{F}\left(P_{F M}\right) \\ & L_{E O}=\text { (Equation 25-2 or 25-3) } \\ & P_{F M}=0.193 \text { using Equation (Exhibit 25-5) } \\ & V_{12}=769 \text { pch } \end{aligned}$					$\begin{aligned} & \quad V_{12}=V_{R}+\left(V_{F}-V_{\mathrm{R}}\right) P_{F D} \\ & L_{E O}=\text { (Equation 25-8 or 25-9) } \\ & P_{F D}=\text { using Equation (Exhibit 25-11) } \\ & V_{12}=\text { pc/h } \end{aligned}$			

Capacity Checks
Capacity Checks

	Actual	Maximum	LOS F?		Actual	Maximum	LOS F?
$V_{\text {FO }}$	5759	See Exnibit 25-7	No	$V_{\text {Fl }}=V_{F}$			
				V_{12}			
$V_{\text {R12 }}$	2547	4600:All	No	$\begin{gathered} V_{F O}=V_{F} \\ V_{R} \\ \hline \end{gathered}$			
				V_{R}			
Level of Service Determination (if not F)				Level of Service Determination (if not F)			
$\begin{aligned} & D_{R}= \\ & D_{R}= \\ & O S= \end{aligned}$		+0.0078 $\mathrm{V}_{12} \cdot 0$		$\left\lvert\, \begin{array}{ll} \mathrm{D}_{\mathrm{R}}= & (\text { (p/miAln }) \\ \text { LOS }= & \text { (Exhibit } 25-4) \end{array}\right.$			
Speed Estimation				Speed Estimation			
$\begin{array}{ll} M_{S}= & 0.3 \\ S_{R}= & 60 . \\ S_{0}= & 66 . \\ S= & 63 . \end{array}$	bit 25-19) (Exhibit 25 Exhibit 2 Exhibit 25			$\mathrm{D}_{\mathrm{s}}=10$	25-19)		

Conversion to pc/h Under Base Conditions

(pch ${ }^{\text {c }}$	$\begin{gathered} \text { V } \\ \text { (Vehihr) } \end{gathered}$	PHF	Terrain	\% Truck	\%Rv	${ }^{\text {i }} \mathrm{HV}$	f_{p}	$\begin{aligned} & V=V / P H F x \\ & f_{H V} \times f_{p} \end{aligned}$
Freeway	2640	0.94	Level	14	2	0.931	0.95	3175
Ramp	1310	0.89	Level	19	2	0.910	0.95	1703
UpStream	1150	0.89	Level	19	2	0.910	0.95	1495
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$V_{12}=V_{F}\left(P_{F M}\right)$					$V_{12}=V_{R}+\left(V_{F} \cdot V_{R}\right) P_{F D}$			
$L_{\text {EO }}=751.81$ (Equation 25-2 or 25-3)					$L_{\text {EO }}=$ (Equation 25-8 or 25-9)			
$\mathrm{P}_{\mathrm{FM}}=0.595$ using Equation (Exhibit 25-5)					$\mathrm{P}_{\text {Fo }}=$ using Equation (Exhibit 25-11)			
$V_{12}=1890 \mathrm{pc} / \mathrm{m}$					$\mathrm{v}_{\mathrm{i} 2}=\mathrm{pch}$			

Capacity Checks
Capacity Checks

	Actual	Maximum	LOSF?		Actual	Maximum	LOS F?
$V_{\text {FO }}$	4878	See Exhibit 25-7	No	$V_{\text {Fi }}=V_{F}$			
				V_{12}			
$V_{R 12}$	3593	4600:All	No	$\begin{gathered} V_{F O}=V_{F} \\ V_{R} \end{gathered}$			
				$V_{\text {R }}$			
Level of Service Determination (if not F)				Level of Service Determination (if not F)			
$\begin{aligned} & D_{R}= \\ & D_{R}= \\ & L O S= \end{aligned}$	0.00734 mi/fy bit 25-4)	$+0.0078 \mathrm{~V}_{12}-0$.		$l \begin{aligned} & \mathrm{D}_{\mathrm{R}}= \\ & \text { LOS }=1\end{aligned}$	$=4.252$ 1) 25-4)	$6 \mathrm{~V}_{12}-0.000$	
Speed Estimation				Speed Estimation			
$M_{S}=0.419$ (Exibit 25-19)				$\mathrm{D}_{\mathrm{s}}=$ (Exhibit 25-19)			
$S_{R}=58.3 \mathrm{mph}($ Exhibil 25.19$)$				$S_{R}=\quad \mathrm{mph}($ Exhibit 25-19)			
$\mathrm{S}_{6}=67.2 \mathrm{mph}($ Exhibit 25-19)				$S_{9}=\quad \mathrm{mph}($ (Exhibit $25-19)$			
$S=60.4 \mathrm{mph}($ Exhibit 25-14)				$s=m p h($ Exhibit 25-15)			

Conversion to pc/h Under Base Conditions

APPENDIX 'R'

AIR QUALITY AND NOISE TRAFFIC

This spreadsheet is designed to catculate the appropriate tratic data for use in the noise model - do not input values for items in "red"

TRAFFIC DATAFOR NOISE STUDIES

TOnta steets are to be fited out for every semment having a change ars trathe parameters such as wotumes. posted speeds, typical section. EIC)
NOTE: Alodeled ADT is the $\mathrm{LOS}(\mathrm{C})$ volume referenced in the FOOT LOS fables or demand, whichever is less.

The following to STAMHATNM WNTUT								
The following afe spreadsheet catculations based on the inpul above. do not enter data befow this line								
Existing Fac	illty Model:	LOS (C)	No-Buidd (Design Year) Modet:		$\operatorname{LOS}(C)$	Etild (Oesign Year) Modet:		Demand
10510			1050			1.510		
Southeround	Aulas	239	Scumyuend	Autcs	2 St	Southtrima	Autos	4990
	Med Trucks	221		thed Trucks	221		Fed Tructs	462
	Hey Trucks	152		Higy Trats	152		Hry Truche	317
	BuSes	0		Guses	9		Euses	0
	Nothontes	0		betoregitus	5		Fiotorcyctes	0
Whathtound	nutas	1878	Morthtioumd	Autus	1878	Fioriniouthd	Ancs thed Tenrks	3921
	Stact Tucto	174		fatart Y mucts	174			363
	He'y Itucis.	$\underline{115}$		4-y Th1ets	119		fice tracks	248
	Buses FADtariveles	5		Eustis	0		Euses	0
		0		Hetorcyers	9		tintorciotes)
Or:rizm!			Crimatid			[6encizat		
Stutatumit	\%utos	236	Cobtheram:	Antos	86		Auks	4396
	likui Truch	$\frac{22}{162}$		tften Tratis	48		tatet lawas	452
		15			311		Fry yrurtc	311
	Etses tumbruatre	?			0		Busts: 	6
	\%ercioutis	,			!			0
	andes	13\%		-4.8:	364			38.3
	1.sut latio.	13.4		'4- है:	355			365
	1:\% \% futs	123						2×2
	?1\%	3		- + + - -	\cdots		-	\%
		!			\%			13

TRAFFIC DATA FOR NOISE STUDIES

Project:	1.75 PDSE Study from north of SR 52 lo south of CR 4760	Date	4/5/2006
State Project Numbers)		Prepared Ey	EfE
Work Program Nunber(s)			
Federal Aid Number(s):			
Segmena Description	Site 5. CR 41 (Blanton Road) to SR 50 (Coriez Blvd)		

NOTE Modeled AOT is the LOS(C) volume referenced in the FDOT LOS tables of demand, whichever is less

STAMINATNM INPUT								
The tollowing are spreadsheet calculations based on the inplitabove - do not enter data below this fine								
Existing Facility Model:		Demand	No-Euild (Design Year) Model:		$\operatorname{Los}(C)$	Euild (Oesign Yeaf) Model:		Demand
10510				LOS (C)			LOS (C)	
Sountmant	Autus,	2391	Southbount	Autos	2391	Southtorms	anles	4990
	Fined Trucks	221		H.ted Trucks	231		Mad Tructs	462
	Hiv Tructes	152		Huy Truchs	152		Hry Trucks	317
	Euses	3		Euses	0		Eustes	0
	hiohrectes	0		Motorcycies	0		motoriwles	0
Nemthemed	antos	1875	Noithtound	Fufos	1878	Hombtumd		3527
	rede Taces	174			174			363
	Hey Tratas	116		Med Trucks H:y Truchs	119		foed Tumbes Hor Truces	249
	Euses	9		Hey Trucks Euses	0		Her Truces Euses	d
	matorictes	15		twororeyes			Oftractes	0
Cutane			Qemem			Demam		
Scumen, mit	4,463	$3+5$	Suinmound	Hncs			\therefore ins Wife Thuth 	4295
	fandmay	208		Sed Thirics	366			3.36
	arse lucts	143		tur Thacins	272			22
	Ensis	0			$\frac{1}{6}$		Susce 1, motarter	4
	dencrictics	0		Enses Aramathes				\square
	Ans\%	126.4	14384,	Antas Móstoter 14, Fun: Buctis 	3565			3583
	foce thts	63			311			31
	!aytrotue	12			34			414
	Eracer	6			\square			T
		1			4			\%

TRAFFIC DATA FOR NOISE STUDIES

NOTE：Modeled AOT is the LOS（C）volume reterenced in the FOOT LOS tabtes of demand，whichever is less

The STAMNANTNM INPUT								
The following are spreatsheet calculations based on the input above－do not enter data betow this tire								
Existing Facitity Model：		Oemand	No－Buidd（Design Year）Model：		$\operatorname{Los}(C)$	Build（Design Year）Model：		Demand
16510			W0， 0			LSS		
Scumbtrund	Autos	2391	Sounitound	A谁cs	2351	Sonthiound：	Autos	4990
	Nemed Trucks	221		Ired Tructs	221		Almed Trucks	462
	Hivy Tiurtes	152		tivy Thates	152		Hery Tructs	317
	Exases	4		Buses	0		Euses	0
	frigtorcyctes	0		tinterayctes	13		motorcyctes	0
incritheognd	futge	1878	Hentrbeond	Ambos	1835	fronthatund	Autis	3921
	Hed Truth：	174		t．here Tfurts	171		med Trucks	363
	Hy Touks	119		Huy Toticts	119		Ifyy Truches	245
	Buces	0		Fifces	0		Buses	0
	Nintoremes	d		Stotorturdes	0		Photercivites	0
Ufmend			atitizatid			T）ranret		
Centmocurd	Antos	$23+5$	Sorntucmit	－	36.5	Stithinemma	4utes	C695
	F．4ert Trache	206		latectiostos	3		和何佼 Tructas	375
	F\％That	it3		Hev Tames	261		Hery tutke	261
	Eu56\％	0		Buts： 	a		Entres Motocydes	ก
		（3）			O			0
［1untitatu， 1	Autis	i 71	14，10，		98S	tutathtemer	A $10: \times$ 	$32=0$
	tact Tacke	167			96			253
	H，Trame	1：			TE		＋1－y imathe	215
	Brater	${ }_{i}$			！		Firss	9
		U			3			¢

TRAFFIC DATA FOR NOISE STUDIES

$$
\text { 1.75 PO\&E Siudy from north of SR } 52 \text { to south of CR } 476 \mathrm{~B}
$$

State Project Number(s): \qquad
Date: \qquad
Work Program Number(s):
Federal Aid Numberss)
Segment Description
Site 9b: Southbound onramp at CR 41 (Etanton Road)

NOTE: Modeled ADT is the LOS(C) volume referenced in the FDOT LOS tabies or demand. whichever is less.

STAMINATTNM INPUT								
The foltowing ate spreadsheet catculations based on the input above - do not enter data below this line								
Existing Fachity Model:		Demand	No-Build (Design Year) Model:		$\operatorname{Los}(C)$	Build [Design Yearl Model:		LOS (C)
LUS (C)			LOS (C)			bse		
Sculhtuand	anos	372	Southeome	Autos	372	Sountomad.	Intios	372
	Med Theks	25		Mied Trucks	25		ded Tructs	25
	Hivy Tucks	17		Hey Trucks	17		Heytucks	17
	Euses	0		Buses	0		Euses	0
	thatorcyctes	0		1.Anturcyctes	6		Motcicyes	0
Nombourid	Autos	203	Noathiburn	Autos	293	Honhtomet	Antes	293
	Feted Thuck	20		Sted Tucts	24		Hedtumes	20
	Hey Theks	13		Hig Thacks	13		Hy There	13
	Euses	6		Suses	0		Enses	0
	Matercyates	3		Wiotometes	0		1.athrelas	0
Demand			Demma				Semam	
Exmmeme	ithes	$1: 4$	Sodnlinumit	\therefore-ntes	5,6-	STanterst	Anos	86.4
	lath lrects	3		ftedtrugs	38		fue: There	38
	Hoy Thers	5		Hey Theme	25		Hey +ande;	25
	Eusces	0		Euses Botracytes	(WuEcs 	9
	Whaterats	3			i)			1
:M,	Bethes	碞	-		4.4			$\frac{14 \%}{35}$
	tras lrack	5		hat inche	8			
	Hesmaths	4			2			2
	Eisec	1		Euse\%	,		$\begin{aligned} & \text { us, } \\ & \text {,ow, } \end{aligned}$	i
	fationcolus	3		A.faty	\%			9

TRAFFIC DATA FOR NOISE STUDIES

Project	1.75 PDEE Study from north of SR 52 to south of CR 476 E	Oate:	4/5/200G
State Project Number(s):		Prepared By:	EJ8
Work Program Numbers)			
Federal Aid Numberts):			
Segment Description:	Site 9a: Sounbound offamp at CR 41 (Elanton Road)		

NOTE: Modeted ADT is the LOS(C) volume relerenced in the FDOT LOS lables or demand. whichever is fess.

Existing Facility	No-Euild (Design Year)		Build (Design Year)	
Lanes: 1	Lanes:	1	Lanes:	1
Year 2005	Year	2030	Year:	2030
$\begin{array}{ll} \mathrm{ADT}: & \\ \mathrm{LOS}(\mathrm{C}) & 7.860 \\ \hline \end{array}$	$\mid \operatorname{ADT},$	7.860	$\begin{aligned} & A D T: \\ & \operatorname{LOS}(C) \end{aligned}$	7.860
Demand 800	Demand	5.200	Demand	5,200
Speed 35	Speed	35 mph	Speed:	35 mph
56		56 , kmh		56
$K=9$	$k=$	9.4 \%	$k=$	9.4 \%
$\mathrm{D}=\frac{56}{\%}$	D=	$56 \quad \%$	$0=$	56 \%
$T=\quad 20.0$ \% lot 24 hrs	$T=$	20.0 for 24 hrs .	$\mathrm{T}=$	20.0 \% for 24 hrs
$T=\frac{10.0}{\%}$ Design th	$T=$	10.0 \% Designthr	T	10.0 \% Design to
6.0 \% Medium Trucks DHV	6.0	\% Medium Trucks DHV	6.0	\% Mediem Trucks OHV
40 \% Heavy Trucks DHV	4.0	\% Heavy Trucks DHV	4.0	\% Heavy Trucks DHV
0.0 \% Buses DHV	00	\% Buses DHV	0.0	\% Buses DHV
0.0 \% Matorcycles DHV	0.0	\% Motorcycles DHV	0.0	\% Motorcycles DHV

STAMINATNK NPUT								
The following are spreadsheet calculations based on the input above - do not enter data below this line								
Existing Facility Model:		Demand	No-Build (Design Year) Model:		Demand	Butd (Design Year) Model:		Demand
10510			LOS (C)			LOSiC)		
Soutibound	Autos	372	Southbound		372	Southbound	Autos	372
	Ated Thucks	25		Hed Trucks	25		Fand Truchs	25
	Hiny Tuchs	17		Hry Trucks	17		Hery Tructs	17
	Buses	9		Bry mates Buses	0		Buses	0
	Mutaryctes	0		Widurcodes	0		SMororcules	6
Nortubund	Atos	29.3	Worthtound.	Autes	293	tworthtound	Autos	293
	Pated Thects	26		Wed Touck 5	20		Wed Tumbs	20
	Hive 7 forks	13		Hey Trucks	13		Hive tructs	13
	Eusee	0		Eusis	0		Euses	0
	Whorcictas	0		1:hotocyles	0		AAmorciedes	0
Cemend			Demend			[amăп!		
Seuthemed	Autos	38	Sablanam	Athes	246	Soundmum	Autos	4 i
	Bed Tincts	3		West Theks	if		Phed Tracks	15
	Hoy Fuctes	2		Hay intks	11		Hwy Frachs	11
	Euses	0		Eutes	0		Ex-s\%	3
	Ammetues	9		tharemes	0		wormetes	3
Nombtame	Atites	30	Wentivem:	Astor	16.	letrememe	2atus	18.4
		2		tebthecks	13		Und Tums	13
	tsicluty	!		H\% Trewt	9		they tums	4
	Esmer	\%		?asts Fundrate	1		Euce 	ii
		1			13			i

TRAFFIC DATA FOR NOISE STUDIES

Project	1.75 PDEE Study from north of SR 52 to soulh of CR 476 B	Dale	4/5/2006
State Project Number(s)		Prepared Ey	EJE
Work Program Numberts).			
Federal Aid Numberts):			
Segment Description:	Site 10a: Northoound otramp al CR 41 (Elanton Road)		

NOTE: modeted ADT is the LOS(C) volume referenced in the FDOT LOS taties of demand, whichever is bess

Existing Facility	No-Build (Design Year)		Build (Desion Year)	
Lanes: $\quad 1$	Lanes:	1	Lanes:	1
Year: 2005	Year:	2030	Year:	2030
$\begin{array}{ll} \hline \mathrm{ADT}: \\ \mathrm{LOS}(\mathrm{C}) & 7.860 \\ \hline \end{array}$	ADT:	7.860	ADT: $\cos (C)$	7.860
Demand $\quad 2.400$	Demand	11.900	Demand	11.900
Speed:	Speed	$\frac{35}{56} \mathrm{mph}$	Speed:	$\frac{35}{56}$
$K=0.4 \%$	$k=$	9.4 \%	$K=$	9.41%
$D=\frac{56}{\%}$	$\mathrm{D}=$	56 \%	$D=$	56 \%
$T=\frac{20.0}{\text { \% }}$ \% for 24 lus.	$T=$	20.0 \% tor 24 hrs	$T=$	20.0 \% for 24 hrs
$T=\frac{10.0}{\%}$ \% Design hr	$T=$	10.0 \% Design hr	T*	10.0 \% Design hr
6.0 \% Medium Trucks OHV		dium Trucks DHy		edium Trucks DHV
40 \% Heavy Trucks DHV		vy Trucks DHV	4.0	eavy Trucks Dtiv
0.0 \% Buses DHV		es DHV	0.0	uses DHVV
00 \% Molracycles DHV		arcycles DHV	00	otarcycles DHV

The tollown								
The following are spreadsheet calculations based on the inpul above. do not enter data below this line								
Existing Fac	ility Model:	Demand	No-Euild 10	Oesign Year) Modei:	$\operatorname{Los}(C)$	Autild (Desig	n Yearl Modet:	Los (C)
LGSiCi			1054			105 Cl		
Southround	Autos	372	Southtound	Sutos	372	Sounteurd	Autos	372
	Hivy Trucks	$\frac{25}{17}$		Pred Truchs	25		: hed Tracts	25
	Buses	0		Hivy Truchs	17		Hiry Tucks	77
	hiciorcyctes	6		Buses	0		Euses	0
Itermbound			Northbound.	Aulos	293		fintes	
	mutos	243				Normberme		293
	thed Trucks	20		1. Red Truchs	5		tuta Trucks	20
	Hery inmes	13		AmeruchSusers	13		Hey Trucs	13
	Eusts	0			0		Euntorstas	0
	motoryctes	0		motorescles				9
Demang			Demined			Dement		
Scumbound	Athos	114	Southroura			Strationamat	Autos	$515+$
	tied Trues	6		1.ted Thate	2is		leme Tructs	39
	Heve Tucks	5		Haytucte	35		Hey Trums	25
	Euses	0		Euses informetes	4			\%
	Bratemes	6			9		Euses thotorgetes	6
Wemmatal			Whtyermet	$A \cdot!:=$ Fater initit 4, ifisis Evies 4, +momes	443	TGitatame	A+2lis tard T:aks 	+1:5
	that itmes	6			\bigcirc			31
	bus iruts	4			3			20
	Bile: FAMtheras	3			!			0
		\%			'			0

TRAFFIC DATA FOR NOISE STUDIES

(Data sheels are to De filled oul tor every segment havala a change in tratir parameters such as volumes, posted speeds, Mpical section. ene)
NOTE: Modeled ADT is the LOS(C) volume referenced in the FDOT LOS tatles or demand, whicheves is less.

STAMINATNM INPUT								
The following are spreadsheet catculations based on the inputabove - do not entet data betow this line								
Existing fac	cility Model:	Demand	No-Build (Design Year) Model:		Oemand	Euld (Design Year) Model:		Demand
LGSC:			LOS(C)			LOS iC:		
scuthfouns	Autes	372	Southtound	Autos	372	Southbound	Autas	372
	Ment Theks	25		taed Trucks	25		Medtruchs	25
	Hisy louts	17			17		Hey Teucts	17
	Buses	0		Hvy Trucks Buses	0		Euses	0
	Itouteractes	0		Motorcycles	0		6.tomoraife	4
fouthtound	Athus	293	Flotbbound	4tios	293	Nentherum	Altos	293
	Ange Truchs	20		vied Tiucte	20		Wed truts	20
	Heretack	1.3		Hry Trucks	13		Hu: Thats	13
	Euccs	0		Eusts	0		Euses	0
	Arteremes	9		Riotaroyes	3		thatoments	${ }^{3}$
Semend			Demand			Dcmend		
	-ntus	85	Soumberat	antos	246	Sumaremis:	-thes	226
		3		Stect Thech	16		hestiacts	15
	HSTHINS	2		Hmpructs	11		Hoy isuchs	11
	Entas	0		Euses fictorentits	0		Whtorefer	4
	Themerats	0			3			1
	Antr	0		2510. Tue Times ine frucs Bust 	19.9	120.0.abers	aute	164
	tatillat	2			13		tactutuls	14
	$\cdots \mathrm{Catam}$	1			6		$\cdots \mathrm{moum}$	3
	\%es\%	\%			0		Enses	1
	bituremex	\square			1		Ftataneme	\square

TRAFFIC DATAFOR NOISE STUDIES

Project	1.75 PD8E Study from north of SR 52 to south of CR 476 B	Date:	4/5/2006
Stale Project Number(s)		Prepared By	EJE
Work Program Number(s)			
Federal Aid Number(s):			
Segment Descriplion:	Site 12a: Southbound offramp at SR 50 (Contez Blud)		

(Bata sheets ate to be fibed oft for every segment having a change in fratlic parameters such as volumes. posted spetas, typucat section, exc)
NOTE: Modeled AOT is the LOS(C) volume reterenced in the FDOT LOS tables or demand, whichever is less

The following are spreadsheel catculations based on the input above - do not emter data below this line								
Existing Facility Model:		Demand	No-Buid \{Design Yearl Model:		$\operatorname{Los}(C)$	Build (Design Yearj Modet:		$\operatorname{LOS}(C)$
$\operatorname{Los}(\mathrm{C})$			LOS (C)			iosici		
Smithtound	Autos	335	Soubltound	Autos	335	Southerund	Alus	335
	lited Trucks	48		Fined Trucks	48		Fsed Tructs	48
	Hivy Trucks	31		Hivy Truchs	31		Hery Trucks	31
	Euses	0		Euses	0		Buses	0
	Wotoracles	0		hotorcerses	0		Motercycles	0
Northourd	Autos	26.3	Herthoom:	Autas	263	Wentbund	Lutos	263
	Fhed Thucks	37		Stes Trucks	37		Sted Trucks	37
	Hy Thars			Hor Tructs	24		Hoy Thucks	24
	Euses	0		Eusce	0		Euses	0
	*torcyes	0		Whormmes	i		sictorcries	0
Demand			Demerd			Oemant		
Scrntomat	itutos	183	Smeltwhat	Auis	538	Srumbuat	Antus	66s
	frecf hucks	26		Ofodicucos	84		thed Tucre	E4
	Hey Truchs	17		-tatruts	54		Hey Truches	54
	Buses	0		Euses thatracentes]		Euses wotermes	0
	twnoryotes	i)			1			6
Mathement	Atifoc	114	Wembemene	Ahts		fursiteran	antros fuct liont:	16%
	Sos lincts	4		Sat litusift leats	66			66
	We lums	13			43		14.\% ?	41
	Ebters	4		lusesarturates	6		 	\%
	勺bumem	0			3			!

TRAFFIC DATA FOR NOISE STUDIES

Project:	1-75PO\&E Study from north of SR 52 to south ar CR 476 B	Date:	4/5/2006
Slate Project Numberts)		Prepared Ey	EJE
Work Program Numberts)			
Federal Aid Numbers)			
Segment Descriplion	Site 12b: Southbound onramp at SR 50 (Cortez Blvd)		

NOTE: Modeled ADT is the LOS(C) volume referenced in the FDOT LOS tables or demand, whichever is fess

The STAMINATNM INPUT								
The following are spreadsheet catculations based on the input above - do not enter data below this line								
Existing Facility Model:		Demand	No-Butd (Design Year) Model:		$\operatorname{LOS}(\mathrm{C})$	Euild (Design Year) Model:		Demand
$\operatorname{Los}(C)$			10510			Losci		
Scuthbound	Autos	335	Southround	mutos	335	Soumbeund	Autcs	839
	lied Trucks	48		Med Trucks	48		fied Tfucts	119
	Hyy Tuucks Euses	31		Hey Trucks	31		Hisy Trucks	78
	Euses	0		Buses Motercicies	0		Euses	0
	Motercyctes	0			9		AOtmeytas	
flombound	futus	263	Nemthound.	Aulos	263	Dorthbened	futos	659
	Med Tricks Hoy Teucks	37		Med Trucks	37		Heat Itacks	0.4
	Hry Tucks Euses	24		Hin Tucks	24	Hyutucks 61		
	i.totore	0		Busesmotoryeses	3	Eusos 0		
					5	froteremsa		0
Demani			Eifmeng			Crment		
Sartimanat	Antos	260	Southterns	antos	67	Srumatand	Sum	$5 \% 4$
	Wed Theks	37		thed Thok:	6		Med Inmes	4
	Hy Thects	24		Ifo Tructs	6		Hevimots Eust:	62
	Euses	0		Euses botructes	6			1
	magcites	0			9		Euste Hommes	D
:30tyman	Anme	29		antos Hey Theres Elises Tramar \|s	$\frac{5}{5}$	4, 4tant	 1.15-3. 	52
	1.7ed Thate	$\underline{29}$						75
	tey Tomes	19			4			14
	etats	0			6			\%
		()			\bigcirc			3

TRAFFIC DATA FOR NOISE STUDIES

Project	1-75 PD\& Siudy flom north of SR 52 to south of CR 476 E	Date	4/5/2006
State Project Number(s):		Prepared By:	E. 38
Work Program Number\{s)			
Federal Aid Number(s)			
Segment Dascription:	Site 13a: Northbound offramp at SR 50 (Cortez Elva)		

NOTE Modeled ADT is the LOS(C) volume referenced in the FDOT LOS zables of demand, whichever is less.

STAMINATNM INPUT								
The following are spreadsheet calculations based on the inpot above - do not enter data below this line								
Existing Facility Model:		Demand	No-Guild (Design Yeat) Modet:		$\operatorname{LOS}(C)$	Euild (Design Year) Model:		Demand
tos 16			Cos/ct			LOS 61		
Scuthtround	Autos	335	Sountround	astos	335	Southbound	Autos	939
	Weatruchs	48		Tred Trucks	48		Aned Tructs	119
	Hicy Trucks	31		Higy Tructes	31		Hojtrucks	75
	Butes	4		Euses	0		Euses	5
	tratoroves	0		bstorcycies	1		Wotcreycles	6
Wentutoma	Autos	263	rronkboud	Antos	263	Nombenm	Autos	65:4
	bedtucts	37		Wed Truck	37		ded Trucks	9.
	Fy, Yacks	34		WigTrack	24		Hyy Tuets	61
	Euses	0		Euses	9		Euses	9
	Sturevers	13		hatoryctes	[1		thetricumits	11
Demene			Demand			Deniant		
Gomenato	Fites	0	momeamer	2ntos	68.4	Scmaternat	atus	69
	Stee Thaks	37		Stes Thems	96		Feded Tlucts	6
	He\% Thets	24		idstatis	52		-rip Praten	62
	Euses	0		Guses	,		Euses	?
	lformuth	4		Somatuss	0		Molctites	1
Whatanet	Antor	243	16,	Atitet	5		Anso	5
		\%			7			3
	14. Mizits	19			45		Mel Tat: per figits	4
	fucse	4		$4 \because \text { Tucres }$	9		- frivits G:O	i.
		6		- mante: 1....	\square		W?a, ir:	i)

TRAFFIC DATA FOR NOISE STUDIES

Project:	1.75 PO\&E Sludy from north of SR 52 to south of CR 476 E	Date:	4/5/2006
State Project Number (5)		Piepared By	EJE
Work Program Number(s)			
Federal Aid Number(s):			
Segment Description:	Site 13b: Northbound onramp at SR 50 (Corfez Blvd)		

NOTE: Modeled ADT is the LOS(C) volume referenced in the FDOT LOS tables or demand, whichever is iess

STAMINATNM INPUT								
The following are spreadsheer calculations based on the input above - do not enter data below this tine								
Existing Facility Model:		Demand	No-Build (Design Year) Model:		$\operatorname{LOS}(C)$	Build (Design Year) Model:		$\operatorname{Los}(C)$
$\cos 1 \mathrm{C})$			tos (C)			Losici		
Southtound	Antos	335	Soutrbound	sutos	335	Suathbourd	Autos	335
	h.fed Trucks	48		twed Tructs	18		Med Tfuch 5	48
	Hry Trucks	31		Hoytructs	$3 \pm$		Hive Trucks	31
	Euses	0		Euses	0		Euses	0
	Nibotoricles	9		Fotutcychers	1		motorcyeles	0
Natthousis	Autos	263	Nontheurid	Autos	253	Hormbouts	Autos	26.3
	Wed Tructs	37		titer Tructs	37		Wed Trubs	37
	FWy Tructs	24		Hig Thers	4		Hey Trucks	24
	Eusce	0		Euses	6		Euses	0
	Watrowles	0		Whomereme	3		Antrceise	1
Ofmend			Trimet			Sement		
Sethtortid	andos	123	Satmemes	-uss	\%	Samtamas	Aubs	568
	Pees Truchs	26		Diget Tatis	94		Fied Trucks	54
	H6\% Thers	17		Heretrets	5.4		Higitharts	5
	Euses	0		Euses	?		Buses	0
	t.agmentes	6		Hftucuts	4			0
20matem:	\therefore Ates	14.4	Wexthemer	fisates	123	Wenticatios	2ithes	162
	bet bame	20			6		NRan lowe	65
	Welrats	11		Hre Bhers	45		Hay !	4.
	E, $\mathrm{S}_{\text {cs }}$	\%		Stase	?		Emers	3
	Forsesmbey	0		tatareme	I		Shaterater	\because

TRAFFIC DATA FOR NOISE STUDIES

（Data sheels ate to be filled out for every segmem haviry a charge in traffic parameters such as vohames，posted spetws，fypical section，etc）
NOTE：Modeled ADT is the LOS（C）volume referenced in the FDOT LOS tables or demand，whichever is less

The following are spreadsheet caiculations based on the imput above do not enfer data below this line								
Existing Facility Model：		Demand	No－Buitd（Design Year）Model：		$\operatorname{LOS}(C)$	Buidd（Design Yeafy Madea：		105101
153			6 Cb			196		
Wembramaj	Antos	117\％	\therefore abstumud	Abso	1176	Masplumat	Aldes	i是；
	Fion Truss	23		Spet ituctu	23		Sted Fruste	36
	－rov Truts	67		HE，Trucs	5		H－4 Thacks	315
	Etices	6		Entos	E		E1：	9
	thtormetes	5		Wibtorestes	5		Whtoterdes	9
Fenthomm	Aimes	982	E3ctioun：	Atas		Exatemad	rututiz	1689
	Fitcl Thets	19		Mast Tomets	19		Otat Truth	31
	foy Tames	56			37		－ty Tucta	39
	Etaster	5		5ises	\％		Enses	？
	Stomereths	כ			6		SAntreveres	－
「armbis			Exames			Terman		
	－ Cta	11：2			3819		S 1418	\％ 15
		\cdots			7			？
	\％－italy	6，			\％			（\％
	Buram	＋			U		二小，	16
		5			！		\cdots 成为	！
－8，	$\therefore \mathrm{Ca}$	\％		?	36			S
		＋			\％			\％
	\because ！：．：				\％		－\％：	\cdots
		\％		\％－	16		\therefore ：	\because
		\％			4		$\because \because$.	\bigcirc

TRAFFIC DATA FOR NOISE STUDIES

Project.	1.75 PDEE Study from north of SR 52 to south of CR 476 B	Oate	11/2/2006
State Project Number(s):		Prepared By:	FJo
Work Program Number(s)			
Federal Aid Numberis):			
Segment Description:	Site 8: SR 50 (Contez Blvd) West of t-75		

(Data sheets are to be bited out lor every segment having a change in traftic parameters such as wotumes posled speeds. typtal sectuan. Etc.)
NOTE: Modeled ADT is the LOS(C) volume referenced in the FDOT LOS sables or demand, whichever is less.

STAMINATNM INPUT								
The following are spreadsheet calculations based on the input above - do not enter data helow this lime								
Existing Fa	cility Model:	Demand	No-Euild foesign Year) Model:		$\operatorname{Los}(C)$	Buid (Design Year) Model:		$\operatorname{Los}(\mathrm{C})$
Cs			108			45		
2ivermond	a 4 ¢!	1105	Hosthomivt	athes	165	Vestecm	tutos	1815
	Foen Theme	0		fed trieks	5		Fied Truets	39
	Hy Tucts	7		fy heres	5		Hotuchs	$1: 6$
	Busen	?		$3: \mathrm{EES}$	$\stackrel{7}{7}$		Euses	!
	Everomes	i)		Neracyers	\cdots		thtmeghs	\%
Essboumi	Autes	972	Eximoma	matios	02\%	Ememonmi	Andes ?w Tramb	1515
	Matmest	21		Sed Temets	2			$3{ }^{3}$
	ary Thas	$\underline{\square}$		+9, Tucts	\%		sob lramb	97
	Buses	\%		3ises	\%		Guses	3
	Womemem	\%		6omentins	\%		Wancram	7
Eamat			Camam			Yement		
T-minami	A:6	48		-10\%	46	$\therefore \square$	antor	897
	Shey lame	+1		Stat mex	2,			\%
	Wy mose	3		Curas	5		-4)	166
	8,	\%		3nes	!		Amom	!
	botamba	F		6materta	\%			15
	$\therefore \mathrm{A}$	\cdots	\% , \%\%		35	- 4 \%		25\%
	Chat forn	\%			36			\%
	H, : \%, \%	\%			Ta			\%
	い,	;			S			\cdots
	H-1, :	3			\%		$\begin{aligned} & \because \pi \\ & \because \end{aligned}$	3

DISTRICT 7 TRAFFIC DATA FOR AIR STUDY SCREENING TEST

DATE: 04/25/06 \qquad

PREPARED BY: Ed Bryant, PE

Work Program Item Segment Number(s): 411014-1-22-01

Federal Aid Number(s): 0751-1201
Project Description: 1-75 PD\&E Study from north of SR 52 to south of CR 476B (Pasco, Hemando, and Sumter Counties, Florida)

NOTE: The most congested intersection is the intersection with the highest total volume and lowest departure speeds and it could be two different intersections based on the Build vs. No-Build alternatives. The traffic volumes are to be the peak vph of the most congested leg approaching the intersection (values between 1000-9999 are accepted into the computer model). The speeds are to be the average cruise speed / mid-block speed for the most congested leg and the model will accept values between $15-65 \mathrm{mph}$.

OPENING YEAR: 2010
"BUILD"
Most Congested Intersection:
$1-75$ (SR 93) SB Ramps at SR 50
Peak Hour Traffic
for most congested leg: _1,561 uph
Specify leg: WB SR 50-Cortez Blvd
Average Cruise Speed: 45 mph
"NO-BULLD"

Most Congested Intersection: 1-75 (SR 93) SB Ramps at SR 50 Peak Hour Traffic for most congested leg: $1,561 \mathrm{vph}$ Specify leg:WB SR 50-Cortez Blvd Average Cruise Speed: 45 mph

DESIGN YEAR : 2030

"BUILD"

Most Congested Intersection:
1-75 (SR 93) NB Ramps at SR 50
Peak Hour Traffic
for most congested leg: $3,389 \mathrm{vph}$
Specify leg: WB SR 50-Cortez Blvd
Average Cruise Speed: 45 mph

"NO-BUILD"

Most Congested Intersection:
1-75 (SR 93) NB Ramps at SR 50
Peak Hour Traffic
for most congested leg: 3,389 vph Specify leg: WB SR 50-Cortez Blvd
Average Cruise Speed: 45 mph

[^0]: DDHV - Directional design hour volume
 LOS, S, FFS, V_{D}-Exhibits 23-2, 23-3 $\quad f_{1 D}$ - Exhibit 23-7
 Copyright (c) 2005 University of Florida. All Rights Reserved

