SR 52 PD\&E STUDY REEVALUATION
Florida Department of Transportation
Project Development and Environment (PD\&E) Study Reevaluation

FINAL
Traffic Forecast Report

SR 52 From East of Suncoast Parkway to West of I-75
WPI Segment No. 2562431
FAP No. 1851-108

Florida Department of Transportation District Seven Tampa, Florida

June 5, 2007

FINAL
 TRAFFIC FORECAST REPORT

SR 52 Project Development \& Environment Study Reevaluation

From East of the Suncoast Parkway to West of I-75
Pasco County, Florida
WPI Segment Number: 2562431
FAP Number: 1851-108

The proposed action includes widening SR 52 from the existing two-lane rural roadway to a six-lane urban and six-lane rural divided roadway. The study limits extend approximately 13.9 miles, from east of the Suncoast Parkway to west of I-75 in Pasco County, Florida.

Florida Department of Transportation
District Seven
Tampa, Florida

Prepared By:
PB Americas, Inc.
Tampa, Florida

June 5, 2007

EXECUTIVE SUMMARY

The Florida Department of Transportation (FDOT) conducted a Project Development and Environment (PD\&E) Study Reevaluation of a previously approved study of the SR 52 project corridor from east of the Suncoast Parkway to west of I-75 in Pasco County. The Reevaluation assessed the engineering and environmental effects associated with the widening of the existing two-lane rural roadway to a six-lane divided urban and rural roadway for the segment of SR 52 from east of the Suncoast Parkway to west of I-75, approximately 13.9 miles.

In July 1988, the Federal Highway Administration (FHWA) approved the Environmental Assessment/Finding of No Significant Impact for the SR 52 PD\&E Study from US 19 to I-75 (SR 93). The 1988 study proposed widening SR 52 to a multilane divided highway for approximately 23.3 miles. A six-lane divided urban cross section was proposed from US 19 to Moon Lake Road, and a four-lane rural cross section was proposed from Moon Lake Road to I-75. For this Reevaluation, a six-lane divided urban roadway is proposed from east of the Suncoast Parkway to Shady Hills Road, and a six-lane divided rural roadway is proposed from Shady Hills Road to west of I-75.

Since the original PD\&E Study, two Design Change Reevaluations have been conducted within the project limits. The first Reevaluation (FHWA approved December 17, 2001) covered the segment from the Suncoast Parkway to US 41. The second Reevaluation (FHWA approved February 2, 2007) covered the segment from the Suncoast Parkway to I75.

The traffic study concluded that six lanes would be needed for SR 52 from the Suncoast Parkway to I-75. The intersection configurations required for the project are provided on the Concept Plans.

TABLE OF CONTENTS

EXECUTIVE SUMMARY ES-1
1.0 INTRODUCTION 1
1.1 Project Description 1
1.2 Existing Facility 1
1.3 Proposed Improvements 3
1.3.1 Typical Section 3
1.3.2 Alignment 3
1.3.3 Design Change Reevaluation 3
1.4 Purpose 5
2.0 TRAFFIC DATA COLLECTION 5
2.1 72-Hour Machine Traffic Counts 5
2.2 PM Peak Period Vehicle Turning Movement Counts 7
$2.3 \quad$ 72-Hour Vehicle Classification Counts 7
2.4 Intersection Sketches 7
2.5 Count Program Summary Report 7
2.6 Existing Conditions 8
2.6.1 Existing Roadway and Intersection Geometry 8
2.6.2 Existing Annual Average Daily Traffic (AADT) Volumes 8
2.6.3 Existing PM Peak Period Vehicle Turning Movement Volumes 8
3.0 DEVELOPMENT OF FORECAST TRAFFIC VOLUMES 8
3.1 Review of Relevant Studies 8
3.2 Forecast Traffic Volumes 8
3.2.1 Data Available for Projecting Traffic Volumes 12
3.2.2 Years 2030 And 2010 AADT Volume Projections 12
3.2.3 Years 2030 and 2010 Directional Design Hour Volumes 12
3.2.4 Years 2030 and 2010 Design Hour Turning Movement Volumes 12

LIST OF FIGURES

Figure 1 Project Location Map 2
Figure 2 Proposed Roadway Typical Sections 4
Figure 3 Traffic Volume Count Locations 6
Figure 4 Existing Roadway And Intersection Geometry 9
Figure 5 Existing AADT Volumes -10
Figure 6 Existing PM Peak Hour Turning Movement Volumes 11
Figure 7 Year 2030 AADT Volumes -14
Figure 8 Year 2010 AADT Volumes -15
Figure 9 Year 2030 Directional Design Hour Volumes 19
Figure 10 Year 2010 Directional Design Hour Volumes -20
Figure 11 Year 2030 Design Hour Turning Movement Volumes -21
Figure 12 Year 2010 Design Hour Turning Movement Volumes -22
LIST OF TABLES
Table 1 Annual Average Growth Rates 13
Table 2 Calculation of Year 2030 and 2010 AADT Volumes 16
Table 3 Year 2030 Directional Design Hour Volumes -17
Table 4 Year 2010 Directional Design Hour Volumes -18
Table 5 Years 2010 and 2030 Design Hour Turning Movement Volumes -23
LIST OF APPENDICESAppendix A Sketches of Study IntersectionsAppendix B FDOT Seasonal Adjustment Factor TableAppendix C FDOT Axle Adjustment Factor TableAppendix D FSUTMS Volume Plot - Year 2025 AADT VolumesAppendix E FDOT Design Hour Factors Table

1.0 INTRODUCTION

The Florida Department of Transportation (FDOT) conducted a Reevaluation of the previously approved Project Development and Environment (PD\&E) Study for the segment of SR 52 from east of the Suncoast Parkway to west of I-75 in Pasco County, Florida. The Reevaluation examined changes in the engineering and environmental effects between the originally selected alternative and the proposed design improvements.

In July 1988, the Federal Highway Administration (FHWA) approved the Environmental Assessment/Finding of No Significant Impact (EA/FONSI) for the SR 52 PD\&E Study from US 19 to I-75 (SR 93). The 1988 study proposed widening SR 52 to a multilane divided highway for approximately 23.3 miles, and replacing a low level bridge over Bear Creek, located approximately 1.5 miles east of US 19. A six-lane divided urban roadway was proposed from US 19 to Moon Lake Road, and a four-lane rural roadway was proposed from Moon Lake Road to I-75. For this Reevaluation, a six-lane divided urban roadway is proposed from east of the Suncoast Parkway to Shady Hills Road, and a six-lane divided rural roadway is proposed from Shady Hills Road to west of I-75.

1.1 Project Description

The FDOT is proposing improvements to SR 52 from the Suncoast Parkway to I-75 in Pasco County, Florida, a distance of approximately 16 miles. The proposed improvements consist of widening the existing two-lane rural roadway to a six-lane divided urban highway from the Suncoast Parkway to Shady Hills Road and a six-lane divided rural highway from Shady Hills Road to east of I-75 to accommodate present and future traffic demands.

SR 52 is an east-west arterial highway in Pasco County, beginning at US 19 and terminating at the US 98 Dade City Bypass. The FDOT proposed improvements to SR 52 from east of the Suncoast Parkway to west of I-75 in Pasco County, a distance of approximately 13.9 miles. The proposed improvements consist of widening the existing two-lane rural roadway to a six-lane divided urban and rural roadway to accommodate present and future traffic demands. The project location is shown in Figure 1.

1.2 Existing Facility

The existing SR 52 roadway is typically a two-lane rural facility with one 12 -foot travel lane in each direction and 12 -foot shoulders (4 feet paved). The roadway cross section varies throughout the length of the project. Turn lanes have been added at certain intersections. The existing right-of-way varies in width with a minimum of 100 feet.

1.3 Proposed Improvements

1.3.1 Typical Section

In the EA/FONSI, the typical section proposed for the limits covered by this reevaluation provided a 52 -foot median separating two 12 -foot lanes for each direction of travel. Ten-foot shoulders would be provided on each side of the roadway. Five feet of the 10 -foot width would be paved which would accommodate bicyclists. The total right-of-way width for this typical section totaled 212 feet.

For the proposed design change, from the Suncoast Parkway to Shady Hills Road, the typical section provides a 46 -foot raised grass median, separating three 12 -foot lanes for each direction of travel. Four-foot bike lanes are provided on each side of the facility. A 5foot sidewalk will be provided along the south side of the roadway and a 12-foot multi-use path will be provided on the north side of the roadway. From Shady Hills Road to I-75, the rural typical section provides a 46 -foot median, separating three 12 -foot lanes for each direction of travel. Ten-foot shoulders (5 feet paved) will accommodate bicyclists. A 12-foot multi-use path will be provided on the north side of the roadway. The proposed roadway typical sections are shown in Figure 2.

1.3.2 Alignment

The recommended alignment for the SR 52 project corridor was evaluated and compared to the approved EA/FONSI. The alignment is consistent with the 1988 study from the Suncoast Parkway to 3,400 feet west of Ehren Cutoff. From approximately 3,400 feet west of Ehren Cutoff to I-75, the proposed alignment is shifted to the north. This keeps the proposed multi-use path on the north side of the roadway, without a need for a bridge over SR 52 if the alignment from the approved EA/FONSI is used.

1.3.3 Design Change Reevaluation

Since the original PD\&E Study, two Design Change Reevaluations have been conducted within the project limits. The first Reevaluation (FHWA approved December 17, 2001) covered the segment from the Suncoast Parkway to US 41. It kept the same alignment as the original PD\&E Study, but changed the typical section from a 212 -foot wide rural facility to a 156 -foot wide urban facility. The second Reevaluation (FHWA approved February 2, 2007) covered the segment from the Suncoast Parkway to I-75. It provides for a 250 -foot rural typical section. An alignment shift to the south was studied in the vicinity of Kent Grove Drive and the CSX Railroad. However, it was decided to keep the alignment to the north, consistent with the original PD\&E Study. From US 41 to Ehren Cutoff, the alignment is consistent with the original PD\&E Study. From Ehren Cutoff to I-75, the alignment is shifted to the north.

1.4 Purpose

The purpose of this report is to document the preliminary estimate of forecast traffic volumes for the preferred alternative and to determine laneage requirements and intersection configurations.

2.0 TRAFFIC DATA COLLECTION

The following data were acquired for use in the study. Traffic volume count locations and type of count are illustrated on Figure 3.

$2.1 \quad$ 72-Hour Machine Traffic Counts

Seventy-two hour machine traffic counts were conducted at the following 10 locations:

Location

1. SR 52 west of Shady Hills Road
2. SR 52 east of Ehren Cutoff
3. SR 52 east of Bellamy Brothers Road
4. SR 52 east of Old Pasco Road
5. Shady Hills Road north of SR 52
6. US 41 north of SR 52
7. US 41 south of $S R 52$
8. Ehren Cutoff south of SR 52
9. Bellamy Brothers Road north of SR 52
10. Old Pasco Road south of SR 52

Data Collection Dates

August 3, 4 and 5, 2005
August 9, 10 and 11, 2005
August 9, 10 and 11, 2005
August 3, 4 and 5, 2005
August 3, 4 and 5, 2005
August 3, 4 and 5, 2005

TRAFFIC VOLUME COUNT LOCATIONS

2.2 PM Peak Period Vehicle Turning Movement Counts

Manual vehicle turning movement, pedestrian and bicycle counts were conducted between 4:00 p.m. and 7:00 p.m. at the following five intersections.

Intersection

1. SR 52/Shady Hills Road
2. $\operatorname{SR} 52 / U S 41$
3. SR 52/Ehren Cutoff
4. SR 52/Bellamy Brothers Road
5. SR 52/Old Pasco Road

Data Collection Date
August 3, 2005
August 9, 2005
August 4, 2005
August 9, 2005
August 9, 2005

$2.3 \quad$ 72-Hour Vehicle Classification Counts

72-hour vehicle classification counts were conducted at the following two locations.

Location

1. SR 52 east of US 41
2. SR 52 west of US 41

Data Collection Dates
August 9, 10 and 11, 2005
August 9, 10 and 11, 2005

2.4 Intersection Sketches

Appendix A contains the sketches of the following five intersections.

1. SR 52/Shady Hills Road
2. SR $52 / \mathrm{US} 41$
3. SR 52/Ehren Cutoff
4. SR 52/Bellamy Brothers Road
5. SR 52/Old Pasco Road

2.5 Count Program Summary Report

The traffic data collected were tabulated in computer summary form, in 15 minute increments, with hourly totals for each day on which counts were conducted. These data, plus the intersection sketches, were assembled into a "Count Program Summary Report," and is under separate cover.

2.6 Existing Conditions

2.6.1 Existing Roadway and Intersection Geometry

SR 52 is a two-lane undivided roadway throughout the project limits. It is approximately 24 feet in width. A summary of the existing intersection and roadway laneage is illustrated on Figure 4.

2.6.2 Existing Annual Average Daily Traffic (AADT) Volumes

The AADT volumes were calculated by multiplying the 24 -hour traffic count volumes by an axle adjustment factor and a weekly seasonal factor. The seasonal adjustment factor is calculated annually by the FDOT and reflects the seasonal fluctuations in traffic throughout Pasco County. A copy of the seasonal adjustment factor table for Pasco County is contained in Appendix B. The 24-hour machine count volumes were derived by counting the number of axles and dividing by two. This does not account for truck volumes. Therefore, an axle adjustment factor was used to estimate the number of trucks in the traffic stream. The FDOT axle adjustment factors used in the analyses are contained in Appendix C. The existing AADT volumes are illustrated on Figure 5.

2.6.3 Existing PM Peak Period Vehicle Turning Movement Volumes

PM peak period vehicle turning movement volume counts were conducted at the five intersections in August 2005 (Figure 3). These counts were seasonally adjusted using the Pasco County seasonal adjustment factors contained in Appendix B. Figure 6 illustrates the seasonally adjusted peak hour turning movement volumes.

3.0 DEVELOPMENT OF FORECAST TRAFFIC VOLUMES

3.1 Review of Relevant Studies

The traffic projections for SR 52 were obtained from the FDOT District Seven Tampa Bay Regional Planning Model (FSUTMS), which includes the socioeconomic data for all the future developments in the area. Additional review of other Development of Regional Impact is not required for this project.

3.2 Forecast Traffic Volumes

This section summarizes the development of forecast traffic volumes for the opening year (2010) and the design year (2030).

EXISTING AADT VOLUMES

3.2.1 Data Available for Projecting Traffic Volumes

The FDOT District Seven Tampa Bay Regional Planning Model (Year 2002) provided the traffic volume projections for the year 2025. A MOCF factor of 0.96 obtained from FDOT database (contained in Appendix B) was used to convert PSWADT volumes to AADT volumes. A FSUTMS volume plot for the year 2025 is provided in Appendix D.

3.2.2 Years 2030 And 2010 AADT Volume Projections

The year 2025 AADT volumes on SR 52 and the five intersecting streets on SR 52 were obtained from the FDOT District Seven Tampa Bay Regional Planning Model. The annual growth rates on the 12 roadway segments within the study area are summarized in Table 1. They were calculated by comparing the years 2005 and 2025 AADT volumes and were used to estimate the years 2030 and 2010 AADT volumes.

The 2025 AADT volume for the segment of Shady Hills Road north of SR 52 obtained from the model was less than the existing AADT volume, which is not reasonable. Therefore, an average annual growth rate of 2 percent was assumed to estimate the year 2025 AADT volume at this location.

Years 2030 and 2010 AADT volumes are illustrated on Figure 7 and Figure 8 respectively, and are summarized in Table 2.

3.2.3 Years 2030 and 2010 Directional Design Hour Volumes

Years 2030 and 2010 directional design hour volumes were developed for each segment of SR 52 and for each of the five study intersections on SR 52 by applying the average annual growth rates shown in Table 1 to the year 2005 PM peak hour approach volumes.

The calculated directional design hour volumes are summarized in Table 3 and Table 4. The predominant directions of flow on SR 52 and intersecting streets on SR 52 are west and north, respectively, during the p.m. peak hour. Years 2030 and 2010 directional design hour volumes are illustrated on Figure 9 and Figure 10, respectively.

3.2.4 Years 2030 and 2010 Design Hour Turning Movement Volumes

Design hour turning movement volumes for years 2030 and 2010 were estimated by assuming that the percentage of traffic turning left, right or proceeding through an intersection will be approximately the same in years 2030 and 2010 as the existing Year 2005.

Year 2030 and 2010 design hour turning movement volumes are illustrated on Figure 11 and Figure 12, respectively, and are summarized in Table 5.

Table 1
Annual Average Growth Rates

No.	Roadway Segment	Year 2005 AADT Volumes	Year 2025 AADT Volumes	Growth Rate $(\%)$
1	On SR 52 west of Shady Hills Road	21,905	26,600	1.07
2	On SR 52 west of US 41	21,175	33,130	2.82
3	On SR 52 east of US 41	12,690	25,320	4.98
4	On SR 52 east of Ehren Cutoff	14,450	23,300	3.06
5	On SR 52 east of Bellamy Brothers Road	16,305	22,290	1.84
6	On SR 52 east of Old Pasco Road	16,840	32,050	4.52
7	On Shady Hills Road north of SR 52	10,450	14,630	2.00
8	On US 41 north of SR 52	11,935	17,060	2.15
9	On US 41 south of SR 52	20,325	26,200	1.45
10	On Ehren Cutoff south of SR 52	2,310	8,790	14.03
11	On Bellamy Brothers Road north of SR 52	3,375	4,340	1.43
12	On Old Pasco Road south of SR 52	2,065	9,040	16.89

YEAR 2030 AADT VOLUMES

Table 2
Calculation of Year 2030 and 2010 AADT Volumes

No.	Roadway Segment	Year 2005 AADT Volumes	Growth Rate (\%)	Year 2010 AADT Volumes	Year 2030 AADT Volumes
1	On SR 52 west of Shady Hills Road	21,905	1.07	23,080	27,775
2	On SR 52 west of US 41	21,175	2.82	24,165	36,120
3	On SR 52 east of US 41	12,690	4.98	15,50	28,400
4	On SR 52 east of Ehren Cutoff	14,450	3.06	16,665	25,515
5	On SR 52 east of Bellamy Brothers	16,305	1.84	17,805	23,790
6	Road	On SR 52 east of Old Pasco Road	16,840	4.52	20,645
7	On Shady Hills Road north of SR 52	10,450	2.00	11,500	15,855
8	On US 41 north of SR 52	11,935	2.15	13,220	18,345
9	On US 41 south of SR 52	20,325	1.45	21,795	27,670
10	On Ehren Cutoff south of SR 52	2,310	14.03	3,935	10,415
11	On Bellamy Brothers Road north of SR 52	3,375	1.43	3,620	4,585
12	On Old Pasco Road south of SR 52	2,065	16.89	3,810	10,785

Table 3
Year 2030 Directional Design Hour Volumes

No.	Roadway Segment	Two-way Design Hour Volumes	Design Hour Volumes (Peak Direction)	Design Hour Volumes (Non- Peak Direction)
1	On SR 52 west of Shady Hills Road	3,200	1,680	1,520
2	On SR 52 west of US 41	3,065	2,070	995
3	On SR 52 east of US 41	2,110	1,430	680
4	On SR 52 east of Ehren Cutoff	2,660	1,375	1,285
5	On SR 52 east of Bellamy Brothers Road	1,930	1,065	865
6	On SR 52 east of Old Pasco Road	2,530	1,570	960
7	On Shady Hills Road north of SR 52	1,555	1,180	375
8	On US 41 north of SR 52	1,380	860	520
9	On US 41 south of SR 52	2,295	1,480	815
10	On Ehren Cutoff south of SR 52	695	525	170
11	On Bellamy Brothers Road north of SR 52	535	345	190
12	On Old Pasco Road south of SR 52	575	475	100

Table 4
Year 2010 Directional Design Hour Volumes

No.	Roadway Segment	Two-way Design Hour Volumes	Design Hour Volumes (Peak Direction)	Design Hour Volumes (Non- Peak Direction)
1	On SR 52 west of Shady Hills Road	2,160	1,140	1,020
2	On SR 52 west of US 41	2,035	1,365	670
3	On SR 52 east of US 41	1,270	795	475
4	On SR 52 east of Ehren Cutoff	1,535	840	695
5	On SR 52 east of Bellamy Brothers			
Road	1,385	800	585	
6	On SR 52 east of Old Pasco Road	1,520	905	615
7	On Shady Hills Road north of SR 52	1,065	790	275
8	On US 41 north of SR 52	1,000	620	380
9	On US 41 South of SR 52	1,715	1,165	550
10	On Ehren Cutoff south of SR 52	310	200	110
11	On Bellamy Brothers Road north of			
SR 52	400	250	150	
12	On Old Pasco Road south of SR 52	235	170	65

YEAR 2010 DIRECTIONAL DESIGN HOUR VOLUMES

Table 5
Years 2010 and 2030 Design Hour Turning Movement Volumes

Intersection	2010	2030
SR52/SHADY HILLS ROAD		
EBL	430	640
EBT	590	880
EBR	0	0
WBL	0	0
WBT	965	1445
WBR	360	540
NBL	0	0
NBT	0	0
NBR	0	0
SBL	100	140
SBT	0	0
SBR	175	235
SR52/US41		
EBL	80	120
EBT	335	495
EBR	255	380
WBL	75	135
WBT	620	1115
WBR	100	180
NBL	665	845
NBT	440	590
NBR	60	75
SBL	80	110
SBT	220	300
SBR	80	110
SR52/EHREN CUTOFF		
EBL	0	0
EBT	550	990
EBR	15	25
WBL	95	145
WBT	745	1140
WBR	0	0
NBL	55	140
NBT	0	0
NBR	145	385
SBL	0	0
SBT	0	0
SBR	0	0
SR52/BELLAMY BROTHERS ROAD		
EBL	65	100
EBT	475	725
EBR	0	0
WBL	0	0
WBT	615	820
WBR	185	245
NBL	0	0
NBT	0	0

Table 5
Year 2010 and 2030 Design Hour Turning Movement Volumes (continued)

Intersection	$\mathbf{2 0 1 0}$	$\mathbf{2 0 3 0}$
NBR	0	0
SBL	110	140
SBT	0	0
SBR	40	50
SR52IOLD PASCO ROAD		0
EBL	0	0
EBT	520	695
EBR	40	55
WBL	25	45
WBT	880	1525
WBR	0	0
NBL	75	210
NBT	0	0
NBR	95	265
SBL	0	0
SBT	0	0
SBR	0	0

Appendix A Sketches of Study Intersections

tersection Sketch

Appendix B
 FDOT Seasonal Adjustment Factor Table

Appendix C
 FDOT Axle Adjustment Factor Table

Rounty: 14	PasCO
fategory: 1415	SR52, CR581 - CR577

Florioa Department of Transportation Transportation Statistics Office
2004 Weekly Axle Factor Category Report
SR52, CR581 - CR577

Week	Dates	ACF
1	01/01/2004-01/03/2004	0.93
2	01/04/2004-01/10/2004	0.93
3	01/11/2004-01/17/2004	0.93
4	01/18/2004-01/24/2004	0.93
5	01/25/2004-01/31/2004	0.93
6	02/01/2004-02/07/2004	0.93
7	02/08/2004-02/14/2004	0.93
8	02/15/2004-02/21/2004	0.93
9	02/22/2004-02/28/2004	0.93
10	02/29/2004-03/06/2004	0.93
11	03/07/2004-03/13/2004	0.93
12	03/14/2004-03/20/2004	0.93
13	03/21/2004-03/27/2004	0.93
14	03/28/2004-04/03/2004	0.93
15	04/04/2004-04/10/2004	0.93
16	04/11/2004-04/17/2004	0.93
17	04/18/2004-04/24/2004	0.93
18	04/25/2004-05/01/2004	0.93
19	05/02/2004-05/08/2004	0.93
20	05/09/2004-05/15/2004	0.93
21	05/16/2004-05/22/2004	0.93
22	05/23/2004-05/29/2004	0.93
23	05/30/2004-06/05/2004	0.93
24	06/06/2004-06/12/2004	0.93
25	06/13/2004-06/19/2004	0.93
26	06/20/2004-06/26/2004	0.93
27	06/27/2004-07/03/2004	0.93
28	07/04/2004-07/10/2004	0.93
29	07/11/2004-07/17/2004	0.93
30	07/18/2004-07/24/2004	0.93
31	07/25/2004-07/31/2004	0.93
32	08/01/2004-08/07/2004	0.93
33	08/08/2004-08/14/2004	0.93
34	08/15/2004-08/21/2004	0.93
35	08/22/2004-08/28/2004	0.93
36	08/29/2004-09/04/2004	0.93
37	09/05/2004-09/11/2004	0.93
38	09/12/2004-09/18/2004	0.93
39	09/19/2004-09/25/2004	0.93
40	09/26/2004-10/02/2004	0.93
41	10/03/2004-10/09/2004	0.93
42	10/10/2004-10/16/2004	0.93
43	10/17/2004-10/23/2004	0.93
44	10/24/2004-10/30/2004	0.93
45	10/31/2004-11/06/2004	0.93
46	11/07/2004-11/13/2004	0.93
47	11/14/2004-11/20/2004	0.93
48	11/21/2004-11/27/2004	0.93
49	11/28/2004-12/04/2004	0.93
50	12/05/2004-12/11/2004	0.93
51	12/12/2004-12/18/2004	0.93
52	12/19/2004-12/25/2004	0.93
53	12/26/2004-12/31/2004	0.93

Appendix D FSUTMS Volume Plot - Year 2025 AADT Volumes

Appendix E
 FDOT Design Hour Factors Table

Note: * 'B'=Both ' N '=North 'S'aSouth \quad ' ${ }^{\prime}=$ East \quad 'W'=West
"K/D" Flags: $A=$ Actual; $F=$ Volume Fctr Catg; $D=D i s t$ Functional Class; $P=$ Prior Year; $S=S t a t e-w i d e$ Default; $W=$ One-Way Road;
Only valid B1-directional data is used to calculate the Yolume Factor Categories. Stations flagged with an X are excluded. Only Actual K $30, \mathrm{~K} 100$ and D 30 values are used to calculate the category averages. Default values are excluded.

Site type: $\mathrm{T}=$ Telemetered; $\mathrm{P}=$ Portable
AADT Flags: $C=$ Computed; $E=$ Manual Estimate; $F=$ First Year Est; $S=$ Second Year Est; $T=$ Third Year Est; $X=$ Unknown "KD" Flags: $A=$ Actual; $F=$ Volume Fctr Catg; $D=D$ istFunctional Class; $P=$ Prior Year; $S=$ State-wide Default $W=$ One-Way Road "T" Flags; $A=$ Actual; $F=$ Axle Fctr Catg; $D=$ Dist/Functional Class; $P=$ Prior Year; $S=S$ tate-wide Default; $X=$ Cross-Reference

