Date: \quad August 27, 2008

To: Bill Howell, H.W. Lochner, Inc.
From: Wayne Arner, KB Environmental Sciences, Inc.
Subject: Air Quality Memorandum for State Road (SR) 674 from US 301 to County Road (CR) 579

INTRODUCTION

The objective of this Air Quality Memorandum is to determine whether project-related motor vehicle emissions associated with the proposed improvements to SR 674 from US 301 to CR 579 in Hillsborough County will cause, or contribute to, a violation of the National Ambient Air Quality Standards (NAAQS) for carbon monoxide (CO), the most prevalent air pollutant emission from motor vehicles.
The proposed project has the potential to alter traffic conditions and influence the air quality within the project study area. The pollutants of primary concern with roadway traffic are ozone $\left(\mathrm{O}_{3}\right)$, oxides of nitrogen $\left(\mathrm{NO}_{\mathrm{X}}\right)$, hydrocarbons (HC), small particulate matter $\left(\mathrm{PM}_{10}\right)$ and carbon monoxide (CO). Because CO is a localized pollutant that is emitted directly into the atmosphere by vehicles, it is analyzed for individual roadway projects where substantial changes to the traffic conditions are anticipated.

METHODOLOGY

In accordance with the Florida Department of Transportation (FDOT), Project Development and Environment (PD\&E) Manual (Part 2, Chapter 16 - Air Quality Analysis), the project was subjected to a Screening Test. The computerized version of the Screening Test (CO Florida 2004) contains conservative, worst-case assumptions about meteorology, traffic, and other site conditions. CO Florida 2004 uses the worstcase assumptions in the MOBILE6 emission and CAL3QHC models to predict maximum CO concentrations at receptors near a roadway intersection. Those results are then compared to the NAAQS maximum 1-hour and 8 -hour concentrations for this pollutant. The premise of this approach is that CO concentrations elsewhere along the project corridor will be lower than these worst-case screening values.

A receptor site is a place where people can reasonably be expected to spend a significant amount of time, such as the backyard of a residence. Especially sensitive receptor sites include hospitals, nursing homes, schools, and day care centers. A roadway project passes the Screening Test if the CO concentration at all reasonable receptors is less than the NAAQS.

The intersection chosen for the Screening Test is the one with the combination of highest traffic volumes, lowest vehicular speeds, and closest receptors. Traffic data were obtained from the project's Traffic Technical Memorandum for the opening year (2010) and the design year (2030).
Based on these criteria and information, the intersection selected for the Screening Test for this project was the SR 674/US 301 intersection. The intersection contains the "worst-case" leg of all signalized intersections within the project corridor for the design year. The screening test for Suburban Areas was used.

RESULTS

CO Florida 2004 calculates the maximum 1-hour and 8-hour CO concentration in parts per million (ppm). The NAAQS are 35 ppm for 1 -hour and 9 ppm for 8 -hours. The analysis results are summarized in Table 1.

Table 1.
SR 674/US 301 Intersection CO Screening Results

Year	Maximum CO Levels (ppm)		Passes Screening Test?
	NAAQS 1-hr / Project 1-hr	NAAQS 8-hour / Project 8-hr	
2010	$35 / 7.5$	$9 / 4.5$	Yes
2030	$35 / 8.3$	$9 / 5.0$	Y

These results indicate that the project passes the screening process and no further analysis is required. Appendix A contains the CO Florida 2004 output files supporting these findings.
The SR 674 project is in an area that has been designated as attainment for all the air quality standards under the criteria provided in the Clean Air Act Amendments of 1990, therefore, conformity does not apply.

Appendix

Carbon Monoxide Screening Test Results

RESULTS (including background CO):

Receptor Name	$\begin{array}{cc} \text { Max } & 1-\mathrm{Hr} \\ \text { Conc } & \text { (ppm) } \end{array}$	$\begin{array}{cc} \text { Max } & 8-\mathrm{Hr} \\ \text { Conc } & (\mathrm{ppm}) \end{array}$
Default Rec 1	5.6	3.4
Default Rec 2	6.1	3.7
Default Rec 3	7.5	4.5
Default Rec 4	7.4	4.5
Default Rec 5	5.8	3.5
Default Rec 6	5.9	3.6
Default Rec 7	7.0	4.2
Default Rec 8	6.5	3.9
Default Rec 9	5.8	3.5
Default Rec 10	5.9	3.6

 PROJECT PASSES - NO EXCEEDANCES OF NAAQ CO STANDARDS ARE PREDICTED
$\star \star \star *$

