

LEVEL II ASSESSMENT OF POTENTIAL SOIL AND GROUNDWATER CONTAMINATION

State Road 679 (Pinellas Bayway) Over Boca Ciega Bay, from Yacht Club Lane to Bahia Del Mar Boulevard, Pinellas County, Florida

Financial Project Number: 410755-1-C2-01

Shaw Project Number: 135581

December 2, 2009

Submitted to:
Mr. Chris Wilson
Florida Department of Transportation
District 7, ISD
11201 North McKinley Drive, M.S. 7-500
Tampa, Florida 33612-6456

Submitted by: Shaw Environmental, Inc. 725 U.S. Highway 301 South Tampa, Florida 33619-4349

LEVEL II ASSESSMENT OF POTENTIAL SOIL AND GROUNDWATER CONTAMINATION

State Road 679 (Pinellas Bayway) Over Boca Ciega Bay, from Yacht Club Lane to Bahia Del Mar Boulevard, Pinellas County, Florida

Financial Project Number: 410755-1-C2-01

Shaw Project Number: 135581

December 2, 2009

Submitted to:

Mr. Chris Wilson
Florida Department of Transportation
District 7, ISD
11201 N. McKinley Drive, M.S. 7-500

Tampa, Florida 33612-6456

Submitted by:

Shaw Environmental, Inc. 725 U.S. Highway 301 South Tampa, Florida 33619

Prepared by: Vim Cheze Project Manager	Date: 12-2-09
Approved by: Mike Gonsalves, PG	Date: 12-2-39

Contract Manager

Table of Contents_

		S									
		2 S									
		ndices									
List of	Acrony	yms and Abbreviations	iii								
	-										
1.0	Introduction1-										
	1.1	Scope of Services									
	1.2	Previous Investigations									
2.0		stigation Methodology									
2.0	2.1	· · · · · · · · · · · · · · · · · · ·									
	2.2	Groundwater Investigation									
3.0	Investigation Results										
0.0	3.1	Site 2: 7-Eleven Food Store #29301									
	0.1	3.1.1 Soil Investigation									
		3.1.2 Groundwater Investigation									
		3.1.3 Impacts to Construction									
	2.2										
	3.2	Site 4: Tierra Verde-BP									
		3.2.1 Soil Investigation									
		3.2.2 Groundwater Investigation	3-4								
		3.2.3 Impacts to Construction	3-5								
4.0	Sumn	mary of Findings									
5.0		aimer									

List of Tables _____

Table 1	Soil Analytical Summary (Detected Constituents)
Table 2	Groundwater Analytical Summary (Detected Constituents)
Table 3	Essential Findings Summary for Soil and Groundwater Contamination
Table 4	Soil Boring and OVA/FID Log— Site 2
Table 5	Soil Boring and OVA/FID Log— Site 4

List of Figures _____

Figure 1	Project I	∟ocation	Map

Figure 2 Corridor and Site Location Map

Figure 3 Soil Boring Location Map (Site 2 and Southern UST Area of Site 4)

Figure 4 Soil Boring Location Map (Northern UST Area of Site 4)

List of Appendices_____

Appendix A Scope of Services

Appendix B Laboratory Analytical Reports, and Chain-of-Custody Records

List of Acronyms and Abbreviations_

μg/L micrograms per liter

ASTs aboveground storage tanks

EDB 1,2-dibromoethane

EPA US Environmental Protection Agency

FAC Florida Administrative Code

FDEP Florida Department of Environmental Protection

FDOT Florida Department of Transportation

FID flame-ionization detector
FID No. Facility Identification Number
ft bls feet below land surface

GCTLs Groundwater Cleanup Target Levels

NPDES National Pollutant Discharge Elimination System

OVA organic vapor analyzer

PAHs polynuclear aromatic hydrocarbons

PCBs polychlorinated biphenyls

PEL PEL Laboratories ppm parts per million ROW right-of-way

SCTLs Soil Cleanup Target Levels Shaw Environmental, Inc.

SR State Road

SVOAs Semi-volatile organic aromatics

TRPH total recoverable petroleum hydrocarbons

USTs underground storage tanks VOAs volatile organic aromatics

1.0 Introduction

Shaw Environmental, Inc. (Shaw) was retained by the Florida Department of Transportation (FDOT), District 7, to conduct a Level II investigation of potential contamination at two sites along State Road (SR) 679 (Pinellas Bayway) from Yacht Club Lane to Bahia Del Mar Boulevard in Pinellas County, Florida. The Financial Project Number for this SR 679 corridor is 41075 5-1-C2-01.

SR 679 is located in the extreme southwestern portion of Pinellas County, and is a north-south two- and four-lane suburban highway. The FDOT is proposing improvements to a portion of the roadway between Yacht Club Lane, to the south, and Bahia Del Mar Boulevard, to the north. As this is a design/build project, specific details regarding the roadway construction were unavailable at the time of this investigation. The anticipated project corridor is illustrated on **Figure 1**. The SR 679 corridor consists of retail commercial, multi-family residential, and vacation rental properties. These include marine waterways, resorts, condominiums, marinas, dry dock storage, a golf course, boat sales, rental and repair facilities, gasoline stations, dry cleaners, restaurants, a bait shop, a beauty salon, real estate offices, a dentist office, and a hardware store. The FDOT provided Shaw with the December 2006 Draft Contamination Screening Evaluation Report, prepared by Nodarse and Associates, Inc. in association with PBS&J, for Shaw's review.

The following report documents the investigation, which examined existing or proposed right-of-way (ROW) adjacent to each site to determine if contaminant impact to soils or groundwater within the proposed construction area exists. Where it exists, contaminant impact to construction is described and recommendations for additional assessment or remedial action are provided.

1.1 Scope of Services

As discussed with the FDOT and provided in the Scope of Services dated April 10, 2009 (**Appendix A**), Shaw conducted a Level II assessment at two sites along the referenced SR 679 corridor in Pinellas County, Florida. The approximate locations of these sites are shown on **Figure 2**. The investigated sites are as follows:

- Site 2: 7-Eleven Food Store # 29301
- Site 4: Tierra Verde-BP

To assist the FDOT with planning for the project, Shaw performed a Level II investigation including, but not limited to, the following tasks:

Prepared a site-specific health and safety plan to ensure a safe working environment.

- Arrange with a utility locator service to identify and adequately mark all underground utilities in the areas where subsurface investigation occurred.
- Properly decontaminated the auger tools before use and between boring locations in accordance with Florida Department of Environmental Protection (FDEP) Standard Operating Procedures DEP-SOP-01/001, February 1, 2004.
- As required, advance soil borings at the field determined locations at the sites outlined above. These boring locations may be at or adjacent to proposed structure, pipe, or utility locations; along proposed ROW lines; at suspect onsite locations; adjacent to stormwater management facilities; or in other locations as determined by the onsite geologist. Utilizing direct-push technology, each boring was advanced to at least 1 foot below the water table surface.
- Conducted soil screening and obtained and analyzed soil and groundwater samples from each potentially contaminated site. The work areas are in a suburban setting, therefore it is expected that some impervious surface, e.g. concrete and asphalt will be present at the boring locations. Also, due to right of way constraints and common above ground and below ground obstructions, mechanical sampling equipment might not be appropriate. In all locations, installation of the soil borings and wells will be completed by hand if possible.
- Identify all monitoring wells, recovery wells, and contamination related potential obstructions to construction, etc. with or adjacent to the right of way that the proposed construction project will adversely impact.
- At each boring, location, collect duplicate soil samples at each boring location at 12-inch depth intervals, to the water table surface and placed them into glass sample jars for screening with an organic vapor analyzer equipped with a flame-ionization detector in accordance with Rule 62-770.200(12), Florida Administrative Code (FAC). Screened one sample without a carbon filter, then screening the other sample with a filter to determine the fraction of methane in each sample. Record the net resultant vapor measurement as the hydrocarbon vapor concentration. Note lithology and depth to groundwater for each boring.
- As necessary, submit soil samples from each site for laboratory analyses for the Used Oil Group or consistent with the known or suspected contaminants of concern for each site. Laboratory soil sample depth and locations were field-determined and representative of soils exhibiting elevated hydrocarbon vapor concentration based on field-screening results, soil staining or odor, contact with buried solid waste, suspect spills, or other surface soil impacts.
- Construct temporary wells in the same borings from which the laboratory soil samples were collected. Purge the wells in accordance with DEP-SOP-01/001 and collected groundwater samples for laboratory analyses. Collect samples by low-flow sampling techniques and submit for analyses consistent with known or suspected COCs for each site.

 Prepared a technically concise report documenting data collected and make recommendations as a result of these tasks. This report included graphics, tables, and appendices to completely illustrate the assessment effort. The report also provides recommendations for additional evaluations, investigations, or remediation activities to be completed prior to or during construction, should they be necessary.

1.2 Previous Investigations

This Level II investigation is based on findings documented in the following report for the SR 679 corridor:

• Shaw, "Updated Level I Hazardous Material and Contamination Investigation for State Road 679 (Pinellas Bayway) Over Boca Ciega Bay, from Yacht Club Lane to Bahia Del Mar Boulevard, Pinellas County, Florida." FPN 410755-1-C2-01, August 19, 2009.

The Updated Level I investigation conducted by Shaw in 2009 evaluated potential impacts to construction and contamination sources at six locations along the corridor for SR 679 as described in the information provided by the FDOT. Of the six corridor locations investigated, one received a "No" risk rating, and three received a "Low" risk rating. Further environmental assessment was not recommended at these locations. Based on observed conditions during the site inspections, and/or information obtained from file searches, two sites received a "Medium" risk rating. These sites have possible contamination impacts to construction, or have confirmed contamination and impacts to construction are strongly suspected. No sites received a "High" risk rating. Based on the findings documented in the Updated Level I report; soil and groundwater contamination assessments were recommended prior to drainage, signalization, and utility construction at the two "Medium" risk rated sites. Those sites are the subjects of this investigation.

Investigation Methodology 2.0

Based on review of previous reports, two sites were determined to warrant further investigation. Level II soil and groundwater assessment for petroleum and hazardous material contamination was performed at these sites. The following sections describe the assessment methodology. At the time of this investigation, FDOT roadway construction plans were unavailable.

2.1 Soil Investigation

Soil sample collection tasks were conducted at the two sites using direct-push equipment. Soil borings were installed to between 10 and 12 feet below land surface (bls) within the right-of-way (ROW) at locations of suspected contamination at each site. Soil samples were collected at 1-foot depth intervals to the total depth of the boring. Samples were placed into 16-ounce glass jars, covered with aluminum foil, and allowed to equilibrate prior to screening the headspace with an organic vapor analyzer (OVA) equipped with a flame-ionization detector (FID) in accordance with the procedures of Rule 62-770.200(12), Florida Administrative Code (FAC). An onsite geologist logged descriptions, organic vapor concentrations, and estimated depths to water.

Confirmatory soil samples were collected at the two sites for laboratory analyses consistent with the known or suspected contaminants onsite. The laboratory samples were collected from the soil borings and sample depths at each site that reported the highest net hydrocarbon concentrations above the water table during field screening. The soil samples were labeled, manifested, packed on ice, and submitted to PEL Laboratories in Tampa, Florida (PEL), for laboratory analyses. Upon completion of the soil boring, unless a groundwater sample was being collected from the bore hole, the direct-push sample tooling was removed and the borings were backfilled and compacted with native soils. Soil analytical results are summarized in **Table 1**. Copies of the laboratory analytical reports, and chain-of-custody records are in **Appendix B**.

2.2 Groundwater Investigation

Groundwater samples were also collected from select borings at the investigated sites. The samples were collected by advancing the direct-push tooling to the specified sample depth, then the outer casing was slightly retracted exposing the stainless-steel screened tooling to the groundwater. The groundwater sample was then collected after purging the groundwater until visibly clear of fine-grained materials.

The groundwater samples were labeled, manifested, packed on ice, and submitted to PEL for laboratory analyses consistent with documented or suspected contaminates on site. Upon completion of groundwater sampling, the direct-push sample tooling was removed and the borings were backfilled and compacted with native soils. Groundwater analytical results are summarized in **Table 2**. Copies of the laboratory analytical reports and chain-of-custody records are in Appendix B.

3.0 Investigation Results

From July to September 2009, Shaw conducted Level II soil and groundwater investigations at two sites along the SR 679 project corridor. This section discusses results of that investigation and provides recommendations for additional assessment and/or remedial action, as necessary, based on perceived contaminant impacts to construction at each site. The findings, impacts to construction, and recommendations for each site are summarized in **Table 3**.

3.1 Site 2: 7-Eleven Food Store #29301 150 Pinellas Bayway Tierra Verde, Florida

Impacts: None

The 7-Eleven Food Store # 29301 (Site 2) is located on the southwest corner of Madonna Boulevard and SR 679. The site operates as an active retail gasoline station and convenience store. Currently, two 10,000-gallon capacity underground storage tanks (USTs) containing unleaded gasoline are in use on the property. There is one Facility Identification Number (FID No.) (528736151) and two releases associated with the site. The Florida Department of Environmental Protection (FDEP) records indicate discharges were reported for the facility on November 29, 1988, and on February 22, 1993. Both discharges remain open with the work status listed as inactive. No data was available on OCULUS to determine the current quantity and distribution of hydrocarbon impacts. The site currently has a site priority ranking score of 11. The FDEP is currently providing funds for sites scored 56 and above. The approximate site location is shown on **Figure 2**.

3.1.1 Soil Investigation

To evaluate possible impacts in the anticipated area of work, Shaw installed three soil borings (SB-1 to SB-3) in the FDOT ROWs of Pinellas Bayway and Madonna Boulevard. The borings were advanced to approximately 10 feet below land surface (ft bls). The water table was observed at approximately 3 ft bls at the time of the assessment. The approximate soil borings and sample locations are shown on **Figure 3**.

The field organic vapor screening did not detect net hydrocarbon concentrations above 25 parts per million (ppm) in any of the borings. A mild to very strong organic odor was noted in the soil samples collected below the water table. Soil boring logs and OVA/FID data are provided in **Table 4**.

One confirmatory soil sample was collected in SB-3 at 3 ft bls. The sample was submitted to PEL and analyzed for the presence of arsenic, cadmium, chromium, lead by US Environmental Protection Agency (EPA) Method 6010; polychlorinated biphenyls (PCBs) by EPA

Method 8082; volatile organic aromatics (VOAs) by EPA Method 8260; semi-volatile organic aromatics (SVOAs) by EPA Method 8270; polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8310; and total recoverable petroleum hydrocarbons (TRPH) by FDEP Method FL-PRO.

The analytical results indicated that no analyzed constituent exceeded the applicable Soil Cleanup Target Levels (SCTLs). Acetone, cadmium, chromium, lead, benzo(g,h,i)perylene, fluoranthene, phenanthrene, pyrene, benzo(a)pyrene equivalent, benzo(a)pyrene constituent, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected at concentrations below the SCTLs.

Results for detected constituents in the soil are summarized in **Table 1**. A copy of the laboratory analytical report and chain-of-custody record is in **Appendix B**.

3.1.2 Groundwater Investigation

One groundwater sample, SB-3, was collected for laboratory analyses from a temporary well installed in soil boring SB-3, the same boring from which the soil sample was collected. The direct-push sample screen was located at approximately 8 to 12 ft bls at the time of sampling. The sample was submitted to PEL and analyzed for the presence of arsenic, cadmium, chromium, lead by EPA Method 6010; 1,2-dibromoethane (EDB) by EPA Method 8011; PCBs by EPA Method 8082; VOAs by EPA Method 8260; SVOAs by EPA Method 8270; PAHs by EPA Method 8270 SIM; and TRPH by FDEP Method FL-PRO. The approximate sample location is shown on **Figure 3**.

The analytical results indicated that no analyzed constituent exceeded the Groundwater Cleanup Target Levels (GCTLs) or National Pollutant Discharge Elimination System (NPDES) permit limits. Methyl tert butyl ether (MTBE), naphthalene, 2-methylnaphthalene, and chromium were detected at concentrations below the applicable standards. Results for detected constituents in the groundwater are summarized in **Table 2**. A copy of the laboratory analytical report and chain-of-custody record is in **Appendix B**.

3.1.3 Impacts to Construction

This Level II investigation found no soil or groundwater contaminant impacts to construction. No further assessment or remedial action is recommended. If drainage alignments and/or utility adjustments occur in the construction plans, additional assessment and/or remedial action may be required. All findings and impacts to construction are summarized in **Table 3**.

3.2 Site 4: Tierra Verde-BP 128 Pinellas Bayway Tierra Verde, Florida Impacts: None

The Tierra Verde-BP (Site 4) is located on the northwestern corner of the intersection of SR 679 and Madonna Boulevard. The Pinellas County Property Appraiser lists the street address as 128 Pinellas Bayway, while the FDEP references the site as BP-Tierra Verde Marina at 100 Pinellas Bayway South. The site operates as a retail commercial strip center, dry storage marina, and gas station. Current tenants include the BP gas and convenience store with Subway sandwich shop, a drop-off dry cleaner, a boat sales and storage facility, a hardware store, a dentist office, a real estate office, a post office, a bait shop, a jet ski rental, a salon, and a sandwich shop. Currently the site has two storage tank fields. The northern storage field, associated with marine fueling operations, consists of two, out of service, 6,000-gallon capacity USTs that reportedly contained unleaded gasoline and vehicular diesel. The southern storage tank field, associated with vehicle fueling, consists of the one, 16,000-gallon UST containing unleaded gasoline. Three additional 500-gallon capacity unregistered aboveground storage tanks (ASTs) were also noted in the northern portion of the site during the Level I investigation. With the marina currently undergoing renovation, the tanks are believed to be used to maintain marina operations and fuel the on-site construction equipment. The AST contained off-road diesel and premium unleaded gasoline. There is one FID No. (528630856) and two petroleum discharges associated with the northern (marine) storage tank area. A July 13, 1990, release was associated with a delivery overfill and a July 21, 1993, release was associated with impacted soil discovered during a fill port upgrade. Both releases were awarded No Further Action on November 19, 1993. The approximate site location is shown on **Figure 2**.

3.2.1 Soil Investigation

To evaluate possible impacts in the anticipated area of work, Shaw installed a total of nine soil borings (SB-1 to SB-4, SB-4R, and SB-5 to SB-8) in the FDOT ROW of Pinellas Bayway. Soil borings SB-1 and SB-2 were installed near the southern UST and dispenser area, while soil borings SB-3 through SB-8 were installed near the northern UST area. The borings were advanced to between approximately 10 and 12 ft bls. The water table was observed between approximately 4 and 8 ft bls at the time of the investigation. The approximate soil borings and sample locations are shown on **Figures 3** and **4**.

The field organic vapor screening did not detect net hydrocarbon concentrations above 400 ppm in any of the borings. A slight to very strong organic odor was noted below the water table in all soil borings except SB-6, SB-7, and SB-8. Soil borings SB-6, SB-7, and SB-8 were installed in what was assumed to be non-native bridge ramp fill material. During the installation of soil boring SB-4R, a slight organic odor was also observed above the water table and a strong sulfur

odor was observed at approximately 11 to 12 ft bls. Soil boring logs and OVA/FID data are provided in **Table 5**.

Confirmatory soil samples were collected from soil boring SB-2 in the southern portion of the site at approximately 3 ft bls, and from soil borings SB-3, SB-4, and SB-5 in the northern portion of the site at approximately 5 ft bls. The samples were submitted to PEL and analyzed for the presence of arsenic, cadmium, chromium and lead by EPA Method 6010; PCBs by EPA Method 8082; VOAs by EPA Method 8260; SVOAs by EPA Method 8270; PAHs by EPA Method 8310; and TRPH by FDEP Method FL-PRO.

Analytical results indicated that no analyzed constituent exceeded the applicable SCTLs. Cadmium, chromium, benzo(g,h,i)perylene, fluoranthene, pyrene, benzo(a)pyrene equivalent, benzo(a)pyrene constituent, benzo(a)anthracene, chrysene, and indeno(1,2,3-cd)pyrene were detected at concentrations below the SCTLs in the sample from SB-2. Cadmium, chromium, and lead were detected at concentrations below the SCTLs in the sample from SB-3. Cadmium, chromium, lead, benzo(g,h,i)perylene, fluoranthene, phenanthrene, pyrene, benzo(a)pyrene equivalent, benzo(a)pyrene constituent. benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected in the sample from SB-4. Cadmium, chromium, lead, anthracene, benzo(g,h,i)perylene, fluoranthene, fluorene, phenanthrene, pyrene, benzo(a)pyrene equivalent, benzo(a)pyrene constituent, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were detected in the sample from SB-5.

Results for detected constituents in the soil are summarized in **Table 1**. A copy of the laboratory analytical reports and chain-of-custody records are in **Appendix B**.

3.2.2 Groundwater Investigation

To evaluate the potential for encountering contaminated groundwater during construction, groundwater samples, SB-2, SB-3, SB-4, SB-4R, and SB-5, were collected for laboratory analyses from soil borings SB-2, SB-3, SB-4, SB-4R, and SB-5. The direct-push samples were collected with screened intervals between approximately 8 to 12 ft bls, and between approximately 10 to 14 ft bls. All samples, except the sample collected from soil boring SB-4R, were analyzed for the presence of arsenic, cadmium, chromium, lead by EPA Method 6010, for EDB by EPA Method 8011, for PCBs by EPA Method 8082, for VOAs by EPA Method 8260, for SVOAs by EPA Method 8270, for PAHs by EPA Method 8270 SIMn and for TRPH by FDEP Method FL-PRO. The sample collected from soil boring SB-4R was only analyzed for the presence of arsenic by EPA Method 6010. The approximate sample locations are shown on **Figures 3** and **4**.

Analytical results indicated that arsenic was detected at 14.8 micrograms per liter (μg/L), exceeding the 10 μg/L GCTL in the sample collected from soil boring SB-4. The sample collected from soil boring SB-4R on September 23, 2009, confirmed that arsenic was detected at 17.8 μg/L, exceeding the 10 μg/L GCTL in this area. Naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthylene, fluorene, arsenic, cadmium, and chromium were detected at concentrations below the applicable standards in the sample from SB-2. Naphthalene, cadmium, and chromium were detected at concentrations below the applicable standards in the sample from SB-3. Naphthalene, cadmium, and chromium were detected at concentrations below the applicable standards in the sample from SB-4. Naphthalene, cadmium, and chromium were detected at concentrations below the applicable standards in the sample from SB-5. Results for detected constituents in the groundwater are summarized in **Table 2**. Copies of the laboratory analytical reports and chain-of-custody records are in **Appendix B**.

3.2.3 Impacts to Construction

Because arsenic exceeded the GCTL in the area of soil borings SB-4/SB-4R, groundwater treatment may be necessary at the time of construction depending on the depth-to-water at the time of construction and construction plans. If dewatering is deemed necessary, the recovered groundwater will have to be treated prior to disposal. Prior to construction, Shaw recommends obtaining a Generic Permit to allow the discharge of treated groundwater under NPDES guidance at this location. If drainage alignments and/or utility adjustments occur in the construction plans, additional assessment and/or remedial action may be required. All findings and impacts to construction are summarized in **Table 3**.

4.0 Summary of Findings

A Level II investigation was performed between July and September 2009 at 7-Eleven Food Store # 29301 (Site 2) and Tierra Verde-BP (Site 4). The two sites were believed to present a "**Medium**" risk of potentially impacting construction activities as determined in the 2009 Updated Level I Report. This Level II investigation indicated no analyzed constituent exceeded SCTLs at the two sites. In groundwater, no analyzed constituent exceeded the GCTLs at Site 2, and in the southern portion of Site 4. In the northern portion of Site 4, arsenic exceeded the GCTL in the area of soil borings SB-4/SB-4R near the northern UST area. All findings and impacts to construction are summarized by site in **Table 3**.

If dewatering is deemed necessary during construction, the recovered groundwater should be treated prior to disposal at Site 4. Shaw recommends obtaining a Generic Permit to allow the discharge of treated water under NPDES guidance at this location. Preconstruction tasks and Level III remedial action support recommendations are provided in **Table 3**.

During this investigation, no monitoring or recovery wells were identified in the corridor ROW as potential obstructions to construction.

Shaw recommends reviewing the construction plans, once completed, for proposed drainage alignments and/or utility adjustments as additional assessment and/or remedial action may be required.

5.0 Disclaimer

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client, unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, timeframes, and project parameters indicated. Shaw is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. Shaw does not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

TABLE 1: SOIL ANALYTICAL SUMMARY (Detected Constituents)

Level II Assessment of Potential Soil and Groundwater Contamination SR 679 (Pinellas Bayway) Over Boca Ciega Bay, from Yacht Club Lane to Bahia Del Mar Boulevard, Pinellas County, Florida

FPN 410755-1-C2-01 Shaw Project No. 135581

ber			Sampl	e		VOAs by EPA 8260 (mg/kg)	Metals (ı	by EP/ mg/kg)		SVOAs by EPA 8270/8310 (mg/kg)													
Site ID Number	Location	Laboratory ID	Date	Depth (ft bls)	Requested Analysis	Acetone	Cadmium	Chromium	Lead	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)pyrene Equivalent**	Benzo(a) pyrene	Benzo(a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenzo(a,h) anthracene	Indeno(1,2,3-cd) pyrene
	Т	oxic Equiv	alency Fa	ctor		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	0.1	0.1	0.01	0.001	1	0.1
	SCTLs	- Direct Ex	posure Re	esidentia	al	11,000	82	210	400	21,000	2,500	3,200	2,600	2,200	2,400	0.1	0.1	*	*	*	*	*	*
SC	TLs - Dire	ct Exposu	re Comme	rcial/Ind	ustrial	68,000	1,700	470	1,400	300,000	52,000	59,000	33,000	36,000	45,000	0.7	0.7	*	*	*	*	*	*
SCTI	_s - Leach	ability Bas	ed on Gro	undwate	er Criteria	25	7.5	38	L	2,500	32,000	1,200	160	250	880	8	8	0.8	2.4	24	77	0.7	6.6
2	SB-3	SB3@3'	07/17/09	3	Used Oil Group	0.0058	0.166	1.63	6.08	U	0.0454	0.0816	U	0.0126	0.0463	0.0464	0.0309	0.0277	0.0377	0.0136	0.0387	0.0063	0.0251
	SB-2	SB2@3'	07/17/09	3	Used Oil Group	U	0.152	1.74	U	U	0.0052	0.0038	U	U	0.0043	0.0046	0.0035	0.0032	0.0010	0.0006	0.0056	0.0004	0.0027
4	SB-3	SB3@5'	07/17/09	5	Used Oil Group	U	0.0786	2.81	0.538	U	U	U	U	U	U		U	U	U	U	U	U	U
4	SB-4	SB4@5'	07/17/09	5	Used Oil Group	U	0.0616	1.63	4.18	U	0.0619	0.0902	U	0.0158	0.0648	0.0589	0.0394	0.0312	0.0505	0.0193	0.0466	0.0074	0.0374
	SB-5	SB5@5'	07/17/09	5	Used Oil Group	U	0.13	2.11	0.542	0.0063	0.0178	0.0488	0.0044	0.0279	0.0358	0.0206	0.0151	0.0227	0.0157	0.008	0.0234	0.0004	0.0114

Notes: SCTLs = Soil Cleanup Target Levels per Chapter 62-777, Table II, Florida Administrative Code

ft bls = feet below land surface

mg/kg = milligrams per kilogram

NA = not applicable

L = SCTL leachability value determined through leachate analysis

VOAs = volatile organic aromatics

SVOAs = semi-volatile organic aromatics

U = not detected above MDL

Bold values indicate Leachability SCTLs exceeded

Bold and shaded values indicate Direct Exposure SCTLs exceeded

Blank = No data or not analyzed for that specific parameter.

Itallics Font: Undetected constituent. Value reported is half of the reporting limit to calculate Benzo(a)pyrene equivalent concentration.

^{** =} Equivalent concentration was calculated as the sum of each Polycyclic Aromatic Hydrocarbon concentration times its Toxicity Equivalency Factor. For Undetected constituents, 1/2 the reporting limit is the assumed concentration. (The Minimum Detection Limit was used.)

^{* =} denotes SCTL obtained using Benzo(a)pyrene Conversion Table

TABLE 2: GROUNDWATER ANALYTICAL SUMMARY (Detected Constituents)

Level II Assessment of Potential Soil and Groundwater Contamination
SR 679 (Pinellas Bayway) Over Boca Ciega Bay, from Yacht Club Lane to Bahia Del Mar Boulevard,
Pinellas County, Florida

FPN 410755-1-C2-01 Shaw Project No. 135581

5			Samp	le		VOAs by EPA 8260 (ug/L)	EPA 8260 SVOAs by EPA 8260/8310 (ug/L)					Metals by EPA 6010 (ug/L)			
Site ID Number	Location	Laboratory ID	Date	Approximate Screen Depth (ft bls)	Requested Analysis	MTBE	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthylene	Fluorene	Arsenic	Cadmium	Chromium	
		(GCTLs			20	14	28	28	210	280	10	5	100	
		NPD	ES - Fresh			NS	100	NS	NS	NS	NS	NS	9.3	11.0	
2	SB-3	SB3@8'	07/17/09	8 - 12	Used Oil Group	1.4	0.043	U	0.027	U	U	U	U	6.53	
	SB-2	SB2@8'	07/17/09	8 - 12	Used Oil Group	U	0.14	0.044	0.086	0.036	0.029	5.73	0.906	10.9	
	SB-3	SB3@10'	07/17/09	10 - 14	Used Oil Group	U	0.028	U	U	U	U	U	1.11	5.1	
4	SB-4	SB4@10'	07/17/09	10 - 14	Used Oil Group	U	0.025	U	U	U	U	14.8	1.04	3.49	
	SB-4R	SB-4R	09/23/09	8 - 12	Arsenic	NR	NR	NR	NR	NR	NR	17.8	NR	NR	
	SB-5	SB5@10'	07/17/09	10 - 14	Used Oil Group	U	0.022	U	U	U	U	U	0.788	5.19	

Notes: GCTLs = Groundwater Cleanup Target Levels per Chapter 62-777, Table I, Florida Administrative Code (FAC)

NPDES = National Pollutant Discharge Elimination System, Generic Permit, Table 4 Screening Values

NS = No Standard

NR = not requested

μg/L = micrograms per liter

U = Analyte not detected above MDL

Bold values indicate GCTLs exceeded

Bold and shaded values indicate NASADCs exceeded

* = GCTL represents Chapter 62-550, FAC, Maximum Contaminant Level

TABLE 3: ESSENTIAL FINDINGS SUMMARY FOR SOIL AND GROUNDWATER CONTAMINATION

Level II Assessment of Potential Soil and Groundwater Contamination SR 679 (Pinellas Bayway) Over Boca Ciega Bay, from Yacht Club Lane to Bahia Del Mar Boulevard Pinellas County, Florida

FPN 410755-1-C2-01 Shaw Project No. 135581

	FPN 41075	55-1-C2-01 Shaw Project No. 135581			
	Field and Laboratory Results	5	(Construction	
Site Identification	Soil	Groundwater	Proposed	Anticipated Impacts	Recommended Corrective Action
Site 2: 7-Eleven Food Store No. 29301	Three soil borings were advanced to approximately 10 ft bls.	Groundwater was encoutnered at approximately 3 ft bls.	Proposed construction	No soil or groundwater impacts are expected in the construction area.	No further assessment or remedial
150 Pinellas Bayway	Net hydrocarbon field screening results did not exceed 25 ppm in any of the soil borings.	One groundwater sample was collected, SB-3@8 to 12 ft, and analyzed for Used Oil Group.	activities were unknown at the time of this investigation.	action is recommended.	
	One soil sample was collected, SB-3@3 ft, and analyzed for Used Oil Group parameters.	SB-3 Compounds EXCEEDING limits:			
	SB-3@3 ft compounds EXCEEDING limits: None	None			
	Detected: acetone, cadmium, chromium, lead, benzo(g,h,i)perylene, fluoranthene, phenanthrene, pyrene, benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranththene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene	Dected: MTBE, naphthalene, 2-methylnaphthalene, and chromium			
128 Pinellas Bayway	Nine soil borings were advanced to between approximately 10 and 12 ft bls. Soil borings SB-1 and SB-2 were installed in the vicinity of the southern underground storage tank area and soil borings SB-3 through SB-8 were installed in the vicinity of the northern UST area.	Groundwater was encoutered between approximately 4 and 8 ft bls.	Proposed construction activities were unknown at the time of this investigation.	No soil impacts are expected in the construction area.	Prior to Construction: Prepare NOI for groundwater treatment disposal.
	Net hydrocarbon field screening results did not exceed 400 ppm in any of the soil borings.	Groundwater samples were collected from SB-2 (southern UST area), and from SB-3, SB-4, SB-4R, and SB-5 (northern UST area). Sample screen intervals varied from approximately 8 to		Arsenic impacted groundwater is expected in the area immediately adjacent to the southern USTs.	During Construction : Based upon depth to water at time of construction,
	Soil samples were collected from SB-2@3 ft, SB-3@ 5ft, SB-4@5 ft, and SB-5@5 ft, and analyzed for Used Oil Group parameters.	14 ft bls. All samples were analyzed for the Used Oil Group, except SB-4R which was only analyzed for arsenic.		adjacent to the southern 0315.	if dewatering is deemed necessary, then treat and dispose of impacted groundwater.
	SB-2@3 ft compounds EXCEEDING limits: None	SB-2 Compounds EXCEEDING limits: None			
	Detected: cadmium, chromium, benzo(g,h,i)perylene, fluoranthene, pyrene, benzo(a)pyrene, benzo(a)anthracene, chrysene, and indeno(1,2,3-cd)pyrene	Detected: naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthylene, fluorene, arsenic, cadmium, and chromium			
	SB-3@5 ft Compounds EXCEEDING limits: None	SB-3 Compounds EXCEEDING limits: None			
	Detected: cadmium, chromium, and lead SB-4@5 ft Compounds EXCEEDING limits:	Detected: naphthalene, cadmium, and chromium			
	None	<u>SB-4</u> compounds EXCEEDING limits: Arsenic 14.8 μg/L (10 μg/L GCTL)			
	Detected: cadmium, chromium, lead, benzo(g,h,i)perylene, fluoranthene, phenanthrene, pyrene, benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene	Detected: naphthalene, cadmium, and chromium			
	SB-5@5 ft Compounds EXCEEDING limits: None	<u>SB-4R</u> compounds EXCEEDING limits: Arsenic 17.8 μg/L (10 μg/L GCTL)			
	Dected: cadmium, chromium, lead, anthracene, benzo(g,h,i)perylene, fluoranthene, fluorene, phenanthrene, pyrene, benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene	SB-5 compounds EXCEEDING limits: None Detected: naphthalene, cadmium, and chromium			
		None Detected: naphthalene, cadmium, and chromium			

Notes: SCTLs = Soil Cleanup Target Levels per Chapter 62-777, Table II, Florida Administrative Code
GCTLs = Groundwater Cleanup Target Levels per Chapter 62-777, Table I, Florida Administrative Code (FAC)
NASADCs = Natural Attenuation Default Concentrations per Chapter 62-777, Table V, FAC
ft bls = feet below land surface

MTBE = methyl tertiary butyl ether ppm = parts per million UST = underground storage tank µg/L = micrograms per liter

TABLE 4: SOIL BORING AND OVA/FID LOG

Site 2: 7-Eleven Food Store No. 29301 150 Pinellas Bayway, Tierra Verde, Florida FPN 410755-1-C2-01 Shaw Project No. 135581

				OV.	A Results (p	pm)
Soil Boring No.	Date	Depth (ft bls)	Lithologic Description	OVA Unfiltered	OVA Filtered	Corrected
		1	Dry, white, fine sand, low cohesiveness, no odor	0	=	0
		2	Moist, white, fine sand, low cohesiveness, no odor	0	=	0
		3♦	Wet, white, fine sand, low cohesiveness, no odor	0	=	0
		4	Wet, white, fine sand, low cohesiveness, no odor	0	=	0
SB-1	07/17/09	5	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
3B-1	07/17/09	6	Wet, grey, fine sand, low cohesiveness, strong organic odor	0.3	0.1	0.2
		7	Wet, grey, fine sand, low cohesiveness, strong organic odor	18.5	12.5	6.0
		8	Wet, slightly sandy peat, very strong organic odor	75	71	4
		9	Wet, slightly sandy peat, very strong organic odor	555	548	7
		10	Wet, slightly sandy peat, very strong organic odor	765	758	7
		1	Dry, white, fine sand, low cohesiveness, no odor	0	-	0
		2	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		3◆	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
		4	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
SD 2	SB-2 07/17/09	5	Wet, grey, fine sand, low cohesiveness, mild organic odor	14	12	2
SB-2		6	Wet, grey, fine sand, low cohesiveness, mild organic odor	378	370	8
		7	Wet, slightly sandy peat, strong organic odor	4,000	3,998	2
		8	Wet, slightly sandy peat, strong organic odor	4,120	4,114	6
		9	Wet, slightly sandy peat, strong organic odor	3,900	3,895	5
		10	Wet, slightly sandy peat, strong organic odor	3,800	OVA Filtered 0.1 12.5 71 548 758 12 370 3,998 4,114	10
		1	Dry, white, fine sand, low cohesiveness, no odor	0	-	0
		2	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		3 ♦ ★	Wet, white, fine sand, low cohesiveness, no odor	2,700	2,680	20
		4	Wet, white, fine sand, low cohesiveness, no odor	2,900	2,875	25
SB-3	07/17/09	5	Wet, grey, fine sand, low cohesiveness, strong organic odor	2,575	2,570	5
36-3	07/17/09	6	Wet, grey, fine sand, low cohesiveness, strong organic odor	1,800	1,790	10
		7	Wet, slightly sandy peat, strong organic odor	2,600	2,597	3
		8	Wet, slightly sandy peat, strong organic odor	2,700	2,691	9
		9	Wet, slightly sandy peat, strong organic odor	2,100	2,098	2
		10	Wet, slightly sandy peat, strong organic odor	1,900	> 1,900	**

Notes:

◆ = groundwater encountered at this depth

★ = confirmatory laboratory soil sample collected

ft bls= feet below land surface

OVA = organic vapor analyzer

ppm = parts per million

** = denotes sample in which methane corrected reading exceeded uncorrected reading

TABLE 5: SOIL BORING AND OVA/FID LOG

Site 4: Tierra Verde BP 128 Pinellas Bayway, Tierra Verde, Florida FPN 410755-1-C2-01 Shaw Project No. 135581

				OVA	Results (p	opm)
Soil Boring No.	Date	Depth (ft bls)	Lithologic Description	OVA Unfiltered	OVA Filtered	Corrected
		1	Dry, white, fine sand, low cohesiveness, no odor	0	-	0
		2	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		3	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		4◆	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
SB-1	07/17/09	5	Wet, white, fine sand, low cohesiveness, no odor	3.7	3.1	0.6
3B-1	01/11/03	6	Wet, grey, fine sand, low cohesiveness, strong organic odor	74	68	6
		7	Wet, grey, fine sand, low cohesiveness, strong organic odor	677	669	8
		8	Wet, slightly sandy peat, very strong organic odor	3,400	> 3,400	**
		9	Wet, slightly sandy peat, very strong organic odor	3,800	> 3,800	**
		10	Wet, slightly sandy peat, very strong organic odor	3,100	> 3,100	**
		1	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
	07/17/09	2	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		3 *	Moist, white, fine sand, low cohesiveness, no odor	0.8	0.1	0.7
	SB-2 07/17/09	4◆	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
CD 0		5	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
SB-2	07/17/09	6	Wet, grey, fine sand, low cohesiveness, strong organic odor	16.9	11.4	5.5
		7	Wet, grey, fine sand, low cohesiveness, strong organic odor	938	11.4 930 > 3,600 > 3,900	8
		8	Wet, slightly sandy peat, strong organic odor	3,600		**
		9	Wet, slightly sandy peat, strong organic odor	3,900	>3,900	**
		10	Wet, slightly sandy peat, strong organic odor	4,000	> 4,000	**
		1	Dry, white, fine sand, low cohesiveness, no odor	0	-	0
		2	Moist, white, fine sand, low cohesiveness, no odor	3,900 >3,90 4,000 >4,0 0 - 0 -	-	0
		3	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		4	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
00.0	07/47/00	5 ♦ ★	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
SB-3	07/17/09	6	Wet, grey, fine sand, low cohesiveness, strong organic odor	0	-	0
		7	Wet, grey, fine sand, low cohesiveness, strong organic odor	0	-	0
		8	Wet, grey, fine sand, low cohesiveness, strong organic odor	0	-	0
		9	Wet, grey, fine sand, low cohesiveness, strong organic odor	9.3	6.1	3.2
		10	Wet, grey, fine sand, low cohesiveness, strong organic odor	12.0	9.0	3.0
		1	Dry, white, fine sand, low cohesiveness, no odor	0	-	0
		2	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		3	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		4	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
CD 4	07/47/00	5 ♦ ★	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
SB-4	07/17/09	6	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
		7	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
		8	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
		9	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
		10	Wet, grey, fine sand, low cohesiveness, moderate organic odor	1.1	0.9	0.2

TABLE 5: SOIL BORING AND OVA/FID LOG

Site 4: Tierra Verde BP 128 Pinellas Bayway, Tierra Verde, Florida FPN 410755-1-C2-01 Shaw Project No. 135581

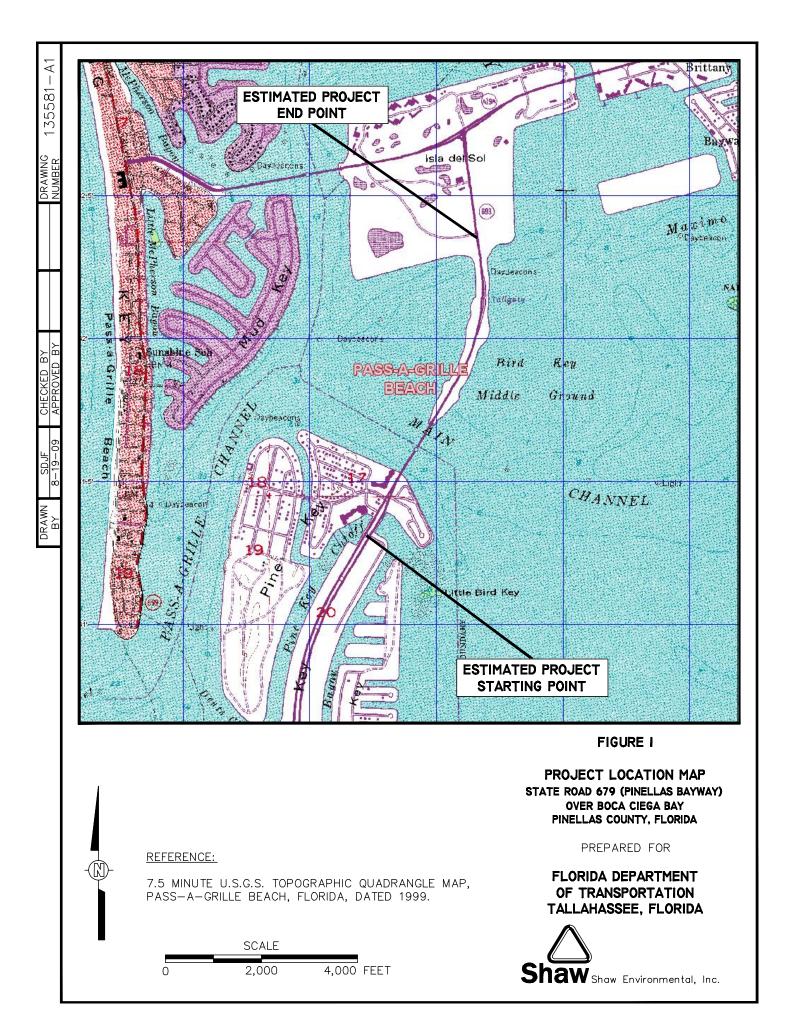
				OVA	Results (p	pm)
Soil Boring No.	Date	Depth (ft bls)	Lithologic Description	OVA Unfiltered	OVA Filtered	Corrected
		1	Dry, grey, shell rich sand, low cohesiveness, slight organic odor	0	-	0
		2	Dry, grey, shell rich sand, low cohesiveness, slight organic odor	0	-	0
		3	Dry, grey, shell rich sand, low cohesiveness, slight organic odor	0	-	0
		4	Dry, grey, shell rich sand, low cohesiveness, slight organic odor	0	-	0
		5	Dry, grey, shell rich sand, low cohesiveness, slight organic odor	0	-	0
SB-4R	09/23/09	6	Dry, grey, shell rich sand, low cohesiveness, slight organic odor	0	-	0
OD TIV	03/23/03	7	Moist, grey, shell rich sand, low cohesiveness, slight organic odor	0	-	0
		8♦	Wet, grey, shell rich sand, low cohesiveness, slight organic odor	13.0	12.8	0.2
		9	Wet, grey, shell rich sand, low cohesiveness, slight organic odor	215	175	40
		10	Wet, grey, fine sand, low cohesiveness, moderate organic odor	2,800	2,400	400
		11	Wet, dark brown, shell rich silty sand, low cohesiveness, strong sulfur odor	3,200	3,100	100
		12	Wet, dark brown, shell rich silty sand, low cohesiveness, strong sulfur odor	3,000	2,850	150
		1	Dry, white, fine sand, low cohesiveness, no odor	0	-	0
		2	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		3	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
		4	Moist, white, fine sand, low cohesiveness, no odor	0	-	0
SB-5	07/17/09	5 ◆ ★	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
SD-3	07/17/09	6	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
		7	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
		8	Wet, white, fine sand, low cohesiveness, no odor	0	- - - - 1.1	0
		9	Wet, white, fine sand, low cohesiveness, no odor	0	-	0
		10	Wet, grey, fine sand, low cohesiveness, moderate organic odor	4.3	OVA Filtered 12.8 175 2,400 3,100 2,850	3.2
		1	Dry, tan, sand, low cohesiveness, no odor	0	-	0
		2	Moist, tan, sand, low cohesiveness, no odor	0	-	0
		3	Moist, tan, sand, low cohesiveness, no odor	0	-	0
		4	Moist, tan, sand, low cohesiveness, no odor	0	-	0
00.0	07/47/00	5♦	Wet, tan, sand, low cohesiveness, no odor	0	-	0
SB-6	07/17/09	6	Wet, tan, sand, low cohesiveness, no odor	0	-	0
		7	Wet, tan, sand, low cohesiveness, no odor	0	-	0
		8	Wet, tan, sand, low cohesiveness, no odor	0	-	0
		9	Wet, tan, sand, low cohesiveness, no odor	0	-	0
		10	Wet, tan, sand, low cohesiveness, no odor	0	175 2,400 3,100 2,850 1.1	0
		1	Dry, tan, sand, low cohesiveness, no odor	0	-	0
		2	Moist, tan, sand, low cohesiveness, no odor	0	-	0
		3	Moist, tan, sand, low cohesiveness, no odor	0	-	0
	•	4	Moist, tan, sand, low cohesiveness, no odor	0	-	0
00 -	07/47/00	5♦	Wet, tan, sand, low cohesiveness, no odor	0	-	0
SB-7	07/17/09	6	Wet, tan, sand, low cohesiveness, no odor	0	-	0
		7	Wet, tan, sand, low cohesiveness, no odor	0	-	0
		8	Wet, tan, sand, low cohesiveness, no odor	0	-	0
		9	Wet, tan, sand, low cohesiveness, no odor	0		0
		10	Wet, tan, sand, low cohesiveness, no odor	0		0

TABLE 5: SOIL BORING AND OVA/FID LOG

Site 4: Tierra Verde BP 128 Pinellas Bayway, Tierra Verde, Florida FPN 410755-1-C2-01 Shaw Project No. 135581

		Depth (ft bls)		OVA	Results (p	pm)				
Soil Boring No.	Date		Lithologic Description	OVA Unfiltered	OVA Filtered	Corrected				
		1	Dry, tan, sand, low cohesiveness, no odor	0	-	0				
		2	Moist, tan, sand, low cohesiveness, no odor	0	-	0				
		3	Moist, tan, sand, low cohesiveness, no odor	0	-	0				
						4	Moist, tan, sand, low cohesiveness, no odor	0	-	0
SB-8	07/17/09	5♦	Wet, tan, sand, low cohesiveness, no odor	0	-	0				
3D-0	07/17/09	6	Wet, tan, sand, low cohesiveness, no odor	0	-	0				
		7	Wet, tan, sand, low cohesiveness, no odor	0	-	0				
		8	Wet, tan, sand, low cohesiveness, no odor	0	-	0				
		9	Wet, tan, sand, low cohesiveness, no odor	0	-	0				
		10	Wet, tan, sand, low cohesiveness, no odor	0	-	0				

Notes:


◆ = groundwater encountered at this depth

★ = confirmatory laboratory soil sample collected

ft bls= feet below land surface OVA = organic vapor analyzer ppm = parts per million

^{** =} denotes sample in which methane corrected reading exceeded uncorrected reading

Figures

Bay Isla Del **ESTIMATED PROJECT** Sol **END POINT** 52nd St S Yacht 61st Ave 5 And 5 62nd Ave S Country Toll Booth Mirada Cir Club Isla Del Sol Mud 10 23rd Ave 21st Ave SITE Long Key ISto Blvd Gulf Way Pass A Grille War Pine 1st Ave S **ESTIMATED PROJECT** STARTING POINT

LEGEND:

ESTIMATED PROJECT CORRIDOR

APPROXIMATE LOCATION and ID NUMBER

FIGURE 2

CORRIDOR AND SITE LOCATION MAP STATE ROAD 679 (PINELLAS BAYWAY) OVER BOCA CIEGA BAY PINELLAS COUNTY, FLORIDA

PREPARED FOR

FLORIDA DEPARTMENT **OF TRANSPORTATION** TALLAHASSEE, FLORIDA

SCALE 2,600 FEET 1,300

LEGEND:

SOIL BORING LOCATION

FIGURE 3

SOIL BORING LOCATION MAP
SITE 2 (7-ELEVEN STORE No. 2930I)
I30 PINELLAS BAYWAY
SITE 4 (TIERRA VERDE BP - SOUTHERN UST AREA)
I28 PINELLAS BAYWAY
STATE ROAD 679 (PINELLAS BAYWAY)
OVER BOCA CIEGA BAY
PINELLAS COUNTY, FLORIDA

PREPARED FOR

FLORIDA DEPARTMENT OF TRANSPORTATION TALLAHASSEE, FLORIDA

SCALE 0 40 80 FEET

SOIL BORING LOCATION

FIGURE 4

SOIL BORING LOCATION MAP
SITE 4 (TIERRA VERDE BP - NORTHERN UST AREA)
I28 PINELLAS BAYWAY
STATE ROAD 679 (PINELLAS BAYWAY)
OVER BOCA CIEGA BAY
PINELLAS COUNTY, FLORIDA

PREPARED FOR

FLORIDA DEPARTMENT OF TRANSPORTATION TALLAHASSEE, FLORIDA

SCALE 0 40 80 FEET

APPENDIX A SCOPE OF SERVICES

ATTACHMENT "A"

SCOPE OF SERVICES

FOR

LEVEL | AND LEVEL || HAZARDOUS MATERIALS

AND

CONTAMINATION INVESTIGATION

FOR

S.R. 679 (PINELLAS BAYWAY) OVER BOCA CIEGA BAY PINELLAS COUNTY, FLORIDA

> FINANCIAL PROJECT NUMBERS 410755-1-C2-01

FLORIDA DEPARTMENT OF TRANSPORTATION DISTRICT 7

I. DESCRIPTION:

Consultant services are required for a Level I and Level II hazardous materials and contamination investigation for S.R. 679 (Pinellas Bayway) over Boca Ciega Bay in Pinellas County, Florida.

II. OBJECTIVES:

The Consultant shall investigate each site and evaluate adjacent properties for potential hazardous material and contamination problems. The elements of work shall include, but are not limited to, the following: public record searches; review of aerial photographs; onsite field review and verification; assignment of site rankings per Part 2, Chapter 22, of the *Project Development and Environmental (PD&E) Guidelines Manual*; and preparation of a technically concise report to document services performed.

III. PROVISIONS FOR WORK:

All work shall be performed in accordance with the applicable rules and regulations of the Florida Department of Environmental Protection and all other pertinent state and federal authorities.

IV. SERVICES:

A. Level I:

- 1. Perform site reconnaissance to verify acquired data for each site, including a careful examination of sites along the subject corridor to identify potential hazardous waste and pollutants associated with the proposed transportation improvement project per Part 2, Chapter 22 of the Project Development and Environmental (PD&E) Guidelines Manual. Shaw will pay particular attention to site storage and handling for those sites with changed land use and previously unrecorded or undocumented problems.
- 2. Perform public record searches to identify the current tenants and legal owners as well as past tenants and the associated land usage/business activities. Coordinate this data with the appropriate aerial survey.
- 3. Conduct state and local environmental and health agency visits and review state, local, and federal databases to secure lists and other information about the past and present users of hazardous materials; generators of hazardous waste, pollutants, industrial waste, and solid waste; agricultural operations involving pesticides, herbicides, and fertilizers; agricultural livestock

operations and potential "cattle dipping vat" operations; and storage tanks (above or below ground), as well as other potential soil and groundwater contaminants. Report problems with their usage (Notices of Violation, non-compliance documents, Consent Orders, etc.).

- 4. For each site, rank the potential for encountering hazardous waste or pollutants as a result of the transportation improvement project and the associated land purchases and construction activities using Part 2, Chapter 22 of the PD&E Guidelines Manual.
- 5. Submit a Level I Report to the department. The report will be technically concise and will include data collected, analyses, and recommendations made as a result of the Level I investigation. The report will include an executive summary, a narrative, tables, graphics, and appendices (site profiles, violation summaries, correspondence, etc.) to completely illustrate the screening effort. The report will discuss in detail the medium and high risk sites identified during the Level I investigation, and will provide recommendations for additional evaluations or investigations to be completed prior to the right-of-way acquisition phase and construction. Consultant will submit one (1) draft report to the department. Upon approval of the draft report by the department, Shaw will submit one (1) hard copy and three (3) electronic media compact disk copies of the report to the department.
- B. Based on this information provided by the FDOT and as identified in the Level I, Consultant will as part of the Level II identify, evaluate, and prepare recommendations for the FDOT concerning potential hazardous waste and pollutants associated with the proposed transportation improvement project per Part 2, Chapter 22 of the PD&E Guidelines Manual. The services will include, but will not be limited to, the following tasks:
 - 1. Prepare a site-specific health and safety plan to ensure a safe working environment.
 - 2. Arrange with a utility locator service to identify and adequately mark all underground utilities in the areas where subsurface investigation will occur.
 - Properly decontaminate the auger tools before use and between boring locations in accordance with Florida Department of Environmental Protection (FDEP) Standard Operation Procedures (DEP-SOP-01/001), February 1, 2004.
 - 4. As required, advance soil borings at the field determined locations at the sites outlined above. These boring locations may be at or adjacent to proposed structure, pipe, or utility locations; along proposed ROW lines; at suspect onsite locations; adjacent to stormwater management facilities; or in other

locations as determined by the onsite geologist. Utilizing direct-push technology, advance each boring to one (1) foot below the water table surface.

- 5. Conduct soil screening and obtain and analyze soil and groundwater samples from each potentially contaminated site. The work areas are in a suburban setting, therefore it is expected that some impervious surfaces, e.g. concrete and asphalt, will be present at the boring locations. Also, due to right of way constraints and common above-ground and below-ground obstructions, mechanical sampling equipment might not be appropriate. In all locations, installation of the soil borings and wells will be completed by hand, if possible.
- 6. Identify all monitoring wells, recovery wells, and contamination related potential obstructions to construction, etc., with or adjacent to the right of way that the proposed construction project will adversely impact.
- 7. At each boring location, collect duplicate soil samples at 12-inch depth intervals to the water table surface and place them into glass sample jars for screening with an organic vapor analyzer equipped with a flame-ionization detector in accordance with Rule 62-770.200(12), Florida Administrative Code. First, screen one sample without a carbon filter, then screen the other sample with a filter to determine the fraction of methane in each sample. Record the net resultant vapor measurement as the hydrocarbon vapor concentration. Note the lithology and depth to groundwater for each boring.
- 8. As necessary, submit soil samples from each site for laboratory analyses for the Used Oil Group or consistent with the known or suspected contaminants of concern (COCs) for each site. Laboratory soil sample depth and location will be field-determined and representative of soils exhibiting elevated hydrocarbon vapor concentration based on field-screening results, soil staining or odor, contact with buried solid waste, suspect spills, or other surface soil impacts.
- 9. Construct temporary wells in the same borings from which the laboratory soil samples were collected. Purge the wells in accordance with DEP-SOP-01/001 and collect groundwater samples for laboratory analyses. The samples will be collected by low-flow sampling techniques and submitted for analyses consistent with known or suspected COCs for each site.
- 10. Prepare a technically concise report documenting data collected and recommendations made as a result of these tasks. This report will include graphics, tables, and appendices to completely illustrate the assessment effort. The report will also provide recommendations for additional evaluations, investigations, or remediation activities to be completed prior to or during construction, should they be necessary.

V. <u>DEPARTMENT RESPONSIBILITIES:</u>

The FDOT may opt to provide any liaison function necessary to accomplish the work. Any questions concerning this project should be directed to Dale Hanson, telephone number (813) 975-6482.

VI. LENGTH OF SERVICES:

All tasks will be completed upon project completion.

G:\PROCUREMENT\BCONTRAC\BDXXX\BDJ73 - SHAWWORK ASSIGNMENTS\SOS 30.DOC

APPENDIX B LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

PEL a division of Spectrum Analytical, Inc.

featuring HANIBAL TECHNOLOGY

Florida Department of Health #E84207 June 30, 2009

CWA - Extractable Organics, General Chemistry, Metals,
Pesticides-herbicides-PCB's, Volatile Organics
RCRA/CERCLS - Extractable Organics, General Chemistry, Metals
Pesticides-Herbicides-PCB's, Volatile Organics

- CERTIFICATE OF ANALYSIS -

Report Date: 08/04/2009

To: Jim Cheze

Shaw Group 725 U.S. Highway 301 South Tampa, FL 33612 W 813-612-3655

PROJECT ID:

Pinellas Bayway Site #2

WORK ORDER:

2513131

Revised Report

DATE RECEIVED:

Monday, July 20, 2009

Project Notes: Revised to include the full 8270 list for the soils.

(†): Short Hold Time Analysis Date

Samples reported on dry weight basis

All test results in this report pertain only to the samples as submitted.

PEL Contact: Mark Gudnason / extension: 242

8405 Benjamin Road, Suite A• Tampa, Florida 33634 813-888-9507• FAX: 800-480-6435 Website: www.pelab.com

PEL a division of Spectrum Analytical, Inc. featuring Hanibal Technology

DATA QUALIFIER CODES

State of Florida, Department of Environmental Protection and Department of Health _Rehabilitative Services / NELAC

- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value; value not accurate. This code shall be used in the following instances:
 - 1. Surrogate recovery limits have been exceeded.
 - 2. No known quality control criteria exits for the component.
 - 3. The reported value did not meet the established quality control criteria for either precision or accuracy but falls within the NELAC marginal exceedance range.
 - 3M.The reported value did not meet the established quality control criteria for either precision or accuracy and falls beyond the NELAC range for marginal exceedances.
 - 3R. The RPD for the LCSD exceeds the laboratory established control limits.
 - 4. The sample matrix interfered with the ability to make an accurate determination.
 - 5. The data is questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).
 - Off-scale high. Actual value is known to be greater than the value given. To be used when the concentration of the analyte is above the acceptable limit for quantitation (exceeds the linear range of the highest calibration standard) and the calibration curve is known to exhibit a negative deflection.
- Sample held beyond acceptable holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for the sample preparation or analysis.
- Indicates that the compound was analyzed for but not detected above the method detection limit (MDL).
- Indicates that the analyte was detected in both the sample and the associated method blank. Note: The value in the blank shall not be subtracted from associated samples.
- Y
 The laboratory analysis was from an unpreserved or improperly preserved sample.
 The data may not be accurate.

Note: There was not sufficient sample volume to perform a matrix spike/duplicate for the following method(s). : 8260, 8270_SIM, FL-PRO

A Blank and Laboratory Control sample was analyzed to ensure the method performed within acceptable guidelines.

CASE NARRATIVE METALS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

A. Sample Preparation: All holding times were met.

B. Sample Analysis: All holding times were met.

III. METHOD

Analyses were performed according to the PEL, a Division of Spectrum Analytical, Standard Operating Procedures and EPA Method 6010B for ICP metals.

IV. PREPARATION

Soil samples were prepared according to PEL Laboratory's Standard Operating Procedures and EPA Method 3050B.

Water samples were prepared according to PEL Laboratory's Standard Operating Procedures and EPA Method 3010A.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

1. Calibration Blanks:

All acceptance criteria were met.

2. Method Blanks:

All acceptance criteria were met.

C. Spikes:

1. Laboratory Control Spikes (LCS):

An LCS/LCSD set was analyzed.
All percent recovery and relative percent difference (RPD) criteria were met.

2. Post Digestion Spike:

All acceptance criteria were met.

CASE NARRATIVE METALS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

3. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD):

No spikes requested by client.

D. Duplicate:

No sample duplicates are reported with this method. (Spike duplicates are referenced above in section C. Spikes.)

E. Serial Dilution:

All acceptance criteria were met.

F. ICP Interference Check Samples:

All acceptance criteria were met.

G. Samples:

Sample analysis proceeded normally.

Luda Lee M. Gal

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/24/2009

CASE NARRATIVE EDB GC SEMIVOLATILE ORGANIC

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

SW846/EPA 8011.

IV. PREPARATION

Water samples were prepared by SW846/EPA 8011 for semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

An LCS/LCSD set was analyzed. All percent recovery and relative percent difference (RPD) criteria were met.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

This method does not require the use of internal standards.

CASE NARRATIVE EDB GC SEMIVOLATILE ORGANIC

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

F. Samples:

Sample analysis proceeded normally.

Lara Kene

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/27/2009

CASE NARRATIVE POLYCHLORINATED BIPHENYLS (PCB) SEMIVOLATILE ORGANIC

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

EPA SW846 8082 for Aroclor analysis.

IV. PREPARATION

Soil samples were prepared by SW846 EPA 3545 for 8082 semi-volatile analysis. Water samples were prepared by SW846 EPA 3510 for 8082 semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

Closing CCV CCV742673 had recoveries above QC limits. Since there were no compounds found above RL in the associated samples, it can be assumed that had they been in the samples they would have been detected. Acceptance criteria were met and no further action was taken.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

PCB 1016 and PCB 1260 were used as the spiking solution for all QC spikes.

1. Laboratory Control Spikes (LCS)

An LCS/LCSD set was analyzed.
All percent recovery and relative percent difference (RPD) criteria were met.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

CASE NARRATIVE POLYCHLORINATED BIPHENYLS (PCB) SEMIVOLATILE ORGANIC

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

No spikes requested by client.

E. Internal Standards:

This method does not require the use of internal standards.

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

Lara Keene

SIGNED:

DATE: 07/27/2009

CASE NARRATIVE GC/MS VOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

EPA 8260B/SW846

IV. PREPARATION

Soil samples were prepared by SW846/5035 for EPA8260B volatiles analysis. All aspects of sample preparation proceeded without exception.

Water samples were prepared by SW846/5030 for EPA8260B volatiles analysis. All aspects of sample preparation proceeded without exception.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

All acceptance criteria were met with the exception of:

LCS 072009LCS22 was analyzed with the soil samples on 07/20/09. The following analyte(s) were recovered above criteria: 2-Hexanone at 131 % with criteria of (72-127), Acrolein at 113 % with criteria of (70-111). No further action was required, as ME criteria were met.

CASE NARRATIVE GC/MS VOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

LCS 072009LCS22D was analyzed with the soil samples on 07/20/09. The following analyte(s) were recovered above criteria: Acrolein at 116 % with criteria of (70-111). The following analyte(s) exceeded RPD criteria: Bromoform at 20.9 % with criteria of (13). No further action was required, as ME criteria were met.

LCS 0721LCS52 was analyzed with the water samples on 07/21/09. The following analyte(s) were recovered above criteria: Chloroethane at 154 % with criteria of (72-135). The following analyte(s) had marginal exceedance limit failures: Chloroethane at 154 % with criteria of (61.5-145.5). No further action was taken, since the high range was exceeded and the LCSD met ME criteria for this analyte.

LCS 0721LCS52D was analyzed with the water samples on 07/21/09. The following analyte(s) were recovered above criteria: Chloroethane at 144 % with criteria of (72-135) No further action was required, as ME criteria was met.

Samples coded accordingly.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

All acceptance criteria were met.

fri Ph

F. Samples:

Sample analysis proceeded normally. Client specified reporting limits were used.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/23/2009

CASE NARRATIVE GC/MS SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

A. Sample Preparation: All holding times were met.

B. Sample Analysis: All holding times were met.

III. METHODS

EPA SW846 8270

IV. PREPARATION

Soil samples were prepared by SW846 EPA 3545 for 8270 semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met. PEL does not analyze a low calibration standard at the requested RL for all analytes. The low calibration standard is 270 ug/kg for the following analyte(s): 2,4,5-Trichlorophenol, 2,4,6-Trichlorophenol, 2,4-Dichlorophenol, 2,4-Dimethylphenol, 2-Methylphenol (o-Cresol), 3-Nitroaniline, 4-Nitroaniline, Bis(2-Chloroethoxy)methane, Chrysene, Hexachlorobenzene, N-Nitrosodimethylamine, N-Nitrosodiphenylamine. The low calibration standard is 670 ug/kg for the following analyte(s): Benzoic acid, Pentachlorophenol.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

All acceptance criteria were met with the exception of: LCS 688LCS was analyzed with the soil samples extracted on 07/30/09. The following analyte(s) were recovered below criteria: 2,4-Dinitrophenol at 28.3 % with criteria of (29-130), 2,4-Dinitrotoluene at 73.4 % with criteria of (77-115), 2,6-Dinitrotoluene at 71.9 % with criteria of (73-110), 2-Methylnaphthalene at 70 % with criteria of (72-

CASE NARRATIVE GC/MS SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

105), 2-Nitroaniline at 70.4 % with criteria of (71-120), 4-Nitroaniline at 65.2 % with criteria of (70-115), Benzyl alcohol at 62.5 % with criteria of (64-125), Fluoranthene at 68.2 % with criteria of (74-115). The following analyte(s) had marginal exceedance limit failures: 3-Nitroaniline at 60.7 % with criteria of (70.3-115.7), Dibenzofuran at 68.5 % with criteria of (70-110), Hexachlorobenzene at 69.3 % with criteria of (69.8-127.2).

Samples coded accordingly.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

All acceptance criteria were met.

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

Lana Keene

SIGNED:

DATE: 08/03/2009

CASE NARRATIVE GC/MS SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

EPA SW846 8270C.

IV. PREPARATION

Water samples were prepared by SW846 EPA 3510 for 8270 semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

All acceptance criteria were met

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

All acceptance criteria were met.

CASE NARRATIVE GC/MS SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/26/2009

CASE NARRATIVE HPLC SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

SW846/EPA 8310

IV. PREPARATION

Soil samples were prepared by SW846, EPA Method 3550 for 8310 semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

All acceptance criteria were met.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

This method does not require the use of internal standards.

CASE NARRATIVE HPLC SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

Lara Keene

SIGNED:

DATE: 07/26/2009

CASE NARRATIVE FLORIDA PETROLEUM RANGE ORGANICS (FL PRO) SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

Florida DEP/FL PRO

IV. PREPARATION

Soil samples were prepared by SW846 EPA 3550 for FL PRO semi-volatile analysis. Water samples were prepared by SW846 EPA 3510 for FL PRO semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met with the exception of: Sample 6654LCS was recovered above criteria for the following surrogate(s): C39 Surrogate at 122 % with criteria of (60-118). Since surrogate C39 was just above acceptable criteria, and since surrogate o-terphenyl met all criteria, no further action was taken.

Samples coded accordingly.

D. Spikes:

1. Laboratory Control Spikes (LCS)

An LCS/LCSD set was analyzed. All percent recovery and relative percent difference (RPD) criteria were met.

CASE NARRATIVE FLORIDA PETROLEUM RANGE ORGANICS (FL PRO) SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513131

Client: Shaw Group

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

This method does not require the use of internal standards.

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/27/2009

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

PEL Lab#: 251313101 Collection Information:

Client ID: SB 3at 3ft Sample Date: 7/17/2009 9:30:00 AM

Matrix: SO

Parameter	Method	Results	Analysis Date	Prep Date	Units	MDL	RL	Dilution Factor
Arsenic	6010	0.567 U	07/22/2009 2:11	07/21/2009 12:10	mg/Kg	0.567	1.13	1
Cadmium	.6010	0.166 I	07/22/2009 2:11	07/21/2009 12:10	mg/Kg	0.0567	0.567	1
Chromium	6010	1.63	07/22/2009 2:11	07/21/2009 12:10	mg/Kg	0.181	0.567	1
Lead	6010	6.08	07/22/2009 2:11	07/21/2009 12:10	mg/Kg	0.385	0.907	1
Aroclor-1016	8082	3.6 U	07/22/2009 6:39	07/21/2009 17:21	ug/Kg	3.6	25	1
Aroclor-1221	8082	6.2 U	07/22/2009 6:39	07/21/2009 17:21	ug/Kg	6.2	25	1
Aroclor-1232	8082	17 U	07/22/2009 6:39	07/21/2009 17:21	ug/Kg	17	25	1
Aroclor-1242	8082	6.2 U	07/22/2009 6:39	07/21/2009 17:21	ug/Kg	6.2	25	1
Aroclor-1248	8082	9.3 U	07/22/2009 6:39	07/21/2009 17:21	ug/Kg	9.3	25	1
Aroclor-1254	8082	2.7 U	07/22/2009 6:39	07/21/2009 17:21	ug/Kg	2.7	25	1
Aroclor-1260	8082	4 U	07/22/2009 6:39	07/21/2009 17:21	ug/Kg	4	25	1
Decachlorobiphenyl(SURR)	8082	94.8	07/22/2009 6:39	07/21/2009 17:21	%	4	(33 - 140)) 1
1,1,1,2-Tetrachloroethane	8260	0.77 U	07/20/2009 12:21		ug/kg	0.77	2.1	1
1,1,1-Trichloroethane	8260	0.56 U	07/20/2009 12:21		ug/kg	0.56	2.1	1
1,1,2,2-Tetrachloroethane	8260	0.63 U	07/20/2009 12:21		ug/kg	0.63	2.1	1
1,1,2-Trichloroethane	8260	0.85 U	07/20/2009 12:21		ug/kg	0.85	2.1	1
1,1-Dichloroethane	8260	0.72 U	07/20/2009 12:21		ug/kg	0.72	2.1	1
1,1-Dichloroethene	8260	0.69 U	07/20/2009 12:21		ug/kg	0.69	2.1	1
1,1-Dichloropropene	8260	0.5 U	07/20/2009 12:21		ug/kg	0.5	2.1	1
1,2,3-Trichlorobenzene	8260	0.51 U	07/20/2009 12:21		ug/kg	0.51	2.1	1
1,2,3-Trichloropropane	8260	0.92 U	07/20/2009 12:21		ug/kg	0.92	2.1	1
1,2,4-Trichlorobenzene	8260	0.61 U	07/20/2009 12:21		ug/kg	0.61	2.1	1
1,2,4-Trimethylbenzene	8260	0.34 U	07/20/2009 12:21		ug/kg	0.34	2.1	1
1,2-Dibromo-3-chloropropane	8260	2.3 U	07/20/2009 12:21		ug/kg	2.3	10.4	1
1,2-Dibromoethane(EDB)	8260	1 U	07/20/2009 12:21		ug/kg	1	2.1	1
1,2-Dichlorobenzene	8260	0.5 U	07/20/2009 12:21		ug/kg	0.5	2.1	1
1,2-Dichloroethane	8260	0.52 U	07/20/2009 12:21		ug/kg	0.52	2.1	1
1,2-Dichloropropane	8260	0.97 U	07/20/2009 12:21		ug/kg	0.97	2.1	1
1,3,5-Trimethylbenzene	8260	0.43 U	07/20/2009 12:21		ug/kg	0.43	2.1	1
1,3-Dichlorobenzene	8260	0.55 U	07/20/2009 12:21		ug/kg	0.55	2.1	1
1,3-Dichloropropane	8260	0.56 U	07/20/2009 12:21		ug/kg	0.56	2.1	1
1,4-Dichlorobenzene	8260	0.56 U	07/20/2009 12:21		ug/kg	0.56	2.1	1
2,2-Dichloropropane	8260	0.64 U	07/20/2009 12:21		ug/kg	0.64	2.1	1
2-Butanone	8260	1.8 U	07/20/2009 12:21		ug/kg	1.8	10.4	1
2-Chlorotoluene	8260	0.47 U	07/20/2009 12:21		ug/kg	0.47	2.1	1
2-Hexanone	8260	1.7 J3U	07/20/2009 12:21		ug/kg	1.7	10.4	1
4-Chiorotoluene	8260	0.38 U	07/20/2009 12:21		ug/kg	0.38	2.1	1
4-isopropyltoluene	8260	0.98 U	07/20/2009 12:21		ug/kg	0.98	2.1	1
4-Methyl-2-pentanone	8260	1.2 U	07/20/2009 12:21		ug/kg	1.2	10.4	1
Acetone	8260	5.8	07/20/2009 12:21		ug/kg	5	10.4	1
Acrolein	8260	4.7 J3U	07/20/2009 12:21		ug/kg	4.7	26.1	1
Acrylonitrile	8260	3.6 U	07/20/2009 12:21		ug/kg	3.6	5.2	1
Benzene	8260	0.44 U	07/20/2009 12:21		ug/kg	0.44	2.1	1
Bromobenzene	8260	0.71 U	07/20/2009 12:21		ug/kg	0.71	2.1	1
Bromochloromethane	8260	0.79 U	07/20/2009 12:21		ug/kg	0.79	2.1	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

PEL Lab#: 251313101

Client ID: SB 3at 3ft

Matrix: SO

Collection Information:

Sample Date: 7/17/2009 9:30:00 AM

Parameter	Method	Results	Analysis Prep Date Date	Units	MDL	RL	Dilution Factor
Bromodichloromethane	8260	0.45 U	07/20/2009 12:21	ug/kg	0.45	2.1	1
Bromoform	8260	2.1 J3RU	07/20/2009 12:21	ug/kg	2.1	5.2	1
Bromomethane	8260	1 U	07/20/2009 12:21	ug/kg	1	2.1	1
Carbon disulfide	8260	0.52 U	07/20/2009 12:21	ug/kg	0.52	2.1	1
Carbon tetrachloride	8260	0.51 U	07/20/2009 12:21	ug/kg	0.51	2.1	1
Chlorobenzene	8260	0.56 U	07/20/2009 12:21	ug/kg	0.56	2.1	1
Chloroethane	8260	1.2 U	07/20/2009 12:21	ug/kg	1.2	5.2	1
Chloroform	8260	0.54 U	07/20/2009 12:21	ug/kg	0.54	2.1	1
Chloromethane	8260	0.9 U	07/20/2009 12:21	ug/kg	0.9	2.1	1
cis-1,2-Dichloroethene	8260	1.2 U	07/20/2009 12:21	ug/kg	1.2	2.1	1
cis-1,3-Dichloropropene	8260	0.46 U	07/20/2009 12:21	ug/kg	0.46	2.1	1
Dibromochloromethane	8260	0.68 U	07/20/2009 12:21	ug/kg	0.68	2.1	1
Dibromomethane	8260	0.91 ป	07/20/2009 12:21	ug/kg	0.91	2.1	1
Dichlorodifluoromethane	8260	0.69 U	07/20/2009 12:21	ug/kg	0.69	2.1	1
Ethylbenzene	8260	0.79 U	07/20/2009 12:21	ug/kg	0.79	2.1	1
Hexachlorobutadiene	8260	0.86 U	07/20/2009 12:21	ug/kg	0.86	4.2	1
Isopropylbenzene (Cumene)	8260	0.82 U	07/20/2009 12:21	ug/kg	0.82	2.1	1
Methyl iodide	8260	0.48 U	07/20/2009 12:21	ug/kg	0.48	2.1	1
Methylene chloride	8260	1.2 U	07/20/2009 12:21	ug/kg	1.2	5.2	1
MTBE	8260	0.58 U	07/20/2009 12:21	ug/kg	0.58	2.1	1
Naphthalene	8260	0.71 U	07/20/2009 12:21	ug/kg	0.71	2.1	1
n-Butylbenzene	8260	0.48 U	07/20/2009 12:21	ug/kg	0.48	2.1	1
n-Propylbenzene	8260	0.42 U	07/20/2009 12:21	ug/kg	0.42	2.1	1
o-Xylene	8260	0.54 U	07/20/2009 12:21	ug/kg	0.54	2.1	1
p,m-Xylene	8260	0.68 U	07/20/2009 12:21	ug/kg	0.68	4.2	1
sec-Butylbenzene	8260	0.63 ป	07/20/2009 12:21	ug/kg	0.63	2.1	1
Styrene	8260	0.45 U	07/20/2009 12:21	ug/kg	0.45	2.1	1
tert-Butylbenzene	8260	0.69 U	07/20/2009 12:21	ug/kg	0.69	2.1	1
Tetrachloroethene	8260	0.54 U	07/20/2009 12:21	ug/kg	0.54	2.1	1
Toluene	8260	0.91 U	07/20/2009 12:21	ug/kg	0.91	2.1	1
trans-1,2-Dichloroethene	8260	0.79 U	07/20/2009 12:21	ug/kg	0.79	2.1	1
trans-1,3-Dichloropropene	8260	0.58 U	07/20/2009 12:21	ug/kg	0.58	2.1	1
Trichloroethene	8260	0.96 U	07/20/2009 12:21	ug/kg	0.96	2.1	1
Trichlorofluoromethane	8260	0.66 U	07/20/2009 12:21	ug/kg	0.66	2.1	1
Vinyl acetate	8260	1.1 U	07/20/2009 12:21	ug/kg	1.1	5.2	1
Vinyl chloride	8260	0.99 U	07/20/2009 12:21	ug/kg	0.99	2.1	1
1,2-Dichloroethane-d4(SURR)	8260	102	07/20/2009 12:21	~ %	0.99	(71 - 124)	
4-Bromofluorobenzene(SURR)	8260	104	07/20/2009 12:21	%	0.99	(54 - 126)	,
Dibromofluoromethane(SURR)	8260	94.4	07/20/2009 12:21	%	0.99	(68 - 119)	
Toluene d8(SURR)	8260	97.4	07/20/2009 12:21	%	0.99	(59 - 127)	
1,2,4-Trichlorobenzene	8270	48.9 U	07/31/2009 20:54 07/30/2009		48.9	228	1
1,2-Dichlorobenzene	8270	48.1 U	07/31/2009 20:54 07/30/2009	0 0	48.1	228	1
1,3-Dichlorobenzene	8270	51.5 U	07/31/2009 20:54 07/30/2009		40. i 51.5		
1,4-Dichlorobenzene	8270	53.2 U	07/31/2009 20:54 07/30/2009			228	1
1-Methylnaphthalene					53.2	228	1
r-wied lystaphidialette	8270	52.3 U	07/31/2009 20:54 07/30/2009	13:51 ug/kg	52.3	228	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

Analysis

PROJECT ID:

Pinellas Bayway Site #2

PEL Lab#: 251313101

Client ID: SB 3at 3ft

Matrix: SO

Collection Information:

Sample Date: 7/17/2009 9:30:00 AM

Prep

			Anaiysis	rich				DHAMM
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
2,2-Oxybis(1-chloropropane)	8270	186 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	186	228	1
2,4,5-Trichlorophenol	8270	62.4 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	62.4	225	1
2,4,6-Trichlorophenol	8270	57.4 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	57.4	225	1
2,4-Dichlorophenol	8270	63.3 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	63.3	225	1
2,4-Dimethylphenol	8270	48.1 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	48.1	225	1
2,4-Dinitrophenol	8270	186 J3U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	186	1130	1
2,4-Dinitrotoluene	8270	41.3 J3U	07/31/2009 20:54		ug/kg	41.3	228	1
2,6-Dinitrotoluene	8270	42.2 J3U	07/31/2009 20:54		ug/kg	42.2	228	1
2-Chloronaphthalene	8270	56.3 U	07/31/2009 20:54		ug/kg	56.3	228	1
2-Chlorophenol	8270	58.2 U	07/31/2009 20:54		ug/kg	58.2	228	1
2-Methyl-4,6-dinitrophenol	8270	224 U	07/31/2009 20:54		ug/kg	224	228	1
2-Methylnaphthalene	8270	48.9 J3U	07/31/2009 20:54		ug/kg	48.9	228	1
2-Methylphenol (o-Cresol)	8270	81 U	07/31/2009 20:54		ug/kg	81	225	1
2-Nitroaniline	8270	48.1 J3MU	07/31/2009 20:54		ug/kg	48.1	228	1
2-Nitrophenol	8270	60.8 U	07/31/2009 20:54		ug/kg	60.8	228	1
3,3'-Dichlorobenzidine	8270	49.8 U	07/31/2009 20:54		ug/kg	49.8	228	1
3-Nitroaniline	8270	67.5 J3U	07/31/2009 20:54		ug/kg	67.5	225	1
4-Bromophenyl-phenylether	8270	41.3 U	07/31/2009 20:54		ug/kg	41.3	228	1
4-Chloro-3-methylphenol	8270	47.2 U	07/31/2009 20:54		ug/kg	47.2	228	1
4-Chloroaniline	8270	53.2 U	07/31/2009 20:54		ug/kg	53.2	228	1
4-Chlorophenyl-phenylether	8270	43 U	07/31/2009 20:54		ug/kg	43	228	1
4-Methylphenol	8270	49.8 U	07/31/2009 20:54		ug/kg	49.8	228	1
4-Nitroaniline	8270	74.2 J3U	07/31/2009 20:54		ug/kg ug/kg	74.2	225	1
4-Nitrophenol	8270	44.7 U	07/31/2009 20:54		ug/kg ug/kg	44.7	563	1
Acenaphthene	8270	41.3 U	07/31/2009 20:54		ug/kg ug/kg	41.3	228	1
Acenaphthylene	8270	46.4 U	07/31/2009 20:54		ug/kg ug/kg	46.4	228	1
Aniline	8270	65 U	07/31/2009 20:54		ug/kg ug/kg	65	228	1
Anthracene	8270	50.6 U	07/31/2009 20:54		ug/kg ug/kg	50.6	228	1
Benzidine	8270	506 U	07/31/2009 20:54		ug/kg ug/kg	50.6	565	1
Benzo(a)anthracene	8270	48.1 U	07/31/2009 20:54		ug/kg ug/kg	48.1	228	1
Benzo(a)pyrene	8270	36.3 U	07/31/2009 20:54					1
Benzo(b)fluoranthene	8270	53.2 U	07/31/2009 20:54		ug/kg	36.3	228 228	1
Benzo(g,h,i)perylene	8270	33.8 U	07/31/2009 20:54		ug/kg	53.2 33.8	228	· ·
Benzo(k)fluoranthene	8270	48.1 U	07/31/2009 20:54		ug/kg			1
Benzoic acid	8270	228 U	07/31/2009 20:54		ug/kg	48.1	228	1
Benzyl alcohol	8270	77.6 J3U	07/31/2009 20:54		ug/kg	228	563	1
Bis(2-Chloroethoxy)methane	8270	48.1 U	07/31/2009 20:54		ug/kg	77.6	563	1
Bis(2-Chloroethyl)ether	8270	56.5 U	07/31/2009 20:54		ug/kg	48.1	225	1
bis(2-ethylhexyl)phthalate	8270	70 U	07/31/2009 20:54		ug/kg	56.5	228	1
Butylbenzylphthalate	8270	53.2 U			ug/kg	70 50.0	228	1
Chrysene	8270		07/31/2009 20:54		ug/kg	53.2	228	1
Dibenz(a,h)anthracene		28.7 U	07/31/2009 20:54		ug/kg	28.7	225	1
Dibenzofuran	8270 8270	34.6 U	07/31/2009 20:54		ug/kg	34.6	228	1
	8270	45.6 J3MU	07/31/2009 20:54		ug/kg	45.6	228	1
Diethylphthalate Dimethyl-phthalate	8270	43 U	07/31/2009 20:54		ug/kg 	43	228	1
Dimetriyi-pittiaidle	8270	49.8 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	49.8	228	1

Dilution

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

Collection Information:

Sample Date: 7/17/2009 9:30:00 AM

PEL Lab#: 251313101

Client ID: SB 3at 3ft

Matrix: SO

			Analysis	Prep]	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	\mathbf{RL}	Factor
Di-n-butylphthalate	8270	37.1 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	37.1	228	1
Di-n-octylphthalate	8270	48.9 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	48.9	228	1
Fluoranthene	8270	40.5 J3U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	40.5	228	1
Fluorene	8270	43 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	43	228	1
Hexachlorobenzene	8270	44.7 J3MU	07/31/2009 20:54	07/30/2009 13:51	ug/kg	44.7	225	1
Hexachlorobutadiene	8270	48.9 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	48.9	228	1
Hexachlorocyclopentadiene	8270	33.8 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	33.8	563	1
Hexachloroethane	8270	42.2 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	42.2	228	1
Indeno(1,2,3-cd)pyrene	8270	43.9 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	43.9	228	1
Isophorone	8270	49.8 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	49.8	228	1
Naphthalene	8270	54 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	54	228	1
Nitrobenzene	8270	50.6 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	50.6	228	1
N-Nitrosodimethylamine	8270	59.9 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	59.9	225	1
N-Nitroso-di-n-propylamine	8270	51.5 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	51.5	228	1
N-Nitrosodiphenylamine	8270	53.2 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	53.2	225	1
Pentachlorophenol	8270	112 U	07/31/2009 20:54	07/30/2009 13:51	ug/kg	112	228	1
Phenanthrene	8270	47.2 U		07/30/2009 13:51	ug/kg	47.2	228	1
Phenol	8270	54.8 U		07/30/2009 13:51	ug/kg	54.8	1120	1
Pyrene	8270	77.6 U		07/30/2009 13:51	ug/kg	77.6	228	1
2,4,6-Tribromophenol(SURR)	8270	79.2		07/30/2009 13:51	%	77.6	(19 - 122)) 1
2-Fluorobiphenyl(SURR)	8270	73.7	07/31/2009 20:54	07/30/2009 13:51	%	77.6	(30 - 115)	
2-Fluorophenol(SURR)	8270	79.3	07/31/2009 20:54	07/30/2009 13:51	%	77.6	(25 - 121)	
Nitrobenzene-d5(SURR)	8270	82.6		07/30/2009 13:51	%	77.6	(23 - 120)	•
Phenol-d5(SURR)	8270	72.8		07/30/2009 13:51	%	77.6	(24 - 113)	
p-Terphenyl-d14(SURR)	8270	70.5		07/30/2009 13:51	%	77.6	(18 - 137)) 1
1-Methylnaphthalene	8310	3.4 U		07/23/2009 13:51	ug/kg	3.4	8.3	1
2-Methylnaphthalene	8310	3.2 U		07/23/2009 13:51	ug/kg	3.2	8.3	1
Acenaphthene	8310	0.91 U		07/23/2009 13:51	ug/kg	0.91	8.3	1
Acenaphthylene	8310	0.99 U		07/23/2009 13:51	ug/kg	0.99	8.3	1
Anthracene	8310	0.91 U		07/23/2009 13:51	ug/kg	0.91	8.3	1
Benzo(a)anthracene	8310	27.7		07/23/2009 13:51	ug/kg	1.6	8.3	1
Benzo(a)pyrene	8310	30.9		07/23/2009 13:51	ug/kg	2.7	8.3	1
Benzo(b)fluoranthene	8310	37.7		07/23/2009 13:51	ug/kg	2.2	8.3	1
Benzo(g,h,i)perylene	8310	45.4		07/23/2009 13:51	ug/kg	2.2	8.3	1
Benzo(k)fluoranthene	8310	13.6		07/23/2009 13:51	ug/kg	1.2	8.3	1
Chrysene	8310	38.7		07/23/2009 13:51	ug/kg	2.3	8.3	1
Dibenz(a,h)anthracene	8310	6.3 1		07/23/2009 13:51	ug/kg	0.91	8.3	1
Fluoranthene	8310	81.6		07/23/2009 13:51	ug/kg	1.6	8.3	1
Fluorene	8310	1.6 U		07/23/2009 13:51	ug/kg	1.6	8.3	1
Indeno(1,2,3-cd)pyrene	8310	25.1		07/23/2009 13:51	ug/kg	0.91	8.3	1
Naphthalene	8310	2.2 U		07/23/2009 13:51	ug/kg	2.2	8.3	1
Phenanthrene	8310	12.6		07/23/2009 13:51	ug/kg	1.4	8.3	1
Pyrene	8310	46.3		07/23/2009 13:51	ug/kg	2.5	8.3	. 1
p-Terphenyl-d14(SURR)	8310	90.3		07/23/2009 13:51	%	2.5	(17 - 119	•
TPH	FL-PRO	6.8 U	07/27/2009 3:25	07/26/2009 15:23	mg/Kg	6.8	11.9	1

FLDOH #E84207

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

PEL Lab#: 251313101

Client ID: SB 3at 3ft

Matrix: SO

Collection Information:

Sample Date: 7/17/2009 9:30:00 AM

Parameter	Method	Results	Analysis Date	Prep Date	Units	MDL	RL l	Dilution Factor
C39 Surrogate(SURR)	FL-PRO	102	07/27/2009 3:25	07/26/2009 15:23	%	6.8	(60 - 118)	1
o-Terphenyl Surrogate(SURR)	FL-PRO	91.4	07/27/2009 3:25	07/26/2009 15:23	%	6.8	(62 - 109)	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

Analysis

PROJECT ID:

Pinellas Bayway Site #2

PEL Lab#: 251313102

Client ID: SB 3at 8ft

Matrix: GW

Collection Information:

Sample Date: 7/17/2009 10:00:00 AM

Prep

			Analysis	rich				DHUUUU
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Arsenic	6010	3.31 U	07/22/2009 16:33	07/21/2009 13:19	ug/L	3.31	10	1
Cadmium	6010	0.72 U	07/22/2009 16:33	07/21/2009 13:19	ug/L	0.72	5	1
Chromium	6010	6.53	07/22/2009 16:33	07/21/2009 13:19	ug/L	0.43	10	1
Lead	6010	3.7 U	07/22/2009 16:33	07/21/2009 13:19	ug/L	3.7	15	1
1,2-Dibromoethane(EDB)	8011	0.00596 U		07/22/2009 15:36	ug/L	0.006	0.0196	1
1,1,2,2-Tetrachloroethane(SURR	8011	112		07/22/2009 15:36	-g- %	0.006	(70 - 130)	
Aroclor-1016	8082	0.36 U	07/24/2009 2:29	07/23/2009 12:45	ug/L	0.36	0.51	1
Aroclor-1221	8082	0.44 U	07/24/2009 2:29	07/23/2009 12:45	ug/L	0.44	0.51	1
Aroclor-1232	8082	0.2 U		07/23/2009 12:45	ug/L	0.2	0.51	1
Aroclor-1242	8082	0.31 U		07/23/2009 12:45	ug/L	0.31	0.51	1
Aroclor-1248	8082	0.13 U		07/23/2009 12:45	ug/L	0.13	0.51	1
Aroclor-1254	8082	0.12 U		07/23/2009 12:45	ug/L	0.12	0.51	1
Aroclor-1260	8082	0.25 U		07/23/2009 12:45	ug/L	0.12	0.51	1
Decachlorobiphenyl(SURR)	8082	100		07/23/2009 12:45	ug/L %	0.25	(16 - 116)	
1,1,1,2-Tetrachloroethane	8260	0.25 U	07/22/2009 0:08	5.720/2005 (2.40	ug/l	0.25	1	1
1,1,1-Trichloroethane	8260	0.19 U	07/22/2009 0:08		ug/l	0.23	1,	1
1,1,2,2-Tetrachloroethane	8260	0.33 U	07/22/2009 0:08		ug/i ug/l	0.19	1	•
1,1,2-Trichloroethane	8260	0.28 U	07/22/2009 0:08		ug/l	0.33	1	1 1
1,1-Dichloroethane	8260	0.28 U	07/22/2009 0:08		_	0.28	1	-
1,1-Dichloroethene	8260	0.24 U	07/22/2009 0:08		ug/l	0.24	=	1
1,1-Dichloropropene	8260	0.19 U	07/22/2009 0:08		ug/l		1	1
1,2,3-Trichlorobenzene	8260	0.61 U	07/22/2009 0:08		ug/i	0.19	1	1
1,2,3-Trichloropropane	8260	0.76 U	07/22/2009 0:08		ug/l	0.61	1	1
1,2,4-Trichlorobenzene	8260	0.5 U			ug/l	0.76	1	1
1,2,4-Trimethylbenzene	8260	0.5 U	07/22/2009 0:08		ug/l	0.5	1	1
1,2-Dibromo-3-chloropropane	8260		07/22/2009 0:08		ug/l	0.17	1	1
1,2-Dibromoethane(EDB)	8260	1.4 U 0.33 U	07/22/2009 0:08		ug/l	1.4	2	1
1,2-Dichlorobenzene	8260		07/22/2009 0:08		ug/l	0.33	1	1
1,2-Dichloroethane	8260	0.26 U	07/22/2009 0:08		ug/l	0.26	1	1
		0.4 U	07/22/2009 0:08		ug/l	0.4	1	1
1,2-Dichloropropane	8260	0.27 U	07/22/2009 0:08		ug/l	0.27	1	1
1,3,5-Trimethylbenzene	8260	0.22 U	07/22/2009 0:08		ug/l	0.22	1	1
1,3-Dichlorobenzene	8260	0.2 U	07/22/2009 0:08		ug/l	0.2	1	1
1,3-Dichloropropane	8260	0.19 U	07/22/2009 0:08		ug/l	0.19	1	1
1,4-Dichlorobenzene	8260	0.24 U	07/22/2009 0:08		ug/l	0.24	1	1
2,2-Dichloropropane	8260	0.32 U	07/22/2009 0:08		ug/l	0.32	1	1
2-Butanone	8260	4 U	07/22/2009 0:08		ug/l	4	4	1
2-Chlorotoluene	8260	0.32 U	07/22/2009 0:08		ug/l	0.32	1	1
2-Hexanone	8260	0.95 U	07/22/2009 0:08		ug/l	0.95	5	1
4-Chlorotoluene	8260	0.12 U	07/22/2009 0:08		ug/l	0.12	1	1
4-Isopropyltoluene	8260	0.24 U	07/22/2009 0:08		ug/l	0.24	1	1
4-Methyl-2-pentanone	8260	0.61 U	07/22/2009 0:08		ug/l	0.61	5	1
Acetone	8260	5.6 U	07/22/2009 0:08		ug/l	5.6	10	1
Acrolein	8260	3.3 U	07/22/2009 0:08		ug/l	3.3	10	1
Acrylonitrile	8260	1.3 U	07/22/2009 0:08		ug/i	1.3	4	1
Benzene	8260	0.16 U	07/22/2009 0:08		ug/l	0.16	1	1

Dilution

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

PEL Lab#: 251313102

Client ID: SB 3at 8ft

Collection Information:

Sample Date: 7/17/2009 10:00:00 AM

Matrix: GW

			Analysis	Prep				Dilution
Parameter	Method	Results	Date	Date	Units	MDL	\mathbf{RL}	Factor
Bromobenzene	8260	0.27 U	07/22/2009 0:08		ug/l	0.27	1	1
Bromochloromethane	8260	0.38 U	07/22/2009 0:08		ug/l	0.38	1	1
Bromodichloromethane	8260	0.15 U	07/22/2009 0:08		ug/l	0.15	1	1
Bromoethane	8260	0.45 U	07/22/2009 0:08		ug/l	0.45	1	1
Bromoform	8260	0.36 U	07/22/2009 0:08		ug/l	0.36	1	1
Bromomethane	8260	0.76 U	07/22/2009 0:08		ug/l	0.76	1	1
Carbon disulfide	8260	0.29 U	07/22/2009 0:08		ug/l	0.29	1	1
Carbon tetrachloride	8260	0.33 U	07/22/2009 0:08		ug/l	0.33	1	1
Chlorobenzene	8260	0.18 U	07/22/2009 0:08		ug/l	0.18	1	1
Chloroethane	8260	0.99 J3MU	07/22/2009 0:08	•	ug/l	0.99	1	1
Chloroform	8260	0.29 U	07/22/2009 0:08		ug/l	0.29	1	1
Chloromethane	8260	0.68 U	07/22/2009 0:08		ug/l	0.68	1	1
cis-1,2-Dichloroethene	8260	0.29 U	07/22/2009 0:08		ug/l	0.29	1	1
cis-1,3-Dichloropropene	8260	0.23 U	07/22/2009 0:08		ug/l	0.23	1	1
Dibromochloromethane	8260	0.34 U	07/22/2009 0:08		ug/l	0.34	1	1
Dibromomethane	8260	0.53 U	07/22/2009 0:08		ug/l	0.53	1	1
Dichlorodifluoromethane	8260	0.23 U	07/22/2009 0:08		ug/l	0.23	1	1
Ethylbenzene	8260	0.43 U	07/22/2009 0:08		ug/l	0.43	1	1
Hexachlorobutadiene	8260	0.62 U	07/22/2009 0:08		ug/l	0.62	1	1
Isopropylbenzene (Cumene)	8260	0.41 U	07/22/2009 0:08		ug/l	0.41	1	1
Methyl iodide	8260	0.4 U	07/22/2009 0:08		ug/l	0.4	1	1
Methylene chloride	8260	0.52 U	07/22/2009 0:08		ug/l	0.52	1	1
MTBE	8260	1.4	07/22/2009 0:08		ug/l	0.26	1	1
Naphthalene	8260	0.32 U	07/22/2009 0:08		ug/l	0.32	1	1
n-Butylbenzene	8260	0.22 U	07/22/2009 0:08		ug/l	0.22	1	1
n-Propylbenzene	8260	0.28 U	07/22/2009 0:08		ug/l	0.28	1	1
o-Xylene	8260	0.2 U	07/22/2009 0:08		ug/l	0.2	1	1
p,m-Xylene	8260	0.27 U	07/22/2009 0:08		ug/l	0.27	2	1
sec-Butylbenzene	8260	0.2 U	07/22/2009 0:08		ug/l	0.2	1	1
Styrene	8260	0.2 U	07/22/2009 0:08		ug/l	0.2	1	1
tert-Butylbenzene	8260	0.28 U	07/22/2009 0:08		ug/l	0.28	1	1
Tetrachloroethene	8260	0.35 U	07/22/2009 0:08		ug/l	0.35	1	1
Toluene	8260	0.22 U	07/22/2009 0:08		ug/l	0.22	1	1
trans-1.2-Dichloroethene	8260	0.23 U	07/22/2009 0:08		ug/l	0.23	1	1
trans-1,3-Dichloropropene	8260	0.17 U	07/22/2009 0:08		ug/l	0.17	1	1
Trichloroethene	8260	0.42 U	07/22/2009 0:08		ug/i	0.42	1	1
Trichlorofluoromethane	8260	0.45 U	07/22/2009 0:08		ug/l	0.45	1	1
Vinyl acetate	8260	0.36 U	07/22/2009 0:08		ug/l	0.36	2	1
Vinyl chloride	8260	0.28 U	07/22/2009 0:08		ug/l	0.28	1	1
1,2-Dichloroethane-d4(SURR)	8260	106	07/22/2009 0:08		%	0.28	(80 - 120)	1
4-Bromofluorobenzene(SURR)	8260	104	07/22/2009 0:08		%	0.28	(86 - 115)	
Dibromofluoromethane(SURR)	8260	107	07/22/2009 0:08		%	0.28	(86 - 118)	
Toluene d8(SURR)	8260	103	07/22/2009 0:08		%	0.28	(88 - 110)	
1-Methylnaphthalene	8270 SIM	0.02 U		07/23/2009 13:12	ug/l	0.28	0.05	1
2-Methylnaphthalene	8270 SIM	0.027 1		07/23/2009 13:12	ug/i	0.02	0.05	1
Julymaphalalollo	O O O1141	0.027	J112012008 0.00	0116016003 13.12	ugn	0.02	0.00	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

PEL Lab#: 251313102

Client ID: SB 3at 8ft

Matrix: GW

Collection Information:

Sample Date: 7/17/2009 10:00:00 AM

			Analysis	Prep				Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Acenaphthene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Acenaphthylene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Anthracene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(a)anthracene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(a)pyrene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(b)fluoranthene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(g,h,i)perylene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(k)fluoranthene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Chrysene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Dibenz(a,h)anthracene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Fluoranthene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/i	0.02	0.05	1
Fluorene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Indeno(1,2,3-cd)pyrene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Naphthalene	8270 SIM	0.043 1	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Phenanthrene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
Pyrene	8270 SIM	0.02 U	07/26/2009 0:56	07/23/2009 13:12	ug/l	0.02	0.05	1
p-Terphenyl-d14(SURR)	8270 SIM	78	07/26/2009 0:56	07/23/2009 13:12	%	0.02	(33 - 141) 1
TPH	FL-PRO	0.26 U	07/22/2009 2:11	07/21/2009 10:27	mg/L	0.26	0.35	1
C39 Surrogate(SURR)	FL-PRO	80	07/22/2009 2:11	07/21/2009 10:27	%	0.26	(42 - 193) 1
o-Terphenyl Surrogate(SURR)	FL-PRO	84	07/22/2009 2:11	07/21/2009 10:27	%	0.26	(82 - 142) 1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

QC SUMMARY

METHOD: 6010

Method Blank 288878

Matrix: SQ

Associated Lab Samples: 251313101 288878 288879 288880

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
Arsenic	U	7/22/2009	7/21/2009	mg/Kg	0.5	1
Cadmium	U	7/22/2009	7/21/2009	mg/Kg	0.05	1 1
Chromium	U	7/22/2009	7/21/2009	mg/Kg	0.16	1
Lead	U	7/22/2009	7/21/2009	mg/Kg	0.34	1

Method Blank 288910

Matrix: WQ

Associated Lab Samples: 251313102 288910 288911 288912

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
Arsenic	U	7/22/2009	7/21/2009	ug/L	3.31	1
Cadmium	U	7/22/2009	7/21/2009	ug/L	0.72	1
Chromium	U	7/22/2009	7/21/2009	ug/L	0.43	1
Lead	U	7/22/2009	7/21/2009	ug/L	3.7	1

LABORATORY CO	NTROL SAMPL	Æ: 28887	79	Matrix:	SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Arsenic	mg/Kg	50	46.8	93.6	(80-120)		
Cadmium	mg/Kg	50	47.7	95.4	(80-120)		
Chromium	mg/Kg	50	47.6	95.2	(80-120)		
Lead	mg/Kg	50	49.6	99.2	(80-120)		
LABORATORY COM	NTROL SAMPL	Æ: 28888	30	Matrix:	SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Arsenic	mg/Kg	50	47.7	95.4	(80-120)	1.9	20
Cadmium	mg/Kg	50	48.2	96.4	(80-120)	1	20
Chromium	mg/Kg	50	48.3	96.6	(80-120)	1.5	20
Lead	mg/Kg	50	50.1	100.2	(80-120)	1	20
LABORATORY CON	NTROL SAMPL	E: 28891	.1	Matrix:	WQ		
		SPIKE	LCS	SPIKE	% REC		RPD
PARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMIT

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 6010

LABORATORY CONTROL SAMPLE: 288911

Matrix: WQ

PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
LABORATORY CON	TROL SAMPLE	: 28891	.2	Matrix:	WQ		
Lead	ug/L	500	459	91.8	(80-120)		
Chromium	ug/L	500	436	87.2	(80-120)		
Cadmium	ug/L	500	440	88	(80-120)		
Arsenic	ug/L	500	452	90.4	(80-120)		
PARAMETER	UNITS	SPIKE	LCS RESULT	SPIKE % REC	% REC	RPD	RPD LIMIT
					`		

PARAMETER	UNITS	SPIKE	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Arsenic	ug/L	500	494	98.8	(80-120)	8.9	20
Cadmium	ug/L	500	476	95.2	(80-120)	7.9	20
Chromium	ug/L	500	476	95.2	(80-120)	8.8	20
Lead	ug/L	500	500	100	(80-120)	8.6	20

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

METHOD: 8011

Method Blank 288991

Matrix: WQ

Associated Lab Samples:

251313102 288991 288992 288993

Parameter	Resul		nalysis Date	Prep Date	Units	s Ri		Dilution Factor
1,2-Dibromoethane(EDB)	U	7/	23/2009	7/22/2009	ug/L	0.00	0605	1
1,1,2,2-Tetrachloroethane(SURR	104	7/	23/2009	7/22/2009	%	(70 -	130)	1
LABORATORY CONTROL	SAMPLE	2889	92	Matri	x :	WQ		
		SPIKE	LCS	SPIK	E	% REC		RPD
PARAMETER	UNITS	CONC	RESUL	T % RE	2	LIMITS	RPD	LIMIT
1,2-Dibromoethane(EDB)	ug/L	0.12	0.14	117		(60-140)	·	
1,1,2,2-Tetrachloroethane(SURR	ug/L	0.24	0.29	121		(70-130)		
LABORATORY CONTROL	SAMPLE	2889	93	Matri	x :	WQ		
		SPIKE	LCS	SPIK	E	% REC		RPD
PARAMETER	UNITS	CONC	RESUL	T % RE	C	LIMITS	RPD	LIMIT
1,2-Dibromoethane(EDB)	ug/L	0.12	0.14	117		(60-140)	0	10
1,1,2,2-Tetrachloroethane(SURR	ug/L	0.24	0.28	117		(70-130)		

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

METHOD:

8082

Method Blank 288869 Matrix: SQ

Associated Lab Samples:

251313101 288869 288870

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
Aroclor-1016	U	7/22/2009	7/21/2009	ug/Kg	4.3	1
Aroclor-1221	U	7/22/2009	7/21/2009	ug/Kg	7.4	1
Aroclor-1232	U	7/22/2009	7/21/2009	ug/Kg	20	1
Aroclor-1242	U	7/22/2009	7/21/2009	ug/Kg	7.4	1
Ároclor-1248	U	7/22/2009	7/21/2009	ug/Kg	. 11	1
Aroclor-1254	U	7/22/2009	7/21/2009	ug/Kg	3.2	1
Aroclor-1260	U	7/22/2009	7/21/2009	ug/Kg	4.7	1
Decachlorobiphenyl(SURR) (S)	83.7	7/22/2009	7/21/2009	%	(33 - 140)	1

Method Blank 289003

Matrix: WQ

Associated Lab Samples:

251313102 289003 289004 289005

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
Arocior-1016	U	7/23/2009	7/23/2009	ug/L	0.36	1
Aroclor-1221	U	7/23/2009	7/23/2009	ug/L	0.43	1
Aroclor-1232	U	7/23/2009	7/23/2009	ug/L	0.2	1
Aroclor-1242	U	7/23/2009	7/23/2009	ug/L	0.31	1
Aroclor-1248	U	7/23/2009	7/23/2009	ug/L	0.13	1
Aroclor-1254	U	7/23/2009	7/23/2009	ug/L	0.12	1
Aroclor-1260	U	7/23/2009	7/23/2009	ug/L	0.25	1
Decachlorobiphenyl(SURR) (S)	98	7/23/2009	7/23/2009	%	(16 - 116)	1

LABORATORY CONTROL SAMPLE: 288870 SQ Matrix: LCS % REC **RPD SPIKE** SPIKE **PARAMETER** UNITS CONC **RESULT** % REC LIMITS **RPD** LIMIT Aroclor-1016 ug/Kg 667 508 76.2 (40-140)ug/Kg 438 (60-125)Aroclor-1260 667 65.7 Decachlorobiphenyl(SURR) (S) ug/Kg 66.7 66.1 99.1 (33-140)LABORATORY CONTROL SAMPLE: 289004 WQ Matrix: **SPIKE** LCS SPIKE % REC **RPD** UNITS CONC LIMITS RPD LIMIT **PARAMETER RESULT** % REC 10 8.7 87 (39-122)Aroclor-1016 ug/L Aroclor-1260 10 7.4 74 (30-118)ug/L Decachlorobiphenyl(SURR) (S) ug/L 0.94 94 (16-116)1

Jim Cheze To:

Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8082

LABORATORY CONTROL SAMPLE: 289005

Matrix: WQ

PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD Limit
Aroclor-1016	ug/L	10	9.2	92	(39-122)	5.6	15
Aroclor-1260	ug/L	10	7.6	76	(30-118)	2.7	12
Decachlorobiphenyl(SURR) (S)	ug/L	1	0.98	98	(16-116)		

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8260

Method Blank 072009BLK22

Matrix: SQ

Associated Lab Samples: 072009BLK22 072009LCS22 072009LCS22D 251313101

Parameter	Results	Analysis Date	Prep Date Units	RL	Dilution Factor
,1,1,2-Tetrachloroethane	U	7/20/2009	ug/kg	0.74	1
,1,1-Trichloroethane	U	7/20/2009	ug/kg	0.54	1
,1,2,2-Tetrachloroethane	U	7/20/2009	ug/kg	0.6	1
,1,2-Trichloroethane	υ	7/20/2009	ug/kg	0.81	1
,1-Dichloroethane	U	7/20/2009	ug/kg	0.69	1
,1-Dichloroethene	U	7/20/2009	ug/kg	0.66	1
,1-Dichloropropene	U	7/20/2009	ug/kg	0.48	1
,2,3-Trichlorobenzene	U	7/20/2009	ug/kg	0.49	1
,2,3-Trichloropropane	U	7/20/2009	ug/kg	0.88	1
,2,4-Trichlorobenzene	U	7/20/2009	ug/kg	0.58	1
,2,4-Trimethylbenzene	U	7/20/2009	ug/kg	0.33	1
,2-Dibromo-3-chloropropane	U	7/20/2009	ug/kg	2.2	1
,2-Dibromoethane(EDB)	U	7/20/2009	ug/kg	1	1
,2-Dichlorobenzene	U	7/20/2009	ug/kg	0.48	1
,2-Dichloroethane	U	7/20/2009	ug/kg	0.5	1
,2-Dichloropropane	U	7/20/2009	ug/kg	0.93	1
,3,5-Trimethylbenzene	U	7/20/2009	ug/kg	0.41	1
,3-Dichlorobenzene	U	7/20/2009	ug/kg	0.53	1
,3-Dichloropropane	U	7/20/2009	ug/kg	0.54	1
,4-Dichlorobenzene	U	7/20/2009	ug/kg	0.54	1
,2-Dichloropropane	U	7/20/2009	ug/kg	0.61	1
-Butanone	U	7/20/2009	ug/kg	1.7	1
-Chlorotoluene	U	7/20/2009	ug/kg	0.45	1
-Hexanone	J3U	7/20/2009	ug/kg	1.6	1
-Chlorotoluene	U	7/20/2009	ug/kg	0.36	1
-isopropyltoluene	U	7/20/2009	ug/kg	0.94	1
-Methyl-2-pentanone	U	7/20/2009	ug/kg	1.2	1
cetone	U	7/20/2009	ug/kg	4.8	1
crolein	J3U	7/20/2009	ug/kg	4.5	1
crylonitrile	U	7/20/2009	ug/kg	3.5	1
enzene	U	7/20/2009	ug/kg	0.42	1
romobenzene	U	7/20/2009	ug/kg	0.68	1
romochloromethane	U	7/20/2009	ug/kg	0.76	1
romodichloromethane	U	7/20/2009	ug/kg	0.43	1
romoform	J3RU	7/20/2009	ug/kg	2	1
romomethane	U	7/20/2009	ug/kg	1	1
arbon disulfide	U	7/20/2009	ug/kg	0.5	1
arbon tetrachloride	U	7/20/2009	ug/kg	0.49	1
hlorobenzene	U	7/20/2009	ug/kg	0.54	1
hloroethane	U	7/20/2009	ug/kg	1.2	1
hloroform	U	7/20/2009	ug/kg	0.52	1
hloromethane	U	7/20/2009	ug/kg	0.86	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8260

Method Blank 072009BLK22

Matrix: SQ

Associated Lab Samples: 072009BLK22 072009LCS22 072009LCS22D 251313101

		Analysis	Prep			Dilution
Parameter	Results	Date	Date U	nits	RL	Factor
cis-1,2-Dichloroethene	U	7/20/2009	L	ıg/kg	1.2	1
cis-1,3-Dichloropropene	U	7/20/2009	ι	ıg/kg	0.44	1
Dibromochloromethane	U	7/20/2009	ι	ıg/kg	0.65	1
Dibromomethane	U	7/20/2009	ι	ıg/kg	0.87	1
Dichlorodifluoromethane	U	7/20/2009	ι	ıg/kg	0.66	1
Ethylbenzene	U	7/20/2009	ι	ıg/kg	0.76	1
Hexachlorobutadiene	U	7/20/2009	ı	ıg/kg	0.82	1
Isopropylbenzene (Cumene)	U	7/20/2009	i	ıg/kg	0.79	1
Methyl iodide	U	7/20/2009	ł	ıg/kg	0.46	1
Methylene chloride	U	7/20/2009	ι	ıg/kg	1.2	1
MTBE	U	7/20/2009	ı	ıg/kg	0.56	1
Naphthalene	U	7/20/2009	t	ıg/kg	0.68	1
n-Butylbenzene	U	7/20/2009	ŧ	ıg/kg	0.46	1
n-Propylbenzene	U	7/20/2009	ı	ıg/kg	0.4	1
o-Xylene	U	7/20/2009		ug/kg	0.52	1
p,m-Xylene	U	7/20/2009		ug/kg	0.65	1
sec-Butylbenzene	U	7/20/2009	ŧ	ug/kg	0.6	1
Styrene	U	7/20/2009	t	ug/kg	0.43	1
tert-Butylbenzene	U	7/20/2009	ı	ug/kg	0.66	1
Tetrachloroethene	U	7/20/2009	ĺ	ug/kg	0.52	1
Toluene	U	7/20/2009	ŧ	ug/kg	0.87	1
trans-1,2-Dichloroethene	U	7/20/2009	ı	ug/kg	0.76	1
trans-1,3-Dichloropropene	U	7/20/2009	ı	ug/kg	0.56	1
Trichloroethene	U	7/20/2009		ug/kg	0.92	1
Trichlorofluoromethane	U	7/20/2009		ug/kg	0.63	1
Vinyl acetate	U	7/20/2009	1	ug/kg	1.1	1
Vinyl chloride	U	7/20/2009	1	ug/kg	0.95	1
1,2-Dichloroethane-d4(SURR) (S	120	7/20/2009		%	(71 - 124)	1
4-Bromofluorobenzene(SURR) (113	7/20/2009		%	(54 - 126)	1
Dibromofluoromethane(SURR) (115	7/20/2009		%	(68 - 119)	1
Toluene d8(SURR) (S)	109	7/20/2009		%	(59 - 127)	1

Method Blank 0721BLK55

Matrix: WQ

Associated Lab Samples:

0721BLK55 0721LCS52 0721LCS52D 251313102

		Analysis	Prep			Dilution	
Parameter	Results	Date	Date	Units	RL	Factor	
1,1,1,2-Tetrachloroethane	U	7/21/2009		ug/l	0.25	1	

To: Jim Cheze

WORK ORDER: 2513131

Shaw Group

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8260

Method Blank 0721BLK55

Matrix: WQ

Associated Lab Samples: 0721BLK55 0721LCS52 0721LCS52D 251313102

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
1,1,1-Trichloroethane	U	7/21/2009		ug/l	0.19	1
1,1,2,2-Tetrachloroethane	υ	7/21/2009		ug/l	0.33	1
1,1,2-Trichloroethane	U	7/21/2009		ug/l	0.28	1
1,1-Dichloroethane	U	7/21/2009		ug/l	0.28	1
1,1-Dichloroethene	U	7/21/2009		ug/l	0.24	1
1,1-Dichloropropene	U	7/21/2009		ug/l	0.19	1
1,2,3-Trichlorobenzene	U	7/21/2009		ug/l	0.61	1
1,2,3-Trichloropropane	U	7/21/2009		ug/l	0.76	1
1,2,4-Trichlorobenzene	U	7/21/2009		ug/l	0.5	1
1,2,4-Trimethylbenzene	U	7/21/2009		ug/l	0.17	1
1,2-Dibromo-3-chloropropane	U	7/21/2009		ug/l	1.4	1
1,2-Dibromoethane(EDB)	U	7/21/2009		ug/l	0.33	1
1,2-Dichlorobenzene	U	7/21/2009		ug/l	0.26	1
1,2-Dichloroethane	U	7/21/2009		ug/l	0.4	1
1,2-Dichloropropane	υ	7/21/2009		ug/l	0.27	1
1,3,5-Trimethylbenzene	U	7/21/2009		ug/l	0.22	1
1,3-Dichlorobenzene	U	7/21/2009		ug/i	0.2	1
1,3-Dichloropropane	U	7/21/2009		ug/l	0.19	1
1,4-Dichlorobenzene	U	7/21/2009		ug/l	0.24	1
2,2-Dichloropropane	U	7/21/2009		ug/l	0.32	1
2-Butanone	U	7/21/2009		ug/l	4	1
2-Chlorotoluene	U	7/21/2009		ug/l	0.32	1
2-Hexanone	U	7/21/2009		ug/l	0.95	1
4-Chlorotoluene	U	7/21/2009		ug/i	0.12	1
4-Isopropyltoluene	U	7/21/2009		ug/l	0.24	1
4-Methyl-2-pentanone	U	7/21/2009		ug/l	0.61	1
Acetone	U	7/21/2009		ug/l	5.6	1
Acrolein	U	7/21/2009		ug/l	3.3	1
Acrylonitrile	U	7/21/2009		ug/l	1.3	1
Benzene	U	7/21/2009		ug/l	0.16	1
Bromobenzene	ť	7/21/2009		ug/l	0.27	1
Bromochloromethane	U	7/21/2009		ug/l	0.38	1
Bromodichloromethane	U	7/21/2009		ug/l	0.15	1
Bromoethane	U	7/21/2009		ug/l	0.45	1
Bromoform	U	7/21/2009		ug/l	0.36	1
Bromomethane	Ü	7/21/2009		ug/l	0.76	1
Carbon disulfide	U	7/21/2009		ug/l	0.29	1
Carbon tetrachloride	U	7/21/2009		ug/l	0.33	1
Chlorobenzene	U	7/21/2009		ug/l	0.18	1
Chloroethane	J3MU	7/21/2009		ug/l	0.99	1
Chloroform	U	7/21/2009		ug/l	0.29	1
Chloromethane	Ū	7/21/2009		ug/l	0.68	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8260

Method Blank 0721BLK55

Matrix: WQ

Associated Lab Samples: 0721BLK55 0721LCS52 0721LCS52D 251313102

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
			Date			
cis-1,2-Dichloroethene	U	7/21/2009		ug/l	0.29	1
cis-1,3-Dichloropropene	U	7/21/2009		ug/l	0.23	1
Dibromochloromethane	U	7/21/2009		ug/l	0.34	1
Dibromomethane	U	7/21/2009		ug/l	0.53	1
Dichlorodifluoromethane	U	7/21/2009		ug/l	0.23	1
Ethylbenzene	U	7/21/2009		ug/l	0.43	1
Hexachlorobutadiene	U	7/21/2009		ug/l	0.62	1
sopropylbenzene (Cumene)	U	7/21/2009		ug/l	0.41	1
Methyl iodide	U	7/21/2009		ug/l	0.4	1
Methylene chloride	U	7/21/2009		ug/l	0.52	1
итве	U	7/21/2009		ug/l	0.26	1
Naphthalene	U	7/21/2009		ug/l	0.32	1
n-Butylbenzene	U	7/21/2009		ug/l	0.22	1
n-Propylbenzene	U	7/21/2009		ug/i	0.28	1
o-Xylene	U	7/21/2009		ug/l	0.2	1
,m-Xylene	U	7/21/2009		ug/l	0.27	1
ec-Butylbenzene	U	7/21/2009		ug/l	0.2	1
Styrene	U	7/21/2009		ug/l	0.2	1
ert-Butylbenzene	U	7/21/2009		ug/l	0.28	1
Tetrachloroethene	U	7/21/2009		ug/l	0.35	1
Toluene	U	7/21/2009		ug/l	0.22	1
rans-1,2-Dichloroethene	U	7/21/2009		ug/l	0.23	1
rans-1,3-Dichloropropene	U	7/21/2009		ug/l	0.17	1
richloroethene	U	7/21/2009		ug/l	0.42	1
richlorofluoromethane	U	7/21/2009		ug/l	0.45	1
/inyl acetate	U	7/21/2009		ug/l	0.36	1
/inyl chloride	U	7/21/2009		ug/l	0.28	1
,2-Dichloroethane-d4(SURR) (S	106	7/21/2009		%	(80 - 120)	1
l-Bromofluorobenzene(SURR) (104	7/21/2009		%	(86 - 115)	1
Dibromofluoromethane(SURR) (104	7/21/2009		%	(86 - 118)	1
oluene d8(SURR) (S)	102	7/21/2009		%	(88 - 110)	1

LABORATORY CONTR	OL SAMPL	E: 07200)9LCS22	Matrix :	SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1,1,1,2-Tetrachloroethane	ug/kg	20	21.6	108	(82-121)		
1,1,1-Trichloroethane	ug/kg	20	18.9	94.5	(70-130)		
1,1,2,2-Tetrachloroethane	ug/kg	20	21.5	108	(82-122)		
1,1,2-Trichloroethane	ug/kg	20	20.2	101	(70-130)		
1,1-Dichloroethane	ug/kg	20	19.6	98	(70-130)		

To: Jim Cheze

WORK ORDER: 2513131

Shaw Group

PROJECT ID:

Pinellas Bayway Site #2

METHOD: 8260

LABORATORY CONTROL SAMPLE: 072009LCS22

Matrix: SQ

LABORATORY CONTRO	LSANIFL	E: 0/200			SQ		
		SPIKE	LCS	SPIKE	% REC		RPD
PARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMIT
1,1-Dichloroethene	ug/kg	20	18	90	(73-130)		
1,1-Dichloropropene	ug/kg	20	19.2	96	(70-130)		
1,2,3-Trichlorobenzene	ug/kg	20	18.4	92	(70-130)		
1,2,3-Trichloropropane	ug/kg	20	23.7	118	(74-129)		
1,2,4-Trichlorobenzene	ug/kg	20	19.1	95.5	(70-130)		
1,2,4-Trimethylbenzene	ug/kg	20	19.6	98	(70-130)		
1,2-Dibromo-3-chloropropane	ug/kg	20	19.2	96	(72-143)		
1,2-Dibromoethane(EDB)	ug/kg	20	20.4	102	(70-130)		
1,2-Dichlorobenzene	ug/kg	20	19.3	96.5	(70-130)		
1,2-Dichloroethane	ug/kg	20	20.2	101	(78-136)		
1,2-Dichloropropane	ug/kg	20	19.3	96.5	(70-130)		
1,3,5-Trimethylbenzene	ug/kg	20	20	100	(70-130)		
1,3-Dichlorobenzene	ug/kg	20	19.8	99	(70-130)		
1,3-Dichloropropane	ug/kg	20	20.2	101	(70-130)		
1,4-Dichlorobenzene	ug/kg	20	20.4	102	(70-130)		
2,2-Dichloropropane	ug/kg	20	19.5	97.5	(73-132)		
2-Butanone	ug/kg	40	51.5	129	(72-136)		
2-Chlorotoluene	ug/kg	20	19.1	95.5	(81-122)		
2-Hexanone	ug/kg	40	52.4	131	* (72-127)		
1-Chlorotoluene	ug/kg	20	19.6	98	(70-130)		
1-isopropyitoluene	ug/kg	20	19.1	95.5	(70-130)		
4-Methyl-2-pentanone	ug/kg	40	43.8	110	(80-125)		
Acetone	ug/kg	40	53.4	134	(59-142)		
Acrolein	ug/kg	40	45.2	113	* (70-111)		
Acrylonitrile	ug/kg	40	43	108	(74-117)		
Benzene	ug/kg	20	19.2	96	(70-130)		
Bromobenzene	ug/kg	20	19.9	99.5	(79-141)		
Bromochloromethane	ug/kg	20	19.3	96.5	(70-130)		
Bromodichloromethane	ug/kg	20	20.3	102	(70-130)		
Bromoform	ug/kg	20	23.3	116	(79-119)		
Bromomethane	ug/kg	20	18.9	94.5	(22-136)		
Carbon disulfide	ug/kg	20	18.6	93	(76-121)		
Carbon tetrachloride	ug/kg	20	19.8	99	(70-130)		
Chlorobenzene	ug/kg	20	20	100	(70-130)		
Chloroethane	ug/kg	20	20	100	(48-147)		
Chloroform	ug/kg	20	19.3	96.5	(70-130)		
Chloromethane	ug/kg	20	19	95	(63-135)		
cis-1,2-Dichloroethene	ug/kg	20	19.9	99.5	(70-130)		
cis-1,3-Dichloropropene	ug/kg	20	20.3	102	(70-130)		
Dibromochloromethane	ug/kg	20	20.4	102	(75-131)		
Dibromomethane	ug/kg	20	20	100	(82-133)		
Dichlorodifluoromethane	ug/kg	20	17.9	89.5	(52-139)		
Ethylbenzene	ug/kg	20	19.3	96.5	(70-130)		
Hexachlorobutadiene	ug/kg	20	20.8	104	(70-130)		
Isopropylbenzene (Cumene)	ug/kg	20	21.1	106	(70-130)		
Methyl iodide	ug/kg	20	18.9	94.5	(70-130)		
Methylene chloride	ug/kg	20	18.3	91.5	(78-122)		

To: Jim Cheze **WORK ORDER: 2513131**

Shaw Group

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8260

PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD Limit		
MTBE	ug/kg	20	19.9	99.5	(79-132)				
Naphthalene	ug/kg	20	19.9	99.5	(70-130)				
n-Butylbenzene	ug/kg	20	17.8	89	(70-130)				
n-Propylbenzene	ug/kg	20	19.5	97.5	(81-116)				
o-Xylene	ug/kg	20	19.3	96.5	(70-130)				
p,m-Xylene	ug/kg	40	40.4	101	(70-130)				
sec-Butylbenzene	ug/kg	20	19.6	98	(70-130)				
Styrene	ug/kg	20	20.6	103	(70-130)				
tert-Butylbenzene	ug/kg	20	19.9	99.5	(70-130)				
Tetrachloroethene	ug/kg	20	18.9	94.5	(69-134)				
Toluene	ug/kg	20	19.2	96	(70-130)				
trans-1,2-Dichloroethene	ug/kg	20	18.1	90.5	(70-130)				
trans-1,3-Dichloropropene	ug/kg	20	20.5	102	(82-129)				
Trichloroethene	ug/kg	20	19.7	98.5	(75-126)				
Trichlorofluoromethane	ug/kg	20	19	95	(61-136)				
Vinyl acetate	ug/kg	20	19.1	95.5	(60-115)				
Vinyl chloride	ug/kg	20	18.7	93.5	(65-129)				
1,2-Dichloroethane-d4(SURR) (S	ug/kg	50	48	96	(71-124)				
4-Bromofluorobenzene(SURR) (ug/kg	50	47.3	94.6	(54-126)				
Dibromofluoromethane(SURR) (ug/kg	50	44.8	89.6	(68-119)				
Toluene d8(SURR) (S)	ug/kg	50	47.3	94.6	(59-127)				
LABORATORY CONTROL	SAMPLE	: 07200	9LCS22D	Matrix:	SQ				

				1.20001 222	- (
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD Limit	
1,1,1,2-Tetrachloroethane	ug/kg	20	21.1	106	(82-121)	2.3	9	
1,1,1-Trichloroethane	ug/kg	20	17.9	89.5	(70-130)	5.4	30	
1,1,2,2-Tetrachloroethane	ug/kg	20	20.6	103	(82-122)	4.3	18	
1,1,2-Trichloroethane	ug/kg	20	20.1	100	(70-130)	0.5	30	
1,1-Dichloroethane	ug/kg	20	19.1	95.5	(70-130)	2.6	30	
1,1-Dichloroethene	ug/kg	20	19	95	(73-130)	5.4	16	
1,1-Dichloropropene	ug/kg	20	19.7	98.5	(70-130)	2.6	30	
1,2,3-Trichlorobenzene	ug/kg	20	18.5	92.5	(70-130)	0.5	30	
1,2,3-Trichloropropane	ug/kg	20	21	105	(74-129)	12.1	13	
1,2,4-Trichlorobenzene	ug/kg	20	18.7	93.5	(70-130)	2.1	30	
1,2,4-Trimethylbenzene	ug/kg	20	19.6	98	(70-130)	0	30	
1,2-Dibromo-3-chloropropane	ug/kg	20	16.9	84.5	(72-143)	12.7	23	
1,2-Dibromoethane(EDB)	ug/kg	20	19.9	99.5	(70-130)	2.5	30	
1,2-Dichlorobenzene	ug/kg	20	19.6	98	(70-130)	1.5	30	
1,2-Dichloroethane	ug/kg	20	19.3	96.5	(78-136)	4.6	12	
1,2-Dichloropropane	ug/kg	20	20.1	100	(70-130)	4.1	30	
1,3,5-Trimethylbenzene	ug/kg	20	19.2	96	(70-130)	4.1	30	
1,3-Dichlorobenzene	ug/kg	20	19.1	95.5	(70-130)	3.6	30	
1,3-Dichloropropane	ug/kg	20	19.4	97	(70-130)	4	30	
1,4-Dichlorobenzene	ug/kg	20	19.3	96.5	(70-130)	5.5	30	
2,2-Dichloropropane	ug/kg	20	20.2	101	(73-132)	3.5	18	
2-Butanone	ug/kg	40	49.8	124	(72-136)	3.4	30	

To: Jim Cheze Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8260

LABORATORY CONTROL SAMPLE: 072009LCS22D Matrix: SQ

DADAMETED	111170	SPIKE	LCS	SPIKE	% REC		RPI
PARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMI
2-Chlorotoluene	ug/kg	20	19.1	95.5	(81-122)	0	12
2-Hexanone	ug/kg	40	48.9	122	(72-127)	6.9	21
4-Chlorotoluene	ug/kg	20	19.7	98.5	(70-130)	0.5	30
4-Isopropyltoluene	ug/kg	20	19.4	97	(70-130)	1.6	30
4-Methyl-2-pentanone	ug/kg	40	41.9	105	(80-125)	4.4	15
Acetone	ug/kg	40	51.6	129	(59-142)	3.4	30
Acrolein	ug/kg	40	46.3	116	(70-111)	2.4	30
Acrylonitrile	ug/kg	40	42.8	107	(74-117)	0.5	30
Benzene	ug/kg	20	19.7	98.5	(70-130)	2.6	30
Bromobenzene	ug/kg	20	19.5	97.5	(79-141)	2	13
Bromochloromethane	ug/kg	20	18.4	92	(70-130)	4.8	30
3romodichloromethane	ug/kg	20	20.3	102	(70-130)	0	30
Bromoform	ug/kg	20	18.9	94.5	(79-119)	20.9 *	13
Bromomethane	ug/kg	20	18.4	92	(22-136)	2.7	30
Carbon disulfide	ug/kg	20	18.7	93.5	(76-121)	0.5	17
Carbon tetrachloride	ug/kg	20	20.2	101	(70-130)	2	30
Chlorobenzene	ug/kg	20	19.5	97.5	(70-130)	2.5	30
Chloroethane	ug/kg	20	19.3	96.5	(48-147)	3.6	16
Chloroform	ug/kg	20	19.4	97	(70-130)	0.5	30
Chloromethane	ug/kg	20	18.7	93.5	(63-135)	1.6	18
is-1,2-Dichloroethene	ug/kg	20	19.8	99	(70-130)	0.5	30
sis-1,3-Dichloropropene	ug/kg	20	19	95	(70-130)	6.6	30
Dibromochloromethane	ug/kg	20	19.9	99.5	(75-131)	2.5	10
Dibromomethane	ug/kg	20	19.4	97	(82-133)	3	13
Dichlorodifluoromethane	ug/kg	20	18	90	(52-139)	0.6	20
Ethylbenzene	ug/kg	20	19.4	97	(70-130)	0.5	30
lexachlorobutadiene	ug/kg	20	19.4	97	(70-130)	7	30
sopropylbenzene (Cumene)	ug/kg	20	18.7	93.5	(70-130)	12.1	30
Methyl iodide	ug/kg	20	19.2	96	(70-130)	1.6	30
flethylene chloride	ug/kg	20	17.6	88	(78-122)	3.9	17
ITBE	ug/kg	20	20.2	101	(79-132)	1.5	17
laphthalene	ug/kg	20	19.2	96	(70-130)	3.6	30
-Butylbenzene	ug/kg	20	19.2	96	(70-130)	7.6	30
-Propylbenzene	ug/kg	20	19	95	(81-116)	2.6	10
-Xylene	ug/kg	20	19.5	97.5	(70-130)	1	30
,m-Xylene	ug/kg	40	39.8	99.5	(70-130)	1.5	30
ec-Butylbenzene	ug/kg	20	20	100	(70-130)	2	30
Styrene	ug/kg	20	19.8	99	(70-130)	4	30
ert-Butylbenzene	ug/kg	20	19.3	96.5	(70-130)	3.1	30
etrachloroethene	ug/kg	20	19	95	(69-134)	0.5	16
oluene	ug/kg	20	19.2	96	(70-130)	0	30
ans-1,2-Dichloroethene	ug/kg	20	19.6	98	(70-130)	8	30
ans-1,3-Dichloropropene	ug/kg	20	21.1	106	(82-129)	2.9	14
richloroethene	ug/kg	20	19.5	97.5	(75-126)	1	12
richlorofluoromethane	ug/kg	20	20.6	103	(61-136)	8.1	14
inyl acetate	ug/kg	20	18.7	93.5	(60-115)	2.1	30
'inyl chloride	ug/kg	20	19.3	96.5	(65-129)	3.2	21

To: Jim Cheze

Carbon tetrachloride

Shaw Group

WORK ORDER: 2513131

(67-138)

102

PROJECT ID:

Pinellas Bayway Site #2

		— МЕ	THOD: 8	3260			
LABORATORY CONTROI	SAMPL	E: 07200	9LCS22D	Matrix :	SQ		
PARAMETER	UNITS	SPIKE	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1,2-Dichloroethane-d4(SURR) (S	ug/kg	50	58	116	(71-124)		
4-Bromofluorobenzene(SURR) (ug/kg	50	55.7	111	(54-126)		
Dibromofluoromethane(SURR) (ug/kg	50	55.2	110	(68-119)		
		50 50	54.6	109	(59-127)		
Toluene d8(SURR) (S) LABORATORY CONTROI	ug/kg SAM/DT		CS52	Matrix:	(39-127) WQ		
LABORATORI CONTROL	J SMIVIL L				•		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1,1,1,2-Tetrachloroethane	ug/l	20	22.3	112	(75-133)		
1,1,1-Trichloroethane	ug/l	20	21.6	108	(79-123)		
1,1,2,2-Tetrachloroethane	ug/l	20	19.6	98	(84-113)		
1,1,2-Trichloroethane	ug/l	20	20.4	102	(80-117)		
1,1-Dichloroethane	ug/l	20	21.4	107	(76-118)		
1,1-Dichloroethene	ug/l	20	21.4	107	(81-119)		
I,1-Dichloropropene	ug/l	20	21.3	106	(80-119)		
1,2,3-Trichlorobenzene	ug/l	20	21.3	106	(73-141)		
1,2,3-Trichloropropane	ug/l	20	18.5	92.5	(84-119)		
,2,4-Trichlorobenzene	ug/l	20	21.2	106	(83-123)		
,2,4-Trimethylbenzene	ug/l	20	21.5	108	(82-124)		
,,_,	ug/l	20	20	100	(63-130)		
,2-Dibromoethane(EDB)	ug/l	20	20.2	101	(84-121)		
,2-Dichlorobenzene	ug/l	20	21.2	106	(70-130)		
1,2-Dichloroethane	ug/l	20	21.9	110	(83-114)		
1,2-Dichloropropane	ug/l	20	18.7	93.5	(74-118)		
1,3,5-Trimethylbenzene	ug/l	20	21.6	108	(84-124)		
1,3-Dichlorobenzene	ug/l	20	21	105	(84-118)		
1,3-Dichloropropane	ug/l	20	19.9	99.5	(83-112)		
1,4-Dichlorobenzene	ug/l	20	20.3	102	(70-130)		
2,2-Dichloropropane	ug/l	20	24.2	121	(52-147)		
• •	ug/i	40	38	95	(76-124)		
2-Butanone	_	20	21.7	108	(70-124)		
2-Chlorotoluene	ug/l	40	38.8	97	(75-130) (75-132)		
2-Hexanone	ug/l	20	20.9	104	(83-123)		
4-Chlorotoluene	ug/i		20.9	110	(83-126)		
4-Isopropyltoluene	ug/l	20			(61-134)		
4-Methyl-2-pentanone	ug/l	40	40.7	102			
Acetone	ug/l	40	32.5	81.2	(45-156) (61-125)		
Acrolein	ug/l	40	33.9	84.8	(61-125)		
Acrylonitrile	ug/l	40 20	41.9	105 105	(62-132) (71-130)		
Benzene	ug/l	20	21	105	(71-120)		
Bromobenzene	ug/l	20	20.8	104	(74-120)		
Bromochloromethane	ug/l	20	20.4	102	(70-116)		
Bromodichloromethane	ug/i	20	21.4	107	(78-117)		
Bromoethane	ug/l	20	24.3	122	(60-150)		
Bromoform	ug/l	20	20.2	101	(71-128)		
Bromomethane	ug/l	20	25.3	126	(58-144)		
Carbon disulfide	ug/l	20	22.6	113	(65-121)		
Carbon totrachlorida	ua/I	20	20.5	102	(67_138)		

20

20.5

ug/l

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8260

LABORATORY CONTROL	L SAMPL	E: 0721L	CS52	Matrix :	WQ		
		SPIKE	LCS	SPIKE	% REC		RPD
PARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMIT
Chlorobenzene	ug/l	20	21.1	106	(70-130)		·
Chloroethane	ug/l	20	30.9	154 *	(72-135)		
Chloroform	ug/l	20	20.8	104	(80-115)		
hioromethane	ug/l	20	19.4	97	(63-124)		
s-1,2-Dichloroethene	ug/l	20	22.1	110	(75-123)		
s-1,3-Dichloropropene	ug/l	20	22.4	112	(63-129)		
bromochloromethane	ug/l	20	21.9	110	(78-123)		
promomethane	ug/l	20	20.4	102	(75-119)		
hlorodifluoromethane	ug/l	20	21.1	106	(62-133)		
ylbenzene	ug/l	20	21	105	(70-130)		
cachlorobutadiene	ug/l	20	23	115	(68-149)		
propylbenzene (Cumene)	ug/l	20	21.3	106	(83-123)		
thyl iodide	ug/l	20	21.3	106	(56-133)		
hylene chloride	ug/l	20	21.6	108	(75-111)		
BE	ug/l	20	21.1	106	(76-123)		
ohthalene	ug/l	20	20.6	103	(80-131)		
utylbenzene	ug/i	20	22.1	110	(83-125)		
ropylbenzene	ug/l	20	21.7	108	(82-121)		
rlene	ug/l	20	21.7	108	(70-130)		
Xylene	ug/l	40	41.8	104	(70-130)		
Butylbenzene	ug/l	20	21.8	109	(83-122)		
ene	ug/l	20	21.2	106	(70-130)		
Butylbenzene	ug/l	20	21.6	108	(82-125)		
achloroethene	ug/l	20	21.1	106	(70-130)		
ene	ug/l	20	21.3	106	(75-119)		
s-1,2-Dichloroethene	ug/l	20	19.2	96	(79-121)		
-1,3-Dichloropropene	ug/l	20	20	100	(68-127)		
loroethene	ug/l	20	21.7	108	(76-123)		
lorofluoromethane	ug/l	20	22.8	114	(74-135)		
acetate	ug/i	20	20.4	102	(49-136)		
l chloride	ug/l	20	23.4	117	(60-124)		
Dichloroethane-d4(SURR) (S	ug/l	50	51.8	104	(80-120)		
romofluorobenzene(SURR) (ug/l	50	52.1	104	(86-115)		
romofluoromethane(SURR) (ug/i	50	51.7	103	(86-118)		
ene d8(SURR) (S)	ug/l	50	50.6	101	(88-110)		
BORATORY CONTROL	•		CS52D	Matrix :	WQ		
•		SPIKE	LCS	SPIKE	% REC		RPD
ARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMIT
	0.11.10						
,1,2-Tetrachloroethane	ug/l	20	22.6	113	(75-133)	1.3	20
,1-Trichloroethane	ug/l	20	21.8	109	(79-123)	0.9	20
2,2-Tetrachloroethane	ug/l	20	19.9	99.5	(84-113)	1.5	20
2-Trichloroethane	ug/l	20	20.5	102	(80-117)	0.5	20
-Dichloroethane	ug/l	20	21.5	108	(76-118)	0.5	20
-Dichloroethene	ug/l	20	23.6	118	(81-119)	9.8	20
-Dichloropropene	ug/l	20	21.4	107	(80-119)	0.5	20
,3-Trichlorobenzene	ug/l	20	21.1	106	(73-141)	0.9	20

Jim Cheze To:

Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8260

LABORATORY CONTROL SAMPLE: 0721LCS52D Matrix: WQ

ABORATORI CONTRO	DESAMILLE. VIZIDOSSZD MALIA. WQ						
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC	RPD	RPE LIMI
1,2,3-Trichloropropane	ug/i	20	19.2	96	(84-119)	3.7	20
I,2,4-Trichlorobenzene	ug/l	20	21.1	106	(83-123)	0.5	20
1,2,4-Trimethylbenzene	ug/l	20	21.6	108	(82-124)	0.5	20
,2-Dibromo-3-chloropropane	ug/l	20	20.7	104	(63-130)	3.4	20
,2-Dibromoethane(EDB)	ug/l	20	20.3	102	(84-121)	0.5	20
,2-Dichlorobenzene	ug/l	20	20.9	104	(70-130)	1.4	20
.2-Dichloroethane	ug/l	20	20.8	104	(83-114)	5.2	20
,2-Dichloropropane	ug/i	20	21.5	108	(74-118)	13.9	20
,3,5-Trimethylbenzene	ug/l	20	21.8	109	(84-124)	0.9	20
,3-Dichlorobenzene	ug/l	20	21.2	106	(84-118)	0.9	20
,3-Dichloropropane	ug/l	20	20.1	100	(83-112)	1	20
,4-Dichlorobenzene	ug/l	20	20.2	101	(70-130)	0.5	20
2,2-Dichloropropane	ug/i	20	24.4	122	(52-147)	0.8	20
2-Butanone	ug/l	40	38.7	96.8	(76-124)	1.8	20
2-Chlorotoluene	ug/l	20	21.8	109	(70-130)	0.5	20
2-Hexanone	ug/l	40	40	100	(75-132)	3	20
I-Chlorotoluene	ug/l	20	21.4	107	(83-123)	2.4	20
I-isopropyltoluene	ug/l	20	21.9	110	(83-126)	0.5	20
I-Methyl-2-pentanone	ug/l	40	40.9	102	(61-134)	0.5	20
Acetone	ug/l	40	33.4	83.5	(45-156)	2.7	20
Acrolein	ug/l	40	33	82.5	(61-125)	2.7	20
Acrylonitrile	ug/l	40	41.9	105	(62-132)	0	20
Benzene	ug/l	20	21.2	106	(71-120)	0.9	20
Bromobenzene	ug/l	20	21.1	106	(74-120)	1.4	20
Bromochloromethane	ug/l	20	20.4	102	(70-116)	0	20
Bromodichloromethane	ug/i	20	21.4	107	(78-117)	0	20
Bromoethane	ug/l	20	24.7	124	(60-150)	1.6	20
Bromoform	ug/l	20	20.9	104	(71-128)	3.4	20
Bromomethane	ug/i	20	24	120	(58-144)	5.3	20
Carbon disulfide	ug/l	20	21.8	109	(65-121)	3.6	20
Carbon tetrachloride	ug/l	20	20.9	104	(67-138)	1.9	20
Chlorobenzene	ug/l	20	21.2	106	(70-130)	0.5	20
Chloroethane	ug/l	20	28.7		* (72-135)	7.4	20
Chloroform	ug/l	20	20.8	104	(80-115)	0	20
Chloromethane	ug/l	20	20.1	100	(63-124)	3.5	20
is-1,2-Dichloroethene	ug/l	20	21.6	108	(75-123)	2.3	20
is-1,3-Dichloropropene	ug/l	20	22	110	(63-129)	1.8	20
Dibromochloromethane	ug/l	20	21.4	107	(78-123)	2.3	20
Dibromomethane	ug/i	20	20.3	102	(75-129) (75-119)	0.5	20
Dichlorodifluoromethane	ug/l	20	21.2	106	(62-133)	0.5	20
Ethylbenzene	ug/l	20	21.4	107	(70-130)	1.9	20
lexachlorobutadiene	ug/l	20	22.5	112	(68-149)	2.2	20
sopropylbenzene (Cumene)	ug/i ug/i	20	21.8	109	(83-123)	2.3	20
sobioblineireire (ontrette)	ug/l	20	21.0	110	(56-133)	3.2	20
fethyl iodide		20	~~	110	(50-155)	J.Z.	20
fethyl iodide			21.4	107	(75.414)	ሰ ሰ	20
flethyl iodide flethylene chloride fTBE	ug/l ug/l	20 20	21.4 20.8	107 104	(75-111) (76-123)	0.9 1.4	20 20

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

METHOD: 8260

LABORATORY CONTRO	L SAMPLE:	0721I	LCS52D	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
n-Butylbenzene	ug/l	20	22.1	110	(83-125)	0	20
n-Propylbenzene	ug/l	20	21.6	108	(82-121)	0.5	20
o-Xylene	ug/i	20	21.9	110	(70-130)	0.9	20
p,m-Xylene	ug/l	40	41.9	105	(70-130)	0.2	20
sec-Butylbenzene	ug/l	20	21.9	110	(83-122)	0.5	20
Styrene	ug/l	20	21.1	106	(70-130)	0.5	20
ert-Butylbenzene	ug/l	20	21.9	110	(82-125)	1.4	20
etrachloroethene	ug/l	20	20.8	104	(70-130)	1.4	20
oluene	ug/l	20	21.4	107	(75-119)	0.5	20
ans-1,2-Dichloroethene	ug/l	20	21.6	108	(79-121)	11.8	20
ans-1,3-Dichloropropene	ug/i	20	20.2	101	(68-127)	1	20
richloroethene	ug/l	20	22	110	(76-123)	1.4	20
richlorofluoromethane	ug/l	20	23.7	118	(74-135)	3.9	21
inyl acetate	ug/l	20	20.4	102	(49-136)	0	20
'inyl chloride	ug/l	20	23.4	117	(60-124)	0	20
,2-Dichloroethane-d4(SURR) (S	ug/l	50	51.7	103	(80-120)		
Bromofluorobenzene(SURR) (ug/l	50	52	104	(86-115)		
ibromofluoromethane(SURR) (ug/l	50	51.6	103	(86-118)		
oluene d8(SURR) (S)	ug/l	50	50.7	101	(88-110)		

To: Jim Cheze

eze WORK ORDER: 2513131

Shaw Group

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8270

Method Blank 289402

Matrix: SQ

Associated Lab Samples: 251313101 289402 289403

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
1,2,4-Trichlorobenzene	U	7/31/2009	7/30/2009	ug/kg	58	1
1,2-Dichlorobenzene	U	7/31/2009	7/30/2009	ug/kg	57	1
1,3-Dichlorobenzene	U	7/31/2009	7/30/2009	ug/kg	61	1
1,4-Dichlorobenzene	U	7/31/2009	7/30/2009	ug/kg	63	1
1-Methylnaphthalene	U	7/31/2009	7/30/2009	ug/kg	62	1
2,2-Oxybis(1-chloropropane)	U	7/31/2009	7/30/2009	ug/kg	220	1
2,4,5-Trichlorophenol	U	7/31/2009	7/30/2009	ug/kg	74	1
2,4,6-Trichlorophenol	U	7/31/2009	7/30/2009	ug/kg	68	1
2,4-Dichlorophenol	U	7/31/2009	7/30/2009	ug/kg	75	1
2,4-Dimethylphenol	U	7/31/2009	7/30/2009	ug/kg	57	1
2,4-Dinitrophenol	J3U	7/31/2009	7/30/2009	ug/kg	220	1
2,4-Dinitrotoluene	J3U	7/31/2009	7/30/2009	ug/kg	49	1
2,6-Dinitrotoluene	J3U	7/31/2009	7/30/2009	ug/kg	50	1
2-Chloronaphthalene	U	7/31/2009	7/30/2009	ug/kg	66.7	1
2-Chlorophenol	U	7/31/2009	7/30/2009	ug/kg	69	1
2-Methyl-4,6-dinitrophenol	U	7/31/2009	7/30/2009	ug/kg	266	1
2-Methylnaphthalene	J3U	7/31/2009	7/30/2009	ug/kg	58	1
2-Methylphenol (o-Cresol)	U	7/31/2009	7/30/2009	ug/kg	96	1
2-Nitroaniline	J3MU	7/31/2009	7/30/2009	ug/kg	57	1
2-Nitrophenol	U	7/31/2009	7/30/2009	ug/kg	72	1
3,3'-Dichlorobenzidine	υ	7/31/2009	7/30/2009	ug/kg	59	1
3-Nitroaniline	J3U	7/31/2009	7/30/2009	ug/kg	80	1
4-Bromophenyl-phenylether	U	7/31/2009	7/30/2009	ug/kg	49	1
4-Chloro-3-methylphenol	U	7/31/2009	7/30/2009	ug/kg	56	1
4-Chloroaniline	U	7/31/2009	7/30/2009	ug/kg	63	1
4-Chlorophenyl-phenylether	U	7/31/2009	7/30/2009	ug/kg	51	1
4-Methylphenol	U	7/31/2009	7/30/2009	ug/kg	59	1
4-Nitroaniline	J3U	7/31/2009	7/30/2009	ug/kg	88	1
4-Nitrophenol	U	7/31/2009	7/30/2009	ug/kg	53	1
Acenaphthene	U	7/31/2009	7/30/2009	ug/kg	49	1
Acenaphthylene	U	7/31/2009	7/30/2009	ug/kg	55	1
Aniline	U	7/31/2009	7/30/2009	ug/kg	77	1
Anthracene	U	7/31/2009	7/30/2009	ug/kg	60	1
Benzidine	U	7/31/2009	7/30/2009	ug/kg	600	1
Benzo(a)anthracene	U	7/31/2009	7/30/2009	ug/kg	57	1
Benzo(a)pyrene	U	7/31/2009	7/30/2009	ug/kg	43	1
Benzo(b)fluoranthene	U	7/31/2009	7/30/2009	ug/kg	63	1
Benzo(g,h,i)perylene	U	7/31/2009	7/30/2009	ug/kg	40	1
Benzo(k)fluoranthene	U	7/31/2009	7/30/2009	ug/kg	57	1
Benzoic acid	U	7/31/2009	7/30/2009	ug/kg	270	1
Benzyl alcohol	J3U	7/31/2009	7/30/2009	ug/kg	92	1
Bis(2-Chloroethoxy)methane	U	7/31/2009	7/30/2009	ug/kg	57	1

FLDOH #E84207

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

METHOD: 8270

Method Blank 289402

Matrix: SQ

Associated Lab Samples:

251313101 289402 289403

		Analysis	Prep			Dilution
Parameter	Results	Date	Date	Units	RL	Factor
Bis(2-Chloroethyl)ether	U	7/31/2009	7/30/2009	ug/kg	67	1
bis(2-ethylhexyl)phthalate	U	7/31/2009	7/30/2009	ug/kg	83	1
Butylbenzylphthalate	U	7/31/2009	7/30/2009	ug/kg	63	1
Chrysene	U	7/31/2009	7/30/2009	ug/kg	34	1
Dibenz(a,h)anthracene	U	7/31/2009	7/30/2009	ug/kg	41	1
Dibenzofuran	J3MU	7/31/2009	7/30/2009	ug/kg	54	1
Diethylphthalate	U	7/31/2009	7/30/2009	ug/kg	51	1
Dimethyl-phthalate	U	7/31/2009	7/30/2009	ug/kg	59	1
Di-n-butylphthalate	U	7/31/2009	7/30/2009	ug/kg	44	1
Di-n-octylphthalate	U	7/31/2009	7/30/2009	ug/kg	58	1
Fluoranthene	J3U	7/31/2009	7/30/2009	ug/kg	48	1
Fluorene	U	7/31/2009	7/30/2009	ug/kg	51	1
Hexachlorobenzene	J3MU	7/31/2009	7/30/2009	ug/kg	53	1
Hexachlorobutadiene	U	7/31/2009	7/30/2009	ug/kg	58	1
Hexachlorocyclopentadiene	U	7/31/2009	7/30/2009	ug/kg	40	1
Hexachloroethane	U	7/31/2009	7/30/2009	ug/kg	50	1
indeno(1,2,3-cd)pyrene	U	7/31/2009	7/30/2009	ug/kg	52	1
sophorone	U	7/31/2009	7/30/2009	ug/kg	59	1
Naphthalene	U	7/31/2009	7/30/2009	ug/kg	64	1
Nitrobenzene	U	7/31/2009	7/30/2009	ug/kg	60	1
N-Nitrosodimethylamine	U	7/31/2009	7/30/2009	ug/kg	71	1
N-Nitroso-di-n-propylamine	U	7/31/2009	7/30/2009	ug/kg	61	1
N-Nitrosodiphenylamine	U	7/31/2009	7/30/2009	ug/kg	63	1
Pentachlorophenol	U	7/31/2009	7/30/2009	ug/kg	133	1
Phenanthrene	U	7/31/2009	7/30/2009	ug/kg	56	1
Phenol	U	7/31/2009	7/30/2009	ug/kg	65	1
Pyrene	U	7/31/2009	7/30/2009	ug/kg	92	1
2,4,6-Tribromophenol(SURR) (S)	73.9	7/31/2009	7/30/2009	%	(19 - 122)	1
2-Fluorobiphenyl(SURR) (S)	71.8	7/31/2009	7/30/2009	%	(30 - 115)	1
2-Fluorophenol(SURR) (S)	77.4	7/31/2009	7/30/2009	%	(25 - 121)	1
Nitrobenzene-d5(SURR) (S)	79.6	7/31/2009	7/30/2009	%	(23 - 120)	1
Phenoi-d5(SURR) (S)	70.9	7/31/2009	7/30/2009	%	(24 - 113)	1
o-Terphenyl-d14(SURR) (S)	68.1	7/31/2009	7/30/2009	%	(18 - 137)	1

LABORATORY CONTROL	L SAMPL	E: 289403	3	Matrix:	SQ		
		SPIKE	LCS	SPIKE	% REC		RPD
PARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMIT
1,2,4-Trichlorobenzene	ug/kg	2670	1920	71.9	(71-110)		
1,2-Dichlorobenzene	ug/kg	2670	1830	68.5	(65-95)		
1,3-Dichlorobenzene	ug/kg	2670	1820	68.2	(67-100)		

To: Jim Cheze Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8270

LABORATORY CONTROL SAMPLE: 289403

Matrix: SQ

					•		
		SPIKE	LCS	SPIKE	% REC		RPD
PARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMI
1,4-Dichlorobenzene	ug/kg	2670	1810	67.8	(62-105)		
1-Methylnaphthalene	ug/kg	2670	1980	74.2	(67-145)		
2,2-Oxybis(1-chloropropane)	ug/kg	2670	2130	79.8	(52-115)		
2,4,5-Trichlorophenol	ug/kg	2670	1980	74.2	(61-110)		
2,4,6-Trichlorophenol	ug/kg	2670	1860	69.7	(62-110)		
2,4-Dichlorophenol	ug/kg	2670	1920	71.9	(64-110)		
2,4-Dimethylphenol	ug/kg	2670	1960	73.4	(65-105)		
2,4-Dinitrophenol	ug/kg	5330	1510	28.3	* (29-130)		
2,4-Dinitrotoluene	ug/kg	2670	1960	73.4	* (77-115)		
2,6-Dinitrotoluene	ug/kg	2670	1920	71.9	* (73-110)		
2-Chloronaphthalene	ug/kg	2670	1930	72.3	(72-105)		
2-Chlorophenol	ug/kg	2670	1900	71.2	(54-105)		
2-Methyl-4,6-dinitrophenol	ug/kg	2670	1260	47.2	(34-135)		
2-Methylnaphthalene	ug/kg	2670	1870	70	* (72-105)		
2-Methylphenol (o-Cresol)	ug/kg	2670	1940	72.7	(58-105)		
2-Nitroaniline	ug/kg	2670	1880	70.4	* (71-120)		
2-Nitrophenol	ug/kg	2670	1950	73	(61-110)		
3,3'-Dichlorobenzidine	ug/kg	2670	1680	62.9	(41-130)		
3-Nitroaniline	ug/kg	2670	1620	60.7	* (76-110)		
4-Bromophenyl-phenylether	ug/kg	2670	2160	80.9	(59-115)		
4-Chloro-3-methylphenol	ug/kg	2670	1960	73.4	(62-115)		
4-Chloroaniline	ug/kg	2670	1540	57.7	(57-95)		
4-Chlorophenyl-phenylether	ug/kg	2670	2120	79.4	(65-110)		
4-Methylphenol	ug/kg	2670	1890	70.8	(57-105)		
4-Nitroaniline	ug/kg	2670	1740	65.2	* (70-115)		
1-Nitrophenol	ug/kg	2670	1650	61.8	(52-140)		
Acenaphthene	ug/kg	2670	1820	68.2	(65-110)		
Acenaphthylene	ug/kg	2670	1870	70	(66-105)		
Aniline	ug/kg	2670	1790	67	(47-140)		
Anthracene	ug/kg	2670	1880	70.4	(67-105)		
Benzidine	ug/kg	2670	644	24.1	(10-149)		
Benzo(a)anthracene	ug/kg	2670	1840	68.9	(67-110)		
Benzo(a)pyrene	ug/kg	2670	1840	68.9	(60-110)		
Benzo(b)fluoranthene	ug/kg	2670	1820	68.2	(49-115)		
Benzo(g,h,i)perylene	ug/kg	2670	1930	72.3	(41-125)		
Benzo(k)fluoranthene	ug/kg	2670	1900	71.2	(53-125)		
Benzoic acid	ug/kg	5330	1410	26.5	(10-106)		
Benzyl alcohol	ug/kg	2670	1670	62.5	* (64-125)		
Bis(2-Chloroethoxy)methane	ug/kg	2670	2180	81.6	(70-110)		
Bis(2-Chloroethyl)ether	ug/kg	2670	2070	77.5	(61-105)		
pis(2-ethylhexyl)phthalate	ug/kg	2670	2460	92.1	(65-125)		
Butylbenzylphthalate	ug/kg	2670	2510	94	(66-125)		
Chrysene	ug/kg	2670	1850	69.3	(65-110)		
Dibenz(a,h)anthracene	ug/kg	2670	1820	68.2	(40-125)		
Dibenzofuran	ug/kg	2670	1830	68.5	* (75-105)		
Diethylphthalate	ug/kg	2670	2190	82	(68-115)		
Dimethyl-phthalate	ug/kg	2670	2150	80.5	(69-110)		

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8270

LAROR	ATORY	CONTRO	OL SAMI	PLE:	289403
	$\mathbf{A} \mathbf{I} \mathbf{O} \mathbf{K} \mathbf{I}$				20/70

Motriv · SO

LABORATORY CONTROL	L SAMPL	E: 28940	3	Matrix	:	SQ		
		SPIKE	LCS	SPIKE		% REC		RPD
PARAMETER	UNITS	CONC	RESULT	% REC		LIMITS	RPD	LIMIT
Di-n-butylphthalate	ug/kg	2670	2200	82.4		(67-110)		
Di-n-octylphthalate	ug/kg	2670	2360	88.4		(64-130)		
Fluoranthene	ug/kg	2670	1820	68.2	*	(74-115)		
Fluorene	ug/kg	2670	1800	67.4		(67-110)		
Hexachlorobenzene	ug/kg	2670	1850	69.3	*	(77-120)		
Hexachlorobutadiene	ug/kg	2670	2130	79.8		(79-115)		
Hexachlorocyclopentadiene	ug/kg	2670	1800	67.4		(34-139)		
Hexachloroethane	ug/kg	2670	1850	69.3		(65-110)		
Indeno(1,2,3-cd)pyrene	ug/kg	2670	1770	66.3		(40-120)		
Isophorone	ug/kg	2670	2080	77.9		(69-110)		
Naphthalene	ug/kg	2670	1870	70		(67-105)		
Nitrobenzene	ug/kg	2670	1930	72.3		(71-115)		
N-Nitrosodimethylamine	ug/kg	2670	2080	77.9		(48-115)		
N-Nitroso-di-n-propylamine	ug/kg	2670	2040	76.4		(59-115)		
N-Nitrosodiphenylamine	ug/kg	2670	2190	82		(77-115)		
Pentachlorophenol	ug/kg	2670	1380	51.7		(36-120)		
Phenanthrene	ug/kg	2670	1810	67.8		(67-110)		
Phenol	ug/kg	2670	1810	67.8		(46-100)		
Pyrene	ug/kg	2670	1940	72.7		(67-125)		
2,4,6-Tribromophenol(SURR) (S)	ug/kg	13300	9500	71.4		(19-122)		
2-Fluorobiphenyl(SURR) (S)	ug/kg	6670	4660	69.9		(30-115)		
2-Fluorophenol(SURR) (S)	ug/kg	13300	9940	74.7		(25-121)		
Nitrobenzene-d5(SURR) (S)	ug/kg	6670	5130	76.9		(23-120)		
Phenol-d5(SURR) (S)	ug/kg	13300	9140	68.7		(24-113)		
p-Terphenyl-d14(SURR) (S)	ug/kg	6670	4450	66.7		(18-137)		

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

METHOD: 8270 SIM

Method Blank 289006

Matrix: WQ

Associated Lab Samples:

251313102 289006 289007 289008

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
1-Methylnaphthalene	U	7/25/2009	7/23/2009	ug/l	0.02	1
2-Methylnaphthalene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Acenaphthene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Acenaphthylene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Anthracene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(a)anthracene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(a)pyrene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(b)fluoranthene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(g,h,i)perylene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(k)fluoranthene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Chrysene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Dibenz(a,h)anthracene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Fluoranthene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Fluorene	U	7/25/2009	7/23/2009	ug/l	0.02	1
ndeno(1,2,3-cd)pyrene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Naphthalene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Phenanthrene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Pyrene	U	7/25/2009	7/23/2009	ug/l	0.02	1
p-Terphenyl-d14(SURR) (S)	96	7/25/2009	7/23/2009	%	(33 - 141)	1

LABORATORY CONTR	OL SAMPL	E: 28900)7	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1-Methylnaphthalene	ug/l	0.5	0.4	80	(53-125)		
2-Methylnaphthalene	ug/l	0.5	0.41	82	(38-132)		
Acenaphthene	ug/l	0.5	0.4	80	(70-117)		
Acenaphthylene	ug/i	0.5	0.4	80	(59-124)		
Anthracene	ug/l	0.5	0.4	80	(74-119)		
Benzo(a)anthracene	ug/l	. 0.5	0.43	86	(72-134)		
Benzo(a)pyrene	ug/l	0.5	0.44	88	(50-142)		
Benzo(b)fluoranthene	ug/l	0.5	0.44	88	(62-147)		
Benzo(g,h,i)perylene	ug/l	0.5	0.43	86	(57-138)		
Benzo(k)fluoranthene	ug/l	0.5	0.42	84	(74-123)		
Chrysene	ug/l	0.5	0.42	84	(75-118)		
Dibenz(a,h)anthracene	ug/l	0.5	0.45	90	(53-150)		
Fluoranthene	ug/l	0.5	0.43	86	(76-117)		
Fluorene	ug/l	0.5	0.41	82	(74-124)		
Indeno(1,2,3-cd)pyrene	ug/l	0.5	0.44	88	(63-135)		
Naphthalene	ug/l	0.5	0.4	80	(74-112)		
Phenanthrene	ug/l	0.5	0.4	80	(80-118)		

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

(33-141)

PROJECT ID:

100

Pinellas Bayway Site #2

METHOD: 8270 SIM

LABORATORY CONTROL SAMPLE: 289007

Matrix: WQ

SPIKE SPIKE LCS % REC RPD **PARAMETER** UNITS CONC **RESULT** % REC LIMITS RPD LIMIT Pyrene 0.5 0.4 80 (71-122) ug/l

p-Terphenyl-d14(SURR) (S) ug/l 0.5 0.5

L L	-5	0.0	0.0	.00	(00)		
LABORATORY CONTRO	DL SAMPL	E: 28900	8	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1-Methylnaphthalene	ug/l	0.5	0.43	86	(53-125)		
2-Methylnaphthalene	ug/l	0.5	0.44	88	(38-132)		
Acenaphthene	ug/l	0.5	0.43	86	(70-117)		
Acenaphthylene	ug/l	0.5	0.43	86	(59-124)		
Anthracene	ug/l	0.5	0.42	84	(74-119)		
Benzo(a)anthracene	ug/l	0.5	0.45	90	(72-134)		
Benzo(a)pyrene	ug/l	0.5	0.46	92	(50-142)		
Benzo(b)fluoranthene	ug/l	0.5	0.46	92	(62-147)		
Benzo(g,h,i)perylene	ug/l	0.5	0.49	98	(57-138)		
Benzo(k)fluoranthene	ug/l	0.5	0.43	86	(74-123)		
Chrysene	ug/i	0.5	0.44	88	(75-118)		
Dibenz(a,h)anthracene	ug/l	0.5	0.53	106	(53-150)		
Fluoranthene	ug/l	0.5	0.42	84	(76-117)		
Fluorene	ug/l	0.5	0.43	86	(74-124)		
Indeno(1,2,3-cd)pyrene	ug/l	0.5	0.54	108	(63-135)		
Naphthalene	ug/l	0.5	0.43	86	(74-112)		
Phenanthrene	ug/l	0.5	0.41	82	(80-118)		
Pyrene	ug/l	0.5	0.44	88	(71-122)		
p-Terphenyl-d14(SURR) (S)	ug/l	0.5	0.45	90	(33-141)		

To: Jim Cheze

WORK ORDER: 2513131

Shaw Group

PROJECT ID:

Pinellas Bayway Site #2

METHOD: 8310

Method Blank 289009

Matrix: SQ

Associated Lab Samples:

251313101 289009 289010

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
1-Methylnaphthalene	U	7/23/2009	7/23/2009	ug/kg	4.1	1
2-Methylnaphthalene	U	7/23/2009	7/23/2009	ug/kg	3.9	1
Acenaphthene	U	7/23/2009	7/23/2009	ug/kg	1.1	1
Acenaphthylene	U	7/23/2009	7/23/2009	ug/kg	1.2	1
Anthracene	U	7/23/2009	7/23/2009	ug/kg	1.1	1
Benzo(a)anthracene	U	7/23/2009	7/23/2009	ug/kg	2	1
Benzo(a)pyrene	U	7/23/2009	7/23/2009	ug/kg	3.3	1
Benzo(b)fluoranthene	U	7/23/2009	7/23/2009	ug/kg	2.6	1
Benzo(g,h,i)perylene	U	7/23/2009	7/23/2009	ug/kg	2.6	1
Benzo(k)fluoranthene	U	7/23/2009	7/23/2009	ug/kg	1.4	1
Chrysene	U	7/23/2009	7/23/2009	ug/kg	2.8	1
Dibenz(a,h)anthracene	U	7/23/2009	7/23/2009	ug/kg	1.1	1
Fluoranthene	U	7/23/2009	7/23/2009	ug/kg	2	1
luorene	U	7/23/2009	7/23/2009	ug/kg	1.9	1
ndeno(1,2,3-cd)pyrene	U	7/23/2009	7/23/2009	ug/kg	1.1	1
Naphthalene	U	7/23/2009	7/23/2009	ug/kg	2.6	1
Phenanthrene	U	7/23/2009	7/23/2009	ug/kg	1.7	1
Pyrene	U	7/23/2009	7/23/2009	ug/kg	3	1
o-Terphenyl-d14(SURR) (S)	82.7	7/23/2009	7/23/2009	%	(17 - 119)	1

LABORATORY CONTR	OL SAMPL	E: 28901	10	Matrix :	SQ		
		SPIKE	LCS	SPIKE	% REC		RPD
PARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMIT
1-Methylnaphthalene	ug/kg	667	513	76.9	(70-111)		
2-Methylnaphthalene	ug/kg	667	511	76.6	(62-110)		
Acenaphthene	ug/kg	667	504	75.6	(68-109)		
Acenaphthylene	ug/kg	667	482	72.3	(67-112)		
Anthracene	ug/kg	667	478	71.7	(68-117)		
Benzo(a)anthracene	ug/kg	667	498	74.7	(68-112)		
Benzo(a)pyrene	ug/kg	667	432	64.8	(52-116)		
Benzo(b)fluoranthene	ug/kg	667	512	76.8	(69-114)		
Benzo(g,h,i)perylene	ug/kg	667	498	74.7	(53-119)		
Benzo(k)fluoranthene	ug/kg	667	498	74.7	(67-115)		
Chrysene	ug/kg	667	500	75	(66-117)		
Dibenz(a,h)anthracene	ug/kg	667	496	74.4	(68-118)		
Fluoranthene	ug/kg	667	518	77.7	(71-110)		
Fluorene	ug/kg	667	515	77.2	(68-118)		
Indeno(1,2,3-cd)pyrene	ug/kg	667	497	74.5	(61-122)		
Naphthalene	ug/kg	667	504	75.6	(69-114)		
Phenanthrene	ug/kg	667	505	75.7	(69-116)		

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

METHOD: 8310

LABORATORY CONTROL SAMPLE: 289010

Matrix: SQ

PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Pyrene	ug/kg	667	515	77.2	(71-115)		
p-Terphenyl-d14(SURR) (S)	ug/kg	1330	1010	75.9	(17-119)		

To: Jim Cheze

Shaw Group

WORK ORDER: 2513131

PROJECT ID:

Pinellas Bayway Site #2

Dilution

Factor

RL

METHOD: FL-PRO

Method Blank 288853 Matrix: WQ

Associated Lab Samples:

251313102 288853 288854 288855

		Analysis	Prep			Dilution	
Parameter	Results	Date	Date	Units	RL	Factor	
TPH	U	7/21/2009	7/21/2009	mg/L	0.25	1	
C39 Surrogate(SURR) (S)	93.3	7/21/2009	7/21/2009	%	(42 - 193)	1	
o-Terphenyl Surrogate(SURR) (99	7/21/2009	7/21/2009	%	(82 - 142)	1	

Analysis

Date

Method Blank 289129 Matrix: SQ

Prep Date

Units

Associated Lab Samples:

Parameter

251313101 289129 289130

Results

TPH	U	7/2	26/2009	7/26/2009	mg/Kg	g 5	i. 9	1
C39 Surrogate(SURR) (S)	102	7/2	26/2009	7/26/2009	%	(60 -	- 118)	1
o-Terphenyl Surrogate(SURR) (107	7/2	26/2009	7/26/2009	%	(62 -	- 109)	1
LABORATORY CONTRO	L SAMPLI	E: 28885	54	Matrix	· :	WQ		
		SPIKE	LCS	SPIKE	<u> </u>	% REC		RPD
PARAMETER	UNITS	CONC	RESUL	r % REC	;	LIMITS	RPD	LIMIT
TPH	mg/L	3.4	2.8	82.4		(55-118)		
C39 Surrogate(SURR) (S)	mg/L	0.15	0.13	86.7		(42-193)		
o-Terphenyl Surrogate(SURR) (mg/L	0.1	0.098	98		(82-142)		
LABORATORY CONTRO	L SAMPLI	E: 28885	55	Matrix	:	WQ		
		SPIKE	LCS	SPIKE	Ξ	% REC		RPD
PARAMETER	UNITS	CONC	RESUL	T % REC	;	LIMITS	RPD	LIMIT
TPH	mg/L	3.4	3	88.2		(55-118)	6.9	20
C39 Surrogate(SURR) (S)	mg/L	0.15	0.14	93.3		(42-193)		
o-Terphenyl Surrogate(SURR) (mg/L	0.1	0.1	100		(82-142)		
LABORATORY CONTRO	L SAMPLI	E: 28913	30	Matrix	k :	SQ		
		SPIKE	LCS	SPIKE	Ē	% REC		RPD
PARAMETER	UNITS	CONC	RESUL	T % REC		LIMITS	RPD	LIMIT
TPH	mg/Kg	25.8	24.8	96.1		(63-153)		
C39 Surrogate(SURR) (S)	mg/Kg	4.5	5.5	122	*	(60-118)		
o-Terphenyl Surrogate(SURR) (mg/Kg	3	3.2	107		(62-109)		

To: Jim Cheze Shaw Group

WORK ORDER: 2513131

PROJECT ID: Pinellas Bayway Site #2

Digitally signed by Brian Brian C. Spann
DN: cn=Brian C. Spann,
o=Spectrum, ou=PEL,
email=bspann@pelab.
com, c=US
Date: 2009.08.04 15:57:32 -04'00'

Brian C. Spann

Laboratory Manager

or

Mark Gudnason

Quality Assurance Officer

Special Handling: TAT- Indicate Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	Buyuny Site#2	The sales	Notes: OA/OC Reporting Level	C Level II C Level II	□ Other	유	15-7 Day TAT" 0)	"FDOT R-tes" 62		Date: Time:	7-17-09	0830 polos/2 mx	1501 Pologe 1031
CHAIN OF CUSTODY RECORD Page 1 of 1 2513131 KC oth	Project Site National Local	RQN: Santo	3	Glass Sass (ACC	OA V mber lear G lastic (A) (A) (A)	hos 2808 3477 978 978 9109 410# 010# 010#	3 X X X X X X	6263 - X X X X X X X X X X X X X X X X X X		A Religenshed by:	7-15-000	Topology Topology	nbient A°C. 30, 3.2, 45 HM 7-2009 10 3 land 10 0 M
	Invoice To:	P.O. No.:	4=HNO ₃ 5=NaOH 10=	SL=Sludge A=Air X3=		Date: Time:	3,	9 (100) 30-21-6			7,000)	en client	Ac30,3.2,45
PEL SOUTH AND STATEMENT OF STAT	725 Suth VS Awy 301 TAMPA FL 33619	nes Ch	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 8= NaHSO ₄ 9=	DW=Drinking water OW=Groundwater O=Oil SW= Surface Water SO=Soil X1=X2=	G=Grab C=Composite	Lab Id: Sample Id: I	533 631	58368 74			E-mail to James, the ze & Shang of the Co	Per Jule of Jers Prayer pur client	Condition upon receipt: KIced Ambient A°C. 20, 3.2, 4

SAMPLE RECEIPT CONFIRMATION SHEET

Client Information

SDG:	2513131		Req:	87310	
Client:	Shaw		Project:	Generic1	
Level:	1		Date Rec'd:	7/20/2009 10:31:00 AM	l
Rec'd via:	courier		Due Date:	07/27/09	
		Sample	Verification	AND	
Samples/Coo	ler Secure?	Yes	All Samples on COC	accounted For?	Yes
Temperature	of Samples(Celsius)	3.0C-4.5C	All Samples Rec'd In	tact?	Yes
pH Verified?		Yes	Sample Vol. Stuff. Fo	or Analysis?	Yes
pH WNL?		Yes	Samples Rec'd W/I H	lold Time?	Yes
Soil Origin (D	omestic/Foreign):	Domestic	Are All Samples to b	e Analyzed?	Yes
Site Location	Project on COC?	Yes	Correct Sample Con	tainers?	Yes
Client Project	# on COC?	Yes	COC Comments writ	ten on COC?	Yes
Project Mgr. I	ndicated on COC?	Yes	Samplers Initials on	COC?	Yes
COC relinquis	shed/Dated by Client?	Yes	Sample Date/Time Ir	idicated?	Yes
COC Receive	d/Dated by PEL?	Yes	TAT Requested:		STD
Specific Subo	contract Indicated?	No	Client Requests Ver	bal Results?	No
Samples Rec	eived By	courier	Client Requests Fax	ed Results?	No
PEL to Condu	uct ALL Analyses?	Yes]		

PEER REVIEW:

PEL a division of Spectrum Analytical, Inc.

Florida Department of Health #E84207 June 30, 2009

CWA - Extractable Organics, General Chemistry, Metals, Pesticides-herbicides-PCB's, Volatile Organics RCRA/CERCLS - Extractable Organics, General Chemistry, Metals Pesticides-Herbicides-PCB's, Volatile Organics

- CERTIFICATE OF ANALYSIS -

Report Date: 08/04/2009

Revised Report

Jim Cheze To:

Shaw Group

725 U.S. Highway 301 South

Tampa, FL 33612

W 813-612-3655

PROJECT ID:

Pinellas Bayway Site #4

WORK ORDER:

DATE RECEIVED:

2513130

Monday, July 20, 2009

Project Notes: Revised to include the full 8270 list for the soils.

(†): Short Hold Time Analysis Date

Samples reported on dry weight basis All test results in this report pertain only to the samples as submitted.

PEL Contact: Mark Gudnason / extension: 242

8405 Benjamin Road, Suite A. Tampa, Florida 33634 813-888-9507 FAX: 800-480-6435 Website: www.pelab.com

PEL a division of Spectrum Analytical, Inc. featuring Hanibal Technology

DATA QUALIFIER CODES

State of Florida, Department of Environmental Protection and Department of Health Rehabilitative Services / NELAC

- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- **J** Estimated value; value not accurate. This code shall be used in the following instances:
 - 1. Surrogate recovery limits have been exceeded.

L

- 2. No known quality control criteria exits for the component.
- 3. The reported value did not meet the established quality control criteria for either precision or accuracy but falls within the NELAC marginal exceedance range.
- 3M. The reported value did not meet the established quality control criteria for either precision or accuracy and falls beyond the NELAC range for marginal exceedances.
- 3R. The RPD for the LCSD exceeds the laboratory established control limits.
- 4. The sample matrix interfered with the ability to make an accurate determination.
- 5. The data is questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).
- Off-scale high. Actual value is known to be greater than the value given. To be used when the concentration of the analyte is above the acceptable limit for quantitation (exceeds the linear range of the highest calibration standard) and the calibration curve is known to exhibit a negative deflection.
- Sample held beyond acceptable holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for the sample preparation or analysis.
- Indicates that the compound was analyzed for but not detected above the method detection limit (MDL).
- Indicates that the analyte was detected in both the sample and the associated method blank. Note: The value in the blank shall not be subtracted from associated samples.
- Y
 The laboratory analysis was from an unpreserved or improperly preserved sample.
 The data may not be accurate.

Note: There was not sufficient sample volume to perform a matrix spike/duplicate for the following method(s). : 8260, 8270 SIM, 8310

A Blank and Laboratory Control sample was analyzed to ensure the method performed within acceptable guidelines.

CASE NARRATIVE METALS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

A. Sample Preparation: All holding times were met.

B. Sample Analysis: All holding times were met.

III. METHOD

Analyses were performed according to the PEL, a Division of Spectrum Analytical, Standard Operating Procedures and EPA Method 6010B for ICP metals.

IV. PREPARATION

Soil samples were prepared according to PEL Laboratory's Standard Operating Procedures and EPA Method 3050B.

Water samples were prepared according to PEL Laboratory's Standard Operating Procedures and EPA Method 3010A.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

1. Calibration Blanks:

All acceptance criteria were met.

2. Method Blanks:

All acceptance criteria were met.

C. Spikes:

1. Laboratory Control Spikes (LCS):

An LCS/LCSD set was analyzed.
All percent recovery and relative percent difference (RPD) criteria were met.

2. Post Digestion Spike:

All acceptance criteria were met.

CASE NARRATIVE METALS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

3. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD):

No spikes requested by client.

D. Duplicate:

No sample duplicates are reported with this method. (Spike duplicates are referenced above in section C. Spikes.)

E. Serial Dilution:

All acceptance criteria were met.

F. ICP Interference Check Samples:

All acceptance criteria were met.

G. Samples:

Sample analysis proceeded normally.

Luda Lee M. Gal

Samples SB 4 at 10ft, SB 4 at 5ft required a 2X dilution due to interference with the following analyte(s): Arsenic.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/24/2009

CASE NARRATIVE EDB GC SEMIVOLATILE ORGANIC

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

SW846/EPA 8011.

IV. PREPARATION

Water samples were prepared by SW846/EPA 8011 for semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

An LCS/LCSD set was analyzed. All percent recovery and relative percent difference (RPD) criteria were met.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

This method does not require the use of internal standards.

CASE NARRATIVE EDB GC SEMIVOLATILE ORGANIC

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/27/2009

CASE NARRATIVE POLYCHLORINATED BIPHENYLS (PCB) SEMIVOLATILE ORGANIC

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

EPA SW846 8082 for Aroclor analysis.

IV. PREPARATION

Soil samples were prepared by SW846 EPA 3545 for 8082 semi-volatile analysis. Water samples were prepared by SW846 EPA 3510 for 8082 semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

Closing CCV CCV742673 had recoveries above QC limits. Since there were no compounds found above RL in the associated samples, it can be assumed that had they been in the samples they would have been detected. Acceptance criteria were met and no further action was taken.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

PCB 1016 and PCB 1260 were used as the spiking solution for all QC spikes.

1. Laboratory Control Spikes (LCS)

An LCS/LCSD set was analyzed. All percent recovery and relative percent difference (RPD) criteria were met.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

CASE NARRATIVE POLYCHLORINATED BIPHENYLS (PCB) SEMIVOLATILE ORGANIC

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

No spikes requested by client.

E. Internal Standards:

This method does not require the use of internal standards.

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

Jana Keene

SIGNED:

DATE: 07/27/2009

CASE NARRATIVE GC/MS VOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

A. Sample Preparation: All holding times were met.

B. Sample Analysis: All holding times were met.

III. METHODS

EPA 8260B/SW846

IV. PREPARATION

Soil samples were prepared by SW846/5035 for EPA8260B volatiles analysis. All aspects of sample preparation proceeded without exception.

Water samples were prepared by SW846/5030 for EPA8260B volatiles analysis. All aspects of sample preparation proceeded without exception.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

All acceptance criteria were met with the exception of:

LCS 072009LCS22 was analyzed with the soil samples on 07/20/09. The following analyte(s) were recovered above criteria: 2-Hexanone at 131 % with criteria of (72-127), Acrolein at 113 % with criteria of (70-111). No further action was required since ME criteria were met.

CASE NARRATIVE GC/MS VOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

LCS 072009LCS22D was analyzed with the soil samples on 07/20/09. The following analyte(s) were recovered above criteria: Acrolein at 116 % with criteria of (70-111). The following analyte(s) exceeded RPD criteria: Bromoform at 20.9 % with criteria of (13). No further action was required since ME criteria were met.

LCS 0721LCS52 was analyzed with the water samples on 07/21/09. The following analyte(s) were recovered above criteria: Chloroethane at 154 % with criteria of (72-135). The following analyte(s) had marginal exceedance limit failures: Chloroethane at 154 % with criteria of (61.5-145.5). No further action was taken, since the high range was exceeded and the LCSD met ME criteria.

LCS 0721LCS52D was analyzed with the water samples on 07/21/09. The following analyte(s) were recovered above criteria: Chloroethane at 144 % with criteria of (72-135). No further action was required since ME criteria was met.

Samples coded accordingly.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

All acceptance criteria were met.

fri Ph

F. Samples:

Sample analysis proceeded normally. Client specified reporting limits were used.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/23/2009

CASE NARRATIVE GC/MS SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

A. Sample Preparation: All holding times were met.

B. Sample Analysis: All holding times were met.

III. METHODS

EPA SW846 8270

IV. PREPARATION

Soil samples were prepared by SW846 EPA 3545 for 8270 semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met. PEL does not analyze a low calibration standard at the requested RL for all analytes. The low calibration standard is 270 ug/kg for the following analyte(s): 2,4,5-Trichlorophenol, 2,4,6-Trichlorophenol, 2,4-Dichlorophenol, 2,4-Dimethylphenol, 2-Methylphenol (o-Cresol), 3-Nitroaniline, 4-Nitroaniline, Bis(2-Chloroethoxy)methane, Chrysene, Hexachlorobenzene, N-Nitrosodimethylamine, N-Nitrosodiphenylamine. The low calibration standard is 670 ug/kg for the following analyte(s): Benzoic acid, Pentachlorophenol.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

All acceptance criteria were met with the exception of: LCS 688LCS was analyzed with the soil samples extracted on 07/30/09. The following analyte(s) were recovered below criteria: 2,4-Dinitrophenol at 28.3 % with criteria of (29-130), 2,4-Dinitrotoluene at 73.4 % with criteria of (77-115), 2,6-Dinitrotoluene at 71.9 % with criteria of (73-110), 2-Methylnaphthalene at 70 % with criteria of (72-

CASE NARRATIVE GC/MS SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

105), 2-Nitroaniline at 70.4 % with criteria of (71-120), 4-Nitroaniline at 65.2 % with criteria of (70-115), Benzyl alcohol at 62.5 % with criteria of (64-125), Fluoranthene at 68.2 % with criteria of (74-115). The following analyte(s) had marginal exceedance limit failures: 3-Nitroaniline at 60.7 % with criteria of (70.3-115.7), Dibenzofuran at 68.5 % with criteria of (70-110), Hexachlorobenzene at 69.3 % with criteria of (69.8-127.2).

Since all other analytes met all acceptance criteria, no further action was taken.

Samples coded accordingly.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

All acceptance criteria were met.

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

Lara Keene

SIGNED:

DATE: 08/03/2009

CASE NARRATIVE GC/MS SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

EPA SW846 8270C.

IV. PREPARATION

Water samples were prepared by SW846 EPA 3510 for 8270 semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

All acceptance criteria were met

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

All acceptance criteria were met.

CASE NARRATIVE GC/MS SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/26/2009

CASE NARRATIVE HPLC SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

SW846/EPA 8310

IV. PREPARATION

Soil samples were prepared by SW846, EPA Method 3550 for 8310 semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met.

D. Spikes:

1. Laboratory Control Spikes (LCS)

All acceptance criteria were met

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

This method does not require the use of internal standards.

CASE NARRATIVE HPLC SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

Lara Keene

SIGNED:

DATE: 07/24/2009

CASE NARRATIVE FLORIDA PETROLEUM RANGE ORGANICS (FL PRO) SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

- A. Sample Preparation: All holding times were met.
- B. Sample Analysis: All holding times were met.

III. METHODS

Florida DEP/FL PRO

IV. PREPARATION

Soil samples were prepared by SW846 EPA 3550 for FL PRO semi-volatile analysis. Water samples were prepared by SW846 EPA 3510 for FL PRO semi-volatile analysis.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

All acceptance criteria were met.

C. Surrogates:

All acceptance criteria were met with the exception of:
Sample 6654LCS was recovered above criteria for the following surrogate(s): C39
Surrogate at 122 % with criteria of (60-118). Since surrogate C39 was just above acceptable criteria, and since surrogate o-terphenyl and all other quality control criteria were met, no further action was taken.

Sample SB 2 at 8ft was recovered below criteria for the following surrogate(s): o-Terphenyl Surrogate at 58 % with criteria of (82-142). The most probable cause for the exceedance is matrix interference. There were notations during the extraction phase stating that there were heavy emulsions during the extraction phase. Since surrogate oterphenyl and all other quality control criteria were met, no further action was taken.

Samples coded accordingly.

CASE NARRATIVE FLORIDA PETROLEUM RANGE ORGANICS (FL PRO) SEMIVOLATILE ORGANICS

PEL Lab Reference No./SDG: 2513130

Client: Shaw Group

D. Spikes:

1. Laboratory Control Spikes (LCS)

An LCS/LCSD set was analyzed.
All percent recovery and relative percent difference (RPD) criteria were met.

2. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD)

No spikes requested by client.

E. Internal Standards:

This method does not require the use of internal standards.

F. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 07/27/2009

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

Analysis

PROJECT ID:

Pinellas Bayway Site #4

Prep

7/17/2009 2:10:00 PM

PEL Lab#: 251313001 Collection Information:

Client ID: SB 3 at 5ft Sample Date:

Matrix: SO

			Allalysis					
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Arsenic	6010	0.417 U		07/21/2009 12:10	mg/Kg	0.417	0.834	1
Cadmium	6010	0.0786 1		07/21/2009 12:10	mg/Kg	0.0417	0.417	1
Chromium	6010	2.81		07/21/2009 12:10	mg/Kg	0.134	0.417	1
Lead	6010	0.538 1	07/22/2009 17:04	07/21/2009 12:10	mg/Kg	0.284	0.668	1
Aroclor-1016	8082	3.4 U	07/22/2009 3:31	07/21/2009 17:21	ug/Kg	3.4	24	1
Aroclor-1221	8082	5.9 U	07/22/2009 3:31	07/21/2009 17:21	ug/Kg	5.9	24	1
Aroclor-1232	8082	16 U	07/22/2009 3:31	07/21/2009 17:21	ug/Kg	16	24	1
Aroclor-1242	8082	5.9 U	07/22/2009 3:31	07/21/2009 17:21	ug/Kg	5.9	24	1
Aroclor-1248	8082	8.8 U	07/22/2009 3:31	07/21/2009 17:21	ug/Kg	8.8	24	1
Aroclor-1254	8082	2.5 U	07/22/2009 3:31	07/21/2009 17:21	ug/Kg	2.5	24	1
Aroclor-1260	8082	3.7 U	07/22/2009 3:31	07/21/2009 17:21	ug/Kg	3.7	24	1
Aroclor-1262	8082	4 U	07/22/2009 3:31	07/21/2009 17:21	ug/Kg	4	24	1
Aroclor-1268	8082	4.6 U	07/22/2009 3:31	07/21/2009 17:21	ug/Kg	4.6	24	1
Decachiorobiphenyl(SURR)	8082	93.2	07/22/2009 3:31	07/21/2009 17:21	%	4.6	(33 - 140)	1
1,1,1,2-Tetrachloroethane	8260	0.91 U	07/20/2009 13:35		ug/kg	0.91	2.5	1
1,1,1-Trichloroethane	8260	0.66 U	07/20/2009 13:35		ug/kg	0.66	2.5	1
1,1,2,2-Tetrachloroethane	8260	0.74 U	07/20/2009 13:35		ug/kg	0.74	2.5	1
1,1,2-Trichloroethane	8260	1 U	07/20/2009 13:35		ug/kg	1	2.5	1
1,1-Dichloroethane	8260	0.85 U	07/20/2009 13:35		ug/kg	0.85	2.5	1
1.1-Dichloroethene	8260	0.81 U	07/20/2009 13:35		ug/kg	0.81	2.5	1
1,1-Dichloropropene	8260	0.59 U	07/20/2009 13:35		ug/kg	0.59	2.5	1
1,2,3-Trichlorobenzene	8260	0.6 U	07/20/2009 13:35		ug/kg	0.6	2.5	1
1,2,3-Trichloropropane	8260	1.1 U	07/20/2009 13:35		ug/kg	1.1	2.5	1
1,2,4-Trichlorobenzene	8260	0.72 U	07/20/2009 13:35		ug/kg	0.72	2.5	1
1,2,4-Trimethylbenzene	8260	0.41 U	07/20/2009 13:35		ug/kg	0.41	2.5	1
1,2-Dibromo-3-chloropropane	8260	2.7 U	07/20/2009 13:35	;	ug/kg	2.7	12.3	1
1,2-Dibromoethane(EDB)	8260	1.2 U	07/20/2009 13:35	•	ug/kg	1.2	2.5	1
1,2-Dichlorobenzene	8260	0.59 U	07/20/2009 13:35	;	ug/kg	0.59	2.5	1
1,2-Dichloroethane	8260	0.62 U	07/20/2009 13:35	;	ug/kg	0.62	2.5	1
1,2-Dichloropropane	8260	1.1 U	07/20/2009 13:35	;	ug/kg	1.1	2.5	1
1,3,5-Trimethylbenzene	8260	0.5 U	07/20/2009 13:35	;	ug/kg	0.5	2.5	1
1,3-Dichlorobenzene	8260	0.65 U	07/20/2009 13:35	;	ug/kg	0.65	2.5	1
1,3-Dichloropropane	8260	0.66 U	07/20/2009 13:35	;	ug/kg	0.66	2.5	1
1,4-Dichlorobenzene	8260	0.66 U	07/20/2009 13:35	;	ug/kg	0.66	2.5	1
2,2-Dichloropropane	8260	0.75 U	07/20/2009 13:35		ug/kg	0.75	2.5	1
2-Butanone	8260	2.1 U	07/20/2009 13:35		ug/kg	2.1	12.3	1
2-Chlorotoluene	8260	0.55 U	07/20/2009 13:35		ug/kg	0.55	2.5	1
2-Hexanone	8260	2 J3U	07/20/2009 13:35		ug/kg	2	12.3	1
4-Chlorotoluene	8260	0.44 U	07/20/2009 13:35		ug/kg	0.44	2.5	1
4-Isopropyltoluene	8260	1.2 U	07/20/2009 13:35		ug/kg	1.2	2.5	1
4-Methyl-2-pentanone	8260	1.5 U	07/20/2009 13:35		ug/kg	1.5	12.3	1
Acetone	8260	5.9 U	07/20/2009 13:35		ug/kg	5.9	12.3	1
Acrolein	8260	5.5 J3U	07/20/2009 13:35		ug/kg	5.5	30.8	1
	8260 8260	4.3 U	07/20/2009 13:35		ug/kg	4.3	6.2	1
Acrylonitrile		0.52 U	07/20/2009 13:35		ug/kg	0.52		1
Benzene	8260	0.52 0	VIIZUIZUUS 13.30	,	ugnig	0.02		•

Dilution

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313001

Client ID: SB 3 at 5ft

Matrix: SO

Collection Information:

Sample Date: 7/17/2009 2:10:00 PM

Parameter	Mathad	Results	Analysis Date	Prep Date	Units	MDL	RL	Dilution Factor
Bromobenzene	Method 8260	0.84 U	07/20/2009 13:35		ug/kg	0.84	2.5	1
Bromochloromethane	8260	0.94 U	07/20/2009 13:35		ug/kg	0.94	2.5	1
Bromodichloromethane	8260	0.53 U	07/20/2009 13:35		ug/kg	0.53	2.5	1
Bromoform	8260	2.5 J3RU	07/20/2009 13:35		ug/kg	2.5	6.2	1
Bromomethane	8260	1,2 U	07/20/2009 13:35		ug/kg	1.2	2.5	1
Carbon disulfide	8260	0.62 U	07/20/2009 13:35		ug/kg	0.62	2.5	1
Carbon tetrachloride	8260	0.6 U	07/20/2009 13:35		ug/kg	0.6	2.5	1
Chlorobenzene	8260	0.66 U	07/20/2009 13:35		ug/kg	0.66	2.5	1
Chloroethane	8260	1.5 U	07/20/2009 13:35		ug/kg	1.5	6.2	1
Chloroform	8260	0.64 U	07/20/2009 13:35		ug/kg	0.64	2.5	1
Chloromethane	8260	1.1 U	07/20/2009 13:35		ug/kg	1.1	2.5	1
cis-1,2-Dichloroethene	8260	1.5 U	07/20/2009 13:35		ug/kg	1.5	2.5	1
cis-1,3-Dichloropropene	8260	0.54 U	07/20/2009 13:35		ug/kg	0.54	2.5	1
Dibromochloromethane	8260	0.8 U	07/20/2009 13:35		ug/kg	0.8	2.5	1
Dibromomethane	8260	1.1 U	07/20/2009 13:35		ug/kg	1.1	2.5	1
Dichlorodifluoromethane	8260	0.81 U	07/20/2009 13:35		ug/kg	0.81	2.5	1
Ethylbenzene	8260	0.94 U	07/20/2009 13:35		ug/kg	0.94	2.5	1
Hexachlorobutadiene	8260	1 U	07/20/2009 13:35		ug/kg	1	4.9	1
isopropyibenzene (Cumene)	8260	0.97 U	07/20/2009 13:35		ug/kg	0.97	2.5	1
Methyl iodide	8260	0.57 U	07/20/2009 13:35		ug/kg	0.57	2.5	1
Methylene chloride	8260	1.5 U	07/20/2009 13:35		ug/kg	1.5	6.2	1
MTBE	8260	0.69 U	07/20/2009 13:35		ug/kg	0.69	2.5	1
Naphthalene	8260	0.84 U	07/20/2009 13:35		ug/kg	0.84	2.5	1
n-Butylbenzene	8260	0.57 U	07/20/2009 13:35		ug/kg	0.57	2.5	1
n-Propylbenzene	8260	0.49 U	07/20/2009 13:35		ug/kg	0.49	2.5	1
o-Xylene	8260	0.64 U	07/20/2009 13:35		ug/kg	0.64	2.5	1
p,m-Xylene	8260	0.8 U	07/20/2009 13:35		ug/kg	0.8	4.9	1
sec-Butylbenzene	8260	0.74 U	07/20/2009 13:35		ug/kg	0.74	2.5	1
Styrene	8260	0.53 U	07/20/2009 13:35		ug/kg	0.53	2.5	1
tert-Butylbenzene	8260	0.81 U	07/20/2009 13:35		ug/kg	0.81	2.5	1
Tetrachloroethene	8260	0.64 U	07/20/2009 13:35		ug/kg	0.64	2.5	1
Toluene	8260	1.1 U	07/20/2009 13:35		ug/kg	1.1	2.5	1
trans-1,2-Dichloroethene	8260	0.94 U	07/20/2009 13:35		ug/kg	0.94	2.5	1
trans-1,3-Dichloropropene	8260	0.69 U	07/20/2009 13:35		ug/kg	0.69	2.5	1
Trichloroethene	8260	1.1 U	07/20/2009 13:35		ug/kg	1.1	2.5	1
Trichlorofluoromethane	8260	0.78 U	07/20/2009 13:35		ug/kg	0.78	2.5	1
Vinyl acetate	8260	1.4 U	07/20/2009 13:35		ug/kg	1.4	6.2	1
Vinyl chloride	8260	1.2 U	07/20/2009 13:35		ug/kg	1.2	2.5	1
1,2-Dichloroethane-d4(SURR)	8260	92.8	07/20/2009 13:35		%	1.2	(71 - 124	1) 1
4-Bromofluorobenzene(SURR)	8260	86.2	07/20/2009 13:35		%	1.2	(54 - 126	3) 1
Dibromofluoromethane(SURR)	8260	93	07/20/2009 13:35		%	1.2	(68 - 119	9) 1
Toluene d8(SURR)	8260	84.2	07/20/2009 13:35		%	1.2	(59 - 127	7) 1
1,2,4-Trichlorobenzene	8270	45.2 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	45.2	211	1
1,2-Dichlorobenzene	8270	44.5 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	44.5	211	1
1,3-Dichlorobenzene	8270	47.6 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	47.6	211	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313001 Collection Information:

Client ID: SB 3 at 5ft Sample Date: 7/17/2009 2:10:00 PM

Matrix: SO

Donomotor	36 (1)	Results	Analysis Date	Prep Date	Units	MDL	RL	Dilution Factor
Parameter 4.4 Dieblersbergens	<u>Method</u> 8270	49.2 U		07/30/2009 13:51	ug/kg	49.2	211	1
1,4-Dichlorobenzene	8270 8270	48.4 U		07/30/2009 13:51	ug/kg	48.4	211	1
1-Methylnaphthalene 2,2-Oxybis(1-chloropropane)	8270	172 U		07/30/2009 13:51	ug/kg	172	211	1
2,4,5-Trichlorophenol	8270	57.7 U	-	07/30/2009 13:51	ug/kg	57.7	208	1
2,4,6-Trichlorophenol	8270	53.1 U		07/30/2009 13:51	ug/kg	53.1	208	1
2,4-Dichlorophenol	8270	58.5 U		07/30/2009 13:51	ug/kg	58.5	208	1
2,4-Dimethylphenol	8270	44.5 U		07/30/2009 13:51	ug/kg	44.5	208	1
2.4-Dinitrophenol	8270	172 J3U		07/30/2009 13:51	ug/kg	172	1040	1
2,4-Dinitrotoluene	8270	38.2 J3U		07/30/2009 13:51	ug/kg	38.2	211	1
2.6-Dinitrotoluene	8270	39 J3U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	39	211	1
2-Chloronaphthalene	8270	52 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	52	211	1
2-Chlorophenol	8270	53.8 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	53.8	211	1
2-Methyl-4,6-dinitrophenol	8270	208 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	208	211	1
2-Methylnaphthalene	8270	45.2 J3U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	45.2	211	1
2-Methylphenol (o-Cresol)	8270	74.9 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	74.9	208	1
2-Nitroaniline	8270	44.5 J3U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	44.5	211	1
2-Nitrophenol	8270	56.2 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	56.2	211	1
3,3'-Dichlorobenzidine	8270	46 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	46	211	1
3-Nitroaniline	8270	62.4 J3MU	07/31/2009 18:29	07/30/2009 13:51	ug/kg	62.4	208	1
4-Bromophenyl-phenylether	8270	38.2 U		07/30/2009 13:51	ug/kg	38.2	211	1
4-Chloro-3-methylphenol	8270	43.7 U		07/30/2009 13:51	ug/kg	43.7	211	1
4-Chloroaniline	8270	49.2 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	49.2	211	1
4-Chlorophenyl-phenylether	8270	39.8 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	39.8	211	1
4-Methylphenol	8270	4 6 U		07/30/2009 13:51	ug/kg	46	211	1
4-Nitroaniline	8270	68.7 J3U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	68.7	208	1
4-Nitrophenol	8270	41.4 U		07/30/2009 13:51	ug/kg	41.4	520	1
Acenaphthene	8270	38.2 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	38.2	211	1
Acenaphthylene	8270	42.9 U		07/30/2009 13:51	ug/kg	42.9	211	1
Aniline	8270	60.1 U		07/30/2009 13:51	ug/kg	60.1	211	1
Anthracene	8270	46.8 U		07/30/2009 13:51	ug/kg	46.8	211	1
Benzidine	8270	468 U		07/30/2009 13:51	ug/kg	468	523	1
Benzo(a)anthracene	8270	44.5 U		07/30/2009 13:51	ug/kg	44.5	211	1
Benzo(a)pyrene	8270	33.6 U		07/30/2009 13:51	ug/kg	33.6	211	1
Benzo(b)fluoranthene	8270	49.2 U		07/30/2009 13:51	ug/kg	49.2	211	1
Benzo(g,h,i)perylene	8270	31.2 U		07/30/2009 13:51	ug/kg	31.2	211	1
Benzo(k)fluoranthene	8270	44.5 U		07/30/2009 13:51	ug/kg	44.5	211	1
Benzoic acid	8270	211 U	• , , • , , = •	07/30/2009 13:51	ug/kg	211	520	1
Benzyl alcohol	8270	71.8 J3U		07/30/2009 13:51	ug/kg	71.8	520	1
Bis(2-Chloroethoxy)methane	8270	44.5 U		07/30/2009 13:51	ug/kg	44.5	208	1
Bis(2-Chloroethyl)ether	8270	52.3 U		07/30/2009 13:51		52.3	211	1
bis(2-ethylhexyl)phthalate	8270	64.8 U		07/30/2009 13:51		64.8	211	1
Butylbenzylphthalate	8270	49.2 U		07/30/2009 13:51		49.2	211	1
Chrysene	8270	26.5 U		07/30/2009 13:51		26.5	208	1
Dibenz(a,h)anthracene	8270	32 U		07/30/2009 13:51		32 42.1	211	1
Dibenzofuran	8270	42.1 J3MU	07/31/2009 18:29	9 07/30/2009 13:51	ug/kg	42.1	211	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313001

Client ID: SB 3 at 5ft

Matrix: SO

Collection Information:

Perspanneter Method Results Date Date Date Wilts Rich Pactor Dietryphthalate 8270 38.8 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 46 211 1 1 1 1 1 1 1 1				Analysis	Prep			I	Dilution
Distribuphishistate 8270 39.8 U 07/31/2009 18.20 07/30/2009 13.51 ug/kg 46 211 1 1 1 1 1 1 1 1	Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Demethyl-phthelate	Diethylphthalate		39.8 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	39.8	211	1
Di-n-Duty phthelate	• •	8270	46 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	46	211	1
De-n-oxiphthelate 8270 374 390 77/31/2009 18:29 07/30/2009 13:51 ug/kg 45.2 211 1		8270	34.3 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	34.3	211	1
Fluoranthene 8270 37.4 JUL 07/31/2009 18.29 07/30/2009 13.51 ug/kg 37.4 211 1	* *	8270	45.2 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	45.2	211	1
Hexachlorobenzene	Fluoranthene	8270	37.4 J3U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	37.4	211	1
Hexachlorobenzene	Fluorene	8270	39.8 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	39.8	211	1
Hexachlorocyclopentadlene		8270	41.4 J3MU			ug/kg	41.4	208	
Hexachlorochane 8270 39 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 39 211 1 1 1 1 1 1 1 1	Hexachlorobutadiene	8270	45.2 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	45.2		1
Independ(1,2,3-oci)pyrene 8270	Hexachlorocyclopentadiene	8270	31.2 U			ug/kg	31.2	520	
Interior 1.5Suplyier 2.70	Hexachloroethane	8270	39 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	39		
Naphthalene 8270 49.9 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 49.9 211 1 Nitrobenzene 8270 46.8 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 46.8 211 1 N-Nitrosodimethylamine 8270 47.6 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 46.8 211 1 N-Nitrosodimethylamine 8270 47.6 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 47.6 2011 1 N-Nitrosodiphenylamine 8270 49.2 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 47.6 211 1 N-Nitrosodiphenylamine 8270 49.2 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 49.2 208 1 Pentachlorophenol 8270 43.7 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 49.2 208 1 Pentachlorophenol 8270 43.7 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 49.2 208 1 Pentachlorophenol 8270 50.7 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 49.2 208 1 Pentachlorophenol 8270 50.7 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 50.7 1040 1 Pyrene 8270 71.8 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 50.7 1040 1 Pyrene 8270 71.8 U 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 50.7 1040 1 Pyrene 8270 72.1 07/31/2009 18.29 07/30/2009 13.51 Ug/kg 50.7 1040 1 Pyrene 8270 72.1 07/31/2009 18.29 07/30/2009 13.51 W 71.8 (19 - 122) 1 P-Eluorophenol(SURR) 8270 67.1 07/31/2009 18.29 07/30/2009 13.51 W 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 73.7 07/31/2009 18.29 07/30/2009 13.51 W 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18.29 07/30/2009 13.51 W 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18.29 07/30/2009 13.51 W 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18.29 07/30/2009 13.51 W 71.8 (24 - 113) 1 P-Terphenyl-d14(SURR) 8310 3.2 U 07/24/2009 0.20 07/23/2009 13.51 W 71.8 (24 - 113) 1 P-Terphenyl-d14(SURR) 8310 3.2 U 07/24/2009 0.20 07/23/2009 13.51 Ug/kg 3.1 7.8 1 P-Acenaphthene 8310 3.1 U 07/24/2009 0.20 07/23/2009 13.51 Ug/kg 3.1 7.8 1 Phenol-d6(SURR) 8310 0.94 U 07/24/2009 0.20 07/23/2009 13.51 Ug/kg 3.1 7.8 1 Phenol-d6(SURR) 8310 0.96 U 07/24/2009 0.20 07/23/2009 13.51 Ug/kg 3.1 7.8 1 Phenol-d6(SURR) 8310 0.96 U 07/24/2009 0.20 07/23/2009 13.51 Ug/kg 3.2 7.8 1 Phenol-d6(SURR) 8310 0.96 U 07/24/2009 0.20 07/23/2009 13.51 Ug/	Indeno(1,2,3-cd)pyrene	8270	40.6 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	40.6	211	1
Naphthalene	Isophorone	8270	46 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	46	211	1
N-Nitrosodimethylamine 8270	Naphthalene	8270	49.9 U			ug/kg	49.9	211	1
N-Nitrosodin-p-propylamine 8270 47.6 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 47.6 211 1 N-Nitrosodiphenylamine 8270 49.2 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 49.2 208 1 Pentachlorophenol 8270 43.7 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 49.2 208 1 Phenanthrene 8270 43.7 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 43.7 211 1 Phenanthrene 8270 50.7 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 43.7 211 1 Phenol 8270 71.8 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 43.7 211 1 Pyrene 8270 71.8 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 71.8 211 1 Pyrene 8270 71.8 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 71.8 211 1 Pyrene 8270 71.8 U 07/31/2009 18.29 07/30/2009 13.51 ug/kg 71.8 211 1 Pyrene 8270 72.1 07/31/2009 18.29 07/30/2009 13.51 wg/kg 71.8 (30 - 115) 1 Pyrene 8270 67.1 07/31/2009 18.29 07/30/2009 13.51 wg/kg 71.8 (30 - 115) 1 Pyrenol-discomplication of the state	Nitrobenzene	8270	46.8 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	46.8	211	1
N-Nitrosodiphenylamine 8270 49.2 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 49.2 208 1 Pentachlorophenol 8270 104 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 43.7 211 1 Phenon 8270 50.7 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 43.7 211 1 Phenol 8270 50.7 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 50.7 1040 1 Pyrene 8270 71.8 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 50.7 1040 1 Pyrene 8270 71.8 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 50.7 1040 1 Pyrene 8270 71.8 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 50.7 1040 1 Pyrene 8270 71.8 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 71.8 211 1 2.4,6-Tribromophenol(SURR) 8270 67.1 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (30 - 115) 1 2Fluorophenol(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 P-Terphenyl-d14(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 P-Terphenyl-d14(SURR) 8310 3.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 P-Methylnaphthalene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 P-Methylnaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 Penzo(aphthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.94 7.8 1 Penzo(aphthracene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.94 7.8 1 Penzo(aphthracene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Penzo(b)Buoranthrane 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 7.8 1 Penzo(b)Buoranthrane 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Penzo(b)Buoranthrane 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Penzo(b)Buoranthrane 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg	N-Nitrosodimethylamine	8270	55.4 U			ug/kg	55.4	208	
Pentachlorophenol 8270 104 U 07/31/2009 18:29 07/30/2009 13:51 ug/kg 104 211 1	N-Nitroso-di-n-propylamine	8270	47.6 U			ug/kg	47.6	211	1
Penanthrene 8270 43.7 U 07731/2009 18:29 07/30/2009 13:51 Ug/kg 43.7 211 1 Phenol 8270 50.7 U 07731/2009 18:29 07/30/2009 13:51 Ug/kg 50.7 1040 1 Pyrene 8270 71.8 U 07731/2009 18:29 07/30/2009 13:51 Ug/kg 50.7 1040 1 Pyrene 8270 71.8 U 07731/2009 18:29 07/30/2009 13:51 Ug/kg 71.8 211 1 2.4,6-Tribromophenol(SURR) 8270 72.1 07/31/2009 18:29 07/30/2009 13:51 Wg/kg 71.8 (19 - 122) 1 2.4,6-Tribromophenol(SURR) 8270 67.1 07/31/2009 18:29 07/30/2009 13:51 Wg/kg 71.8 (19 - 122) 1 2.4-Fluorophenol(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 Wg/kg 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 73.7 07/31/2009 18:29 07/30/2009 13:51 Wg/kg 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 Wg/kg 71.8 (24 - 113) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 Wg/kg 71.8 (24 - 113) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 Wg/kg 71.8 (24 - 113) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 Wg/kg 71.8 (24 - 113) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 Ug/kg 3.2 7.8 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 Ug/kg 3.2 7.8 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 Ug/kg 3.1 7.8 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 Ug/kg 3.1 7.8 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 Ug/kg 3.1 7.8 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 13:51 Ug/kg 3.1 7.8 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 13:51 Ug/kg 3.1 7.8 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 13:51 Ug/kg 0.86 7.8 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 13:51 Ug/kg 0.86 7.8 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 13:51 Ug/kg 0.86 7.8 1 Phenol-d5(SURR) 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 0.86 7.8 1 Phenol-d6(SURR) 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 2.2 7.8 1 Phenol-d6(SURR) 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 1.6 7.8 1 Phenol-d6(SURR) 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 0.86 7.8 1 Phenol-d6(SURR) 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 0.8	N-Nitrosodiphenylamine	8270	49.2 U			ug/kg	49.2		1
Phenol 8270 50.7 U 07731/2009 18:29 07/30/2009 13:51 ug/kg 71.8 211 1 2,4,6-Tribromophenol(SURR) 8270 72.1 07731/2009 18:29 07/30/2009 13:51 ug/kg 71.8 211 1 2,4,6-Tribromophenol(SURR) 8270 72.1 07731/2009 18:29 07/30/2009 13:51 wg/kg 71.8 (19 - 122) 1 2,Filuorophenol(SURR) 8270 67.1 07731/2009 18:29 07/30/2009 13:51 w 71.8 (30 - 115) 1 2-Filuorophenol(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 w 71.8 (25 - 121) 1 Nitrobenzene-d5(SURR) 8270 73.7 07/31/2009 18:29 07/30/2009 13:51 w 71.8 (25 - 121) 1 Nitrobenzene-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 w 71.8 (24 - 113) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 w 71.8 (24 - 113) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 w 71.8 (24 - 113) 1 P-Terphenyl-d14(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 w 71.8 (24 - 113) 1 P-Terphenyl-d14(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 wg/kg 0.10 71.8 (18 - 137) 1 P-Terphenyl-d14(SURR) 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 P-Methylnaphthalene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 P-Methylnaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 P-Methylnaphthylne 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 P-Methylnaphthylne 8310 0.94 U 07/24/2009 0:20 07/23/20	Pentachlorophenol	8270	104 U			ug/kg			1
Prenol 8270 71.8 U 77/31/2009 18:29 07/30/2009 13:51 Ug/kg 71.8 (19 - 122) 1 2,4,6-Tribromophenol(SURR) 8270 72.1 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (19 - 122) 1 2-Fluorobiphenyl(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (30 - 115) 1 2-Fluorophenol(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Nitrobenzene-d5(SURR) 8270 73.7 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Nitrobenzene-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (23 - 120) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 p-Terphenyl-d14(SURR) 8270 64.4 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 p-Terphenyl-d14(SURR) 8270 64.4 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 p-Terphenyl-d14(SURR) 8310 3.2 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 3.2 7.8 1 2-Methylnaphthalene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 3.1 7.8 1 Acenaphthylene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 0.86 7.8 1 Acenaphthylene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 0.86 7.8 1 Acenaphthylene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 0.86 7.8 1 Benzo(a)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 0.86 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 2.7 R 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 2.7 R 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 2.7 R 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 2.7 R 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 2.2 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 2.2 7.8 1 Dibenz(a,h)anthracene 8310 3.6 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 3.5 T.8 1 Undenot(1,2,3-cd)pyrene 8310 3.6 U 07/24/2009 0:20 07/23/2009 13:51 Ug/kg 3.5 T.8 1 Undenot(Phenanthrene	8270	43.7 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	43.7	211	1
2.4,6-Tribromophenol(SURR) 8270 72.1 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (19 - 122) 1 2.Fluorophenol(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 2.Fluorophenol(SURR) 8270 73.7 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Nitrobenzene-d5(SURR) 8270 73.7 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (23 - 120) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 1.Methylnaphthalene 8310 3.2 U 07/24/2009 0:20 07/23/2009 13:51 wg/kg 3.2 7.8 1 2.Methylnaphthalene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 wg/kg 3.2 7.8 1 2.Methylnaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 2.Methylnaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 3.4 Acenaphthylene 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.94 7.8 1 3.4 Acenaphthylene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 3.5 Benzo(a)anthracene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 3.6 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 3.7 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 3.8 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 3.8 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 3.8 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 3.8 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 3.8 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 3.8 Benzo(b)fluoranthene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 3.8 Benzo(b)fluoranthene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 3.8 Benzo(b)fluoranthene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 3.1 Benzo(b)fluoranthene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.5 1 u	Phenol	8270	50.7 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	50.7	1040	1
2-Fluorobiphenyl(SURR) 8270 67.1 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (30 - 115) 1 2-Fluorobiphenyl(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Nitrobenzene-d5(SURR) 8270 73.7 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 P-Terphenyl-d14(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 P-Terphenyl-d14(SURR) 8270 64 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 P-Terphenyl-d14(SURR) 8310 3.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 2-Methylnaphthalene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 2-Methylnaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Acenaphthylene 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.94 7.8 1 Acenaphthylene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.94 7.8 1 Benzo(a)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(b)fluoranthene 8310 3.1 1.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(b)fluoranthene 8310 3.1 1.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 3.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 3.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Fluorene 8310 3.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Fluorene 8310 3.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Fluorene 8310 3.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Fluorene 8310 3.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Fluoren	Pyrene	8270	71.8 U	07/31/2009 18:29	07/30/2009 13:51	ug/kg	71.8	211	1
2-Fluorophenol(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Nitrobenzene-d5(SURR) 8270 73.7 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (23 - 120) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 p-Terphenyl-d14(SURR) 8270 64 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (18 - 137) 1 1-Methylnaphthalene 8310 3.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 1-Methylnaphthalene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 Acenaphthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Acenaphthylene 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.96 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)anthracene 8310 0.96 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(k)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 3.1 1.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 3.1 1.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 3.1 1.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 3.1 1.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 3.1 1.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 3.1 1.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	2,4,6-Tribromophenol(SURR)	8270	72.1			%	71.8	(19 - 122)	1
2-Fluorophenol(SURR) 8270 73.9 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (25 - 121) 1 Nitrobenzene-d5(SURR) 8270 73.7 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (23 - 120) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 p-Terphenyl-d14(SURR) 8270 64 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 p-Terphenyl-d14(SURR) 8270 64 07/31/2009 18:29 07/30/2009 13:51 wg/kg 3.2 7.8 1	2-Fluorobiphenyl(SURR)	8270	67.1	07/31/2009 18:29	07/30/2009 13:51	%	71.8	(30 - 115)) 1
Nitrobenzene-d5(SURR) 8270 73.7 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (23 - 120) 1 Phenol-d5(SURR) 8270 66.8 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (24 - 113) 1 p-Terphenyl-d14(SURR) 8270 64 07/31/2009 18:29 07/30/2009 13:51 wg/kg 3.2 7.8 1 1-Methylnaphthalene 8310 3.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 2-Methylnaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 Acenaphthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Acenaphthylene 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Benzo(k)fluoranthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Benzo(k)fluoranthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Rhaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Rhaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Rhaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Rhaphthalene 8310 0.90 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Rhaphthalene		8270	73.9			%	71.8	(25 - 121)) 1
p-Terphenyl-d14(SURR) 8270 64 07/31/2009 18:29 07/30/2009 13:51 % 71.8 (18 - 137) 1 1-Methylnaphthalene 8310 3.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 2-Methylnaphthalene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 2-Methylnaphthalene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 Acenaphthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Acenaphthylene 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)anthracene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Chrysene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluoranthene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluoranthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Phenanthrene 8310 0.70 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Phenanthrene 8310 0.70 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Phenanthrene 8310 0.70 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1		8270	73.7			%	71.8	(23 - 120)) 1
1-Methylnaphthalene 8310 3.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 2-Methylnaphthalene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 Acenaphthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Acenaphthylene 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.94 7.8 1 Acenaphthylene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.66 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Anthracene 8310 0.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Anthracene 8310 0.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Anthracene 8310 0.7 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Anthracene 8310 0.7 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Anthracene 8310 0.7 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 R 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 R 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8	Phenoi-d5(SURR)	8270	66.8			%	71.8	(24 - 113)) 1
1-Methylnaphthalene 8310 3.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.2 7.8 1 2-Methylnaphthalene 8310 3.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 3.1 7.8 1 Acenaphthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Acenaphthylene 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.94 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)anthracene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(g,h,i)perylene 8310 2.0 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Chrysene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7 8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1	p-Terphenyl-d14(SURR)	8270	64	07/31/2009 18:29	07/30/2009 13:51	%		(18 - 137)) 1
Acenaphthene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Acenaphthylene 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.94 7.8 1 Acenaphthylene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)anthracene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(g,h,i)perylene 8310 2.U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7.8 1 Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7.8 1 Benzo(k)fluoranthene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.7.8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.1 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Naphthalene 8310 2.U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Naphthalene 8310 0.086 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Phenanthrene 8310 0.086 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Phenanthrene 8310 0.086 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1		8310	3.2 U			ug/kg			1
Acenaphthylene 8310 0.94 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.94 7.8 1 Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)anthracene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(g,h,i)perylene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(k)fluoranthene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.1 7.8 1 Chrysene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluoranthene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Phenanthrene 8310 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.	2-Methylnaphthalene	8310	3.1 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg			
Anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Benzo(a)anthracene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(g,h,i)perylene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Chrysene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.1 7.8 1 Chrysene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Phenanthrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Phenanthrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1	Acenaphthene	8310	0.86 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg			
Benzo(a)anthracene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2.0 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(g,h,i)perylene 8310 2.0 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.1 7.8 1 Chrysene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Naphthalene 8310 2.0 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Phenanthrene 8310 2.0 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1	Acenaphthylene	8310	0.94 U	07/24/2009 0:20		ug/kg	0.94		1
Benzo(a)pyrene 8310 2.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.6 7.8 1 Benzo(b)fluoranthene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(g,h,i)perylene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.1 7.8 1 Chrysene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.1 7.8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1	Anthracene	8310	0.86 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg			
Benzo(b)fluoranthene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(g,h,i)perylene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.1 7.8 1 Chrysene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1	Benzo(a)anthracene	8310	1.6 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg	1.6	7.8	1
Benzo(g,h,i)perylene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.1 7.8 1 Chrysene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1	Benzo(a)pyrene	8310	2.6 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg			
Benzo(k)fluoranthene 8310 1.1 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.1 7.8 1 Chrysene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1	Benzo(b)fluoranthene	8310	2 U	07/24/2009 0:20		ug/kg			
Chrysene 8310 2.2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.2 7.8 1 Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1	Benzo(g,h,i)perylene	8310	2 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg	2		
Dibenz(a,h)anthracene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1	Benzo(k)fluoranthene	8310	1.1 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg	1.1		1
Fluoranthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1	Chrysene	8310	2.2 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg			1
Fluorenthene 8310 1.6 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.6 7.8 1 Fluorene 8310 1.5 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.5 7.8 1 Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1	•	8310	0.86 U						
Indeno(1,2,3-cd)pyrene 8310 0.86 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 0.86 7.8 1 Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1	•	8310	1.6 U	07/24/2009 0:20					
Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1	Fluorene	8310	1.5 U						
Naphthalene 8310 2 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2 7.8 1 Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1	Indeno(1,2,3-cd)pyrene	8310							
Phenanthrene 8310 1.3 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 1.3 7.8 1		8310	2 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg			
Pyrene 8310 2.4 U 07/24/2009 0:20 07/23/2009 13:51 ug/kg 2.4 7.8 1		8310	1.3 U						
· j.······	Pyrene	8310	2.4 U	07/24/2009 0:20	07/23/2009 13:51	ug/kg	2.4	7.8	1

FLDOH #E84207 [§]nelao

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

Collection Information:

PEL Lab#: 251313001

Client ID: SB 3 at 5ft

Sample Date: 7/17/2009 2:10:00 PM

Matrix: SO

			Analysis	Prep]	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
p-Terphenyl-d14(SURR)	8310	76.4	07/24/2009 0:20	07/23/2009 13:51	%	2.4	(17 - 119)	1
TPH	FL-PRO	6.3 U	07/27/2009 0:39	07/26/2009 15:23	mg/Kg	6.3	11.1	1
C39 Surrogate(SURR)	FL-PRO	100	07/27/2009 0:39	07/26/2009 15:23	%	6.3	(60 - 118)	1
o-Terphenyl Surrogate(SURR)	FL-PRO	100	07/27/2009 0:39	07/26/2009 15:23	%	6.3	(62 - 109)	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313002

Client ID: SB 4 at 5ft

Matrix: SO

Collection Information:

_		D 16	Analysis	Prep Date	Units	MDL	RL	Dilution Factor
Parameter	Method	Results	Date	07/21/2009 12:10		0.0445	0.445	1
Cadmium	6010	0.0616 I	07/22/2009 1:58	= " "	mg/Kg	0.0445	0.445	1
Chromium	6010	1.63	07/22/2009 1:58	07/21/2009 12:10 07/21/2009 12:10	mg/Kg	0.142	0.712	1
Lead	6010	4.18	• , , , _ , _ , _ , _ , _ , _ , _ ,		mg/Kg	0.889	1.78	2
Arsenic	6010	0.889 U		07/21/2009 12:10 07/21/2009 17:21	mg/Kg	3.4	24	1
Aroclor-1016	8082	3.4 U	07/22/2009 4:02		ug/Kg	5. 4 5.8	2 4 24	1
Aroclor-1221	8082	5.8 U	07/22/2009 4:02	07/21/2009 17:21	ug/Kg	3.6 16	24 24	1
Aroclor-1232	8082	16 U		07/21/2009 17:21 07/21/2009 17:21	ug/Kg	5.8	24 24	1
Aroclor-1242	8082	5.8 U	07/22/2009 4:02		ug/Kg	8.7	2 4 24	1
Aroclor-1248	8082	8.7 U	07/22/2009 4:02	07/21/2009 17:21 07/21/2009 17:21	ug/Kg	2.5	24	1
Aroclor-1254	8082	2.5 U	07/22/2009 4:02	•	ug/Kg	2.5 3.7	24 24	1
Aroclor-1260	8082	3.7 U	07/22/2009 4:02		ug/Kg	3. <i>1</i> 3.9	2 4 24	1
Aroclor-1262	8082	3.9 U		07/21/2009 17:21	ug/Kg		24 24	1
Aroclor-1268	8082	4.6 U		07/21/2009 17:21	ug/Kg	4.6		
Decachlorobiphenyl(SURR)	8082	90.1		07/21/2009 17:21	%	4.6	(33 - 140)	
1,1,1,2-Tetrachloroethane	8260	0.89 U	07/20/2009 12:46		ug/kg	0.89	2.4	1
1,1,1-Trichloroethane	8260	0.65 U	07/20/2009 12:46		ug/kg	0.65	2.4	1
1,1,2,2-Tetrachloroethane	8260	0.72 U	07/20/2009 12:46		ug/kg	0.72	2.4	1
1,1,2-Trichloroethane	8260	0.98 U	07/20/2009 12:46		ug/kg	0.98	2.4	1
1,1-Dichloroethane	8260	0.83 U	07/20/2009 12:46		ug/kg	0.83	2.4	1
1,1-Dichloroethene	8260	0.8 U	07/20/2009 12:46		ug/kg	0.8	2.4	1
1,1-Dichloropropene	8260	0.58 U	07/20/2009 12:46		ug/kg	0.58	2.4	1
1,2,3-Trichlorobenzene	8260	0.59 U	07/20/2009 12:46		ug/kg	0.59	2.4	1
1,2,3-Trichloropropane	8260	1.1 U	07/20/2009 12:46		ug/kg	1.1	2.4	1
1,2,4-Trichlorobenzene	8260	0.7 U	07/20/2009 12:46		ug/kg	0.7	2.4	1
1,2,4-Trimethylbenzene	8260	0.4 U	07/20/2009 12:46		ug/kg	0.4	2.4	1
1,2-Dibromo-3-chloropropane	8260	2.6 U	07/20/2009 12:46		ug/kg	2.6	12.1	1
1,2-Dibromoethane(EDB)	8260	1.2 U	07/20/2009 12:46		ug/kg 	1.2	2.4	1
1,2-Dichlorobenzene	8260	0.58 U	07/20/2009 12:46		ug/kg	0.58	2.4	1
1,2-Dichloroethane	8260	0.6 U	07/20/2009 12:46		ug/kg	0.6	2.4	1
1,2-Dichloropropane	8260	1.1 U	07/20/2009 12:46		ug/kg	1.1	2.4	1
1,3,5-Trimethylbenzene	8260	0.49 U	07/20/2009 12:46		ug/kg	0.49	2.4	1
1,3-Dichlorobenzene	8260	0.64 U	07/20/2009 12:46		ug/kg	0.64	2.4	1
1,3-Dichloropropane	8260	0.65 U	07/20/2009 12:46		ug/kg	0.65	2.4	1
1,4-Dichlorobenzene	8260	0.65 U	07/20/2009 12:46		ug/kg	0.65	2.4	1
2,2-Dichloropropane	8260	0.74 U	07/20/2009 12:46		ug/kg	0.74	2.4	1
2-Butanone	8260	2 U	07/20/2009 12:46	3	ug/kg	2	12.1	1
2-Chlorotoluene	8260	0.54 U	07/20/2009 12:46	3	ug/kg	0.54	2.4	1
2-Hexanone	8260	1.9 J3U	07/20/2009 12:46	3	ug/kg	1.9	12.1	1
4-Chlorotoluene	8260	0.43 U	07/20/2009 12:46	3	ug/kg	0.43	2.4	1
4-isopropyltoluene	8260	1.1 U	07/20/2009 12:46	5	ug/kg	1.1	2.4	1
4-Methyl-2-pentanone	8260	1.4 U	07/20/2009 12:46	3	ug/kg	1.4	12.1	1
Acetone	8260	5.8 U	07/20/2009 12:46	3	ug/kg	5.8	12.1	1
Acrolein	8260	5.4 J3U	07/20/2009 12:46		ug/kg	5.4	30.2	1
Acrylonitrile	8260	4.2 U	07/20/2009 12:46	6	ug/kg	4.2	6	1
Benzene	8260	0.51 U	07/20/2009 12:46	3	ug/kg	0.51	2.4	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313002

Client ID: SB 4 at 5ft

Matrix: SO

Collection Information:

			Analysis	Prep			I	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Bromobenzene	8260	0.82 U	07/20/2009 12:46		ug/kg	0.82	2.4	1
Bromochloromethane	8260	0.92 U	07/20/2009 12:46		ug/kg	0.92	2.4	1
Bromodichloromethane	8260	0.52 U	07/20/2009 12:46		ug/kg	0.52	2.4	1
Bromoform	8260	2.4 J3RU	07/20/2009 12:46		ug/kg	2.4	6	1
Bromomethane	8260	1.2 U	07/20/2009 12:46		ug/kg	1.2	2.4	1
Carbon disulfide	8260	0.6 U	07/20/2009 12:46		ug/kg	0.6	2.4	1
Carbon tetrachloride	8260	0.59 U	07/20/2009 12:46		ug/kg	0.59	2.4	1
Chlorobenzene	8260	0.65 U	07/20/2009 12:46		ug/kg	0.65	2.4	1
Chloroethane	8260	1.4 U	07/20/2009 12:46		ug/kg	1.4	6	1
Chloroform	8260	0.63 U	07/20/2009 12:46		ug/kg	0.63	2.4	1
Chloromethane	8260	1 U	07/20/2009 12:46		ug/kg	1	2.4	1
cis-1,2-Dichloroethene	8260	1.4 U	07/20/2009 12:46		ug/kg	1.4	2.4	1
cis-1,3-Dichloropropene	8260	0.53 U	07/20/2009 12:46		ug/kg	0.53	2.4	1
Dibromochloromethane	8260	0.78 U	07/20/2009 12:46		ug/kg	0.78	2.4	1
Dibromomethane	8260	1 U	07/20/2009 12:46		ug/kg	1	2.4	1
Dichlorodifluoromethane	8260	0.8 U	07/20/2009 12:46		ug/kg	8.0	2.4	1
Ethylbenzene	8260	0.92 U	07/20/2009 12:46		ug/kg	0.92	2.4	1
Hexachlorobutadiene	8260	0.99 U	07/20/2009 12:46		ug/kg	0.99	4.8	1
Isopropylbenzene (Cumene)	8260	0.95 U	07/20/2009 12:46		ug/kg	0.95	2.4	1
Methyl iodide	8260	0.56 U	07/20/2009 12:46		ug/kg	0.56	2.4	1
Methylene chloride	8260	1.4 U	07/20/2009 12:46		ug/kg	1.4	6	1
MTBE	8260	0.68 U	07/20/2009 12:46		ug/kg	0.68	2.4	1
Naphthalene	8260	0.82 U	07/20/2009 12:46		ug/kg	0.82	2.4	1
n-Butylbenzene	8260	0.56 U	07/20/2009 12:46		ug/kg	0.56	2.4	1
n-Propylbenzene	8260	0.48 U	07/20/2009 12:46		ug/kg	0.48	2.4	1
o-Xylene	8260	0.63 U	07/20/2009 12:46		ug/kg	0.63	2.4	1
p,m-Xylene	8260	0.78 U	07/20/2009 12:46		ug/kg	0.78	4.8	1
sec-Butylbenzene	8260	0.72 U	07/20/2009 12:46		ug/kg	0.72	2.4	1
Styrene	8260	0.52 U	07/20/2009 12:46		ug/kg	0.52	2.4	1
tert-Butylbenzene	8260	U 8.0	07/20/2009 12:46		ug/kg	8.0	2.4	1
Tetrachloroethene	8260	0.63 U	07/20/2009 12:46		ug/kg	0.63	2.4	1
Toluene	8260	1 U	07/20/2009 12:46		ug/kg	1	2.4	1
trans-1,2-Dichloroethene	8260	0.92 U	07/20/2009 12:46		ug/kg	0.92	2.4	1
trans-1,3-Dichloropropene	8260	0.68 U	07/20/2009 12:46		ug/kg	0.68	2.4	1
Trichloroethene	8260	1.1 U	07/20/2009 12:46		ug/kg	1.1	2.4	1
Trichlorofluoromethane	8260	0.76 U	07/20/2009 12:46		ug/kg	0.76	2.4	1
Vinyl acetate	8260	1.3 U	07/20/2009 12:46		ug/kg	1.3	6	1
Vinyl chloride	8260	1.1 U	07/20/2009 12:46		ug/kg	1.1	2.4	1
1,2-Dichloroethane-d4(SURR)	8260	106	07/20/2009 12:46		%	1.1	(71 - 124	-
4-Bromofluorobenzene(SURR)	8260	96.2	07/20/2009 12:46		%	1.1	(54 - 126	•
Dibromofluoromethane(SURR)	8260	96.4	07/20/2009 12:46		%	1.1	(68 - 119	
Toluene d8(SURR)	8260	95.8	07/20/2009 12:46		%	1.1	(59 - 127	7) 1
1,2,4-Trichlorobenzene	8270	44 U		07/30/2009 13:51	ug/kg	44	205	1
1,2-Dichlorobenzene	8270	43.2 U		07/30/2009 13:51		43.2	205	1
1,3-Dichlorobenzene	8270	46.3 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	46.3	205	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313002

Client ID: SB 4 at 5ft

Matrix: SO

Collection Information:

			Analysis	Prep				Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
1,4-Dichlorobenzene	8270	47.8 U	07/31/2009 19:56		ug/kg	47.8	205	1
1-Methylnaphthalene	8270	47 U		07/30/2009 13:51	ug/kg	47	205	1
2.2-Oxybis(1-chloropropane)	8270	167 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	167	205	1
2,4,5-Trichlorophenol	8270	56.1 U	•	07/30/2009 13:51	ug/kg	56.1	202	1
2,4,6-Trichlorophenol	8270	51.6 U		07/30/2009 13:51	ug/kg	51.6	202	1
2,4-Dichlorophenol	8270	56.9 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	56.9	202	1
2,4-Dimethylphenol	8270	43.2 U		07/30/2009 13:51	ug/kg	43.2	202	1
2,4-Dinitrophenol	8270	167 J3U		07/30/2009 13:51	ug/kg	167	1020	1
2,4-Dinitrotoluene	8270	37.2 J3U		07/30/2009 13:51	ug/kg	37.2	205	1
2.6-Dinitrotoluene	8270	37.9 J3U		07/30/2009 13:51	ug/kg	37.9	205	1
2-Chloronaphthalene	8270	50.6 U		07/30/2009 13:51	ug/kg	50.6	205	1
2-Chlorophenol	8270	52.3 U		07/30/2009 13:51	ug/kg	52.3	205	1
2-Methyl-4,6-dinitrophenol	8270	202 U		07/30/2009 13:51	ug/kg	202	205	1
2-Methylnaphthalene	8270	44 J3U		07/30/2009 13:51	ug/kg	44	205	1
2-Methylphenol (o-Cresol)	8270	72.8 U		07/30/2009 13:51	ug/kg	72.8	202	1
2-Nitroaniline	8270	43.2 J3U		07/30/2009 13:51	ug/kg	43.2	205	1
2-Nitrophenol	8270	54.6 U		07/30/2009 13:51	ug/kg	54.6	205	1
3,3'-Dichlorobenzidine	8270	44.8 U		07/30/2009 13:51	ug/kg	44.8	205	1
3-Nitroaniline	8270	60.7 J3MU		07/30/2009 13:51	ug/kg	60.7	202	1
4-Bromophenyi-phenylether	8270	37.2 U		07/30/2009 13:51	ug/kg	37.2	205	1
4-Chloro-3-methylphenol	8270	42.5 U		07/30/2009 13:51	ug/kg	42.5	205	1
4-Chloroaniline	8270	47.8 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	47.8	205	1
4-Chlorophenyl-phenylether	8270	38.7 U		07/30/2009 13:51	ug/kg	38.7	205	1
4-Methylphenol	8270	44.8 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	44.8	205	1
4-Nitroaniline	8270	66.7 J3U		07/30/2009 13:51	ug/kg	66.7	202	1
4-Nitrophenol	8270	40.2 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	40.2	506	1
Acenaphthene	8270	37.2 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	37.2	205	1
Acenaphthylene	8270	41.7 U		07/30/2009 13:51	ug/kg	41.7	205	1
Aniline	8270	58.4 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	58.4	205	1
Anthracene	8270	45.5 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	45.5	205	1
Benzidine	8270	455 Ú	07/31/2009 19:56	6 07/30/2009 13:51	ug/kg	455	508	1
Benzo(a)anthracene	8270	43.2 U	07/31/2009 19:56	6 07/30/2009 13:51	ug/kg	43.2	205	1
Benzo(a)pyrene	8270	32.6 U	07/31/2009 19:56	6 07/30/2009 13:51	ug/kg	32.6	205	1
Benzo(b)fluoranthene	8270	47.8 U	07/31/2009 19:50	6 07/30/2009 13:51	ug/kg	47.8	205	1
Benzo(g,h,i)perylene	8270	30.3 U	07/31/2009 19:5	6 07/30/2009 13:51	ug/kg	30.3	205	1
Benzo(k)fluoranthene	8270	43.2 U	07/31/2009 19:5	6 07/30/2009 13:51	ug/kg	43.2	205	1
Benzoic acid	8270	205 U	07/31/2009 19:5	6 07/30/2009 13:51	ug/kg	205	506	1
Benzyl alcohol	8270	69.8 J3U	07/31/2009 19:5	6 07/30/2009 13:51	ug/kg	69.8	506	1
Bis(2-Chloroethoxy)methane	8270	43.2 U	07/31/2009 19:5	6 07/30/2009 13:51	ug/kg	43.2	202	1
Bis(2-Chloroethyl)ether	8270	50.8 U		6 07/30/2009 13:51		50.8	205	1
bis(2-ethylhexyl)phthalate	8270	63 U		6. 07/30/2009 13:51		63	205	1
Butylbenzylphthalate	8270	47.8 U		6 07/30/2009 13:51		47.8	205	1
Chrysene	8270	28.7 1		6 07/30/2009 13:51		25.8	202	. 1
Dibenz(a,h)anthracene	8270	31.1 U		6 07/30/2009 13:51			205	1
Dibenzofuran	8270	41 J3MU		6 07/30/2009 13:51			205	1
Diberizulurari	0210	1. 551116						

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313002

Client ID: SB 4 at 5ft

Matrix: SO

Collection Information:

			Analysis	Prep			Γ	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Diethylphthalate	8270	38.7 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	38.7	205	1
Dimethyl-phthalate	8270	44.8 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	44.8	205	1
Di-n-butylphthalate	8270	33.4 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	33.4	205	1
Di-n-octylphthalate	8270	44 U		07/30/2009 13:51	ug/kg	44	205	1
Fluoranthene	8270	37.7 J3 l		07/30/2009 13:51	ug/kg	36.4	205	1
Fluorene	8270	38.7 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	38.7	205	1
Hexachlorobenzene	8270	40.2 J3MU	07/31/2009 19:56	07/30/2009 13:51	ug/kg	40.2	202	1
Hexachlorobutadiene	8270	44 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	44	205	1
Hexachlorocyclopentadiene	8270	30.3 U	**************************************	07/30/2009 13:51	ug/kg	30.3	506	1
Hexachloroethane	8270	37.9 U		07/30/2009 13:51	ug/kg	37.9	205	1
Indeno(1,2,3-cd)pyrene	8270	39.4 U		07/30/2009 13:51	ug/kg	39.4	205	1
Isophorone	8270	44.8 U		07/30/2009 13:51	ug/kg	44.8	205	1
Naphthalene	8270	48.5 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	48.5	205	1
Nitrobenzene	8270	45.5 U		07/30/2009 13:51	ug/kg	45.5	205	1
N-Nitrosodimethylamine	8270	53.8 U	07/31/2009 19:56	07/30/2009 13:51	ug/kg	53.8	202	1
N-Nitroso-di-n-propylamine	8270	46.3 U		07/30/2009 13:51	ug/kg	46.3	205	1
N-Nitrosodiphenylamine	8270	47.8 U		07/30/2009 13:51	ug/kg	47.8	202	1
Pentachlorophenol	8270	101 U	•	07/30/2009 13:51	ug/kg	101	205	1
Phenanthrene	8270	42.5 U		07/30/2009 13:51	ug/kg	42.5	205	1
Phenol	8270	49.3 U		07/30/2009 13:51	ug/kg	49.3	1010	1
Pyrene	8270	69.8 U		07/30/2009 13:51	ug/kg	69.8	205	1
2,4,6-Tribromophenol(SURR)	8270	76.4		07/30/2009 13:51	%	69.8	(19 - 122)	
2-Fluorobiphenyl(SURR)	8270	70.2	• • • • • • • • • • • • • • • • • • • •	07/30/2009 13:51	%	69.8	(30 - 115)	
2-Fluorophenol(SURR)	8270	77.5		07/30/2009 13:51	%	69.8	(25 - 121)	
Nitrobenzene-d5(SURR)	8270	78.5	-	07/30/2009 13:51	%	69.8	(23 - 120)	
Phenol-d5(SURR)	8270	70.3		07/30/2009 13:51	%	69.8	(24 - 113)	
p-Terphenyl-d14(SURR)	8270	66.4		07/30/2009 13:51	%	69.8	(18 - 137)	
1-Methylnaphthalene	8310	3.1 U		07/23/2009 13:51	ug/kg	3.1	7.6	1
2-Methylnaphthalene	8310	3 U	07/24/2009 0:46		ug/kg	3	7.6	1
Acenaphthene	8310	0.84 U	07/24/2009 0:46		ug/kg	0.84	7.6	1
Acenaphthylene	8310	0.92 U	07/24/2009 0:46		ug/kg	0.92	7.6	1
Anthracene	8310	0.84 U	07/24/2009 0:46		ug/kg	0.84	7.6	1
Benzo(a)anthracene	8310	31.2	07/24/2009 0:46		ug/kg	1.5	7.6	1
Benzo(a)pyrene	8310	39.4	07/24/2009 0:46		ug/kg	2.5	7.6	1
Benzo(b)fluoranthene	8310	50.5	07/24/2009 0:46		ug/kg	2	7.6	1
Benzo(g,h,i)perylene	8310	61.9		07/23/2009 13:51	ug/kg	2	7.6	1
Benzo(k)fluoranthene	8310	19.3		07/23/2009 13:51	ug/kg	1.1	7.6	1
Chrysene	8310	46.6		07/23/2009 13:51	ug/kg	2.1	7.6	1
Dibenz(a,h)anthracene	8310	7.4 1		07/23/2009 13:51	ug/kg	0.84	7.6	1
Fluoranthene	8310	90.2		07/23/2009 13:51		1.5	7.6	1
Fluorene	8310	1.4 U		07/23/2009 13:51		1.4	7.6	1
Indeno(1,2,3-cd)pyrene	8310	37.4	07/24/2009 0:46			0.84	7.6	1
Naphthalene	8310	2 U	07/24/2009 0:46	,		2	7.6	1
Phenanthrene	8310	15.8	07/24/2009 0:46			1.3	7.6	1
Pyrene	8310	64.8	07/24/2009 0:46	07/23/2009 13:51	ug/kg	2.3	7.6	1

FLDOH #E84207

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313002

Client ID: SB 4 at 5ft

Collection Information:

Sample Date: 7/17/2009 2:20:00 PM

Matrix: SO

			Analysis	Prep			I	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
p-Terphenyl-d14(SURR)	8310	78.6	07/24/2009 0:46	07/23/2009 13:51	%	2.3	(17 - 119)	1
TPH	FL-PRO	6.2 U	07/27/2009 1:06	07/26/2009 15:23	mg/Kg	6.2	10.9	1
C39 Surrogate(SURR)	FL-PRO	108	07/27/2009 1:06	07/26/2009 15:23	%	6.2	(60 - 118)	1
o-Terphenyl Surrogate(SURR)	FL-PRO	106	07/27/2009 1:06	07/26/2009 15:23	%	6.2	(62 - 109)	1

FLDOH #E84207

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313003

Client ID: SB 5 at 5ft

Matrix: SO

. DD J at Jit

Collection Information:

			Analysis	Prep			-	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Arsenic	6010	0.467 U	07/22/2009 2:03	07/21/2009 12:10	mg/Kg	0.467	0.935	1
Cadmium	6010	0.13 [07/22/2009 2:03	07/21/2009 12:10	mg/Kg	0.0467	0.467	1
Chromium	6010	2.11	07/22/2009 2:03	07/21/2009 12:10	mg/Kg	0.15	0.467	1
Lead	6010	0.542 1	07/22/2009 2:03	07/21/2009 12:10	mg/Kg	0.318	0.748	1
Aroclor-1016	8082	3.4 U	07/22/2009 4:33	07/21/2009 17:21	ug/Kg	3.4	23	1
Aroclor-1221	8082	5.8 U	07/22/2009 4:33	07/21/2009 17:21	ug/Kg	5.8	23	1
Aroclor-1232	8082	16 U	07/22/2009 4:33	07/21/2009 17:21	ug/Kg	16	23	1
Aroclor-1242	8082	5.8 U	07/22/2009 4:33	07/21/2009 17:21	ug/Kg	5.8	23	1
Aroclor-1248	8082	8.6 U	07/22/2009 4:33	07/21/2009 17:21	ug/Kg	8.6	23	1
Aroclor-1254	8082	2.5 U	07/22/2009 4:33		ug/Kg	2.5	23	1
Aroclor-1260	8082	3.7 U	07/22/2009 4:33	07/21/2009 17:21	ug/Kg	3.7	23	1
Aroclor-1262	8082	3.9 U	07/22/2009 4:33		ug/Kg	3.9	23	1
Aroclor-1268	8082	4.5 U	07/22/2009 4:33	07/21/2009 17:21	ug/Kg	4.5	23	1
Decachlorobiphenyl(SURR)	8082	78.7	07/22/2009 4:33	07/21/2009 17:21	%	4.5	(33 - 140)	
1.1.1.2-Tetrachloroethane	8260	0.97 U	07/20/2009 13:10)	ug/kg	0.97	2.6	1
1,1,1-Trichloroethane	8260	0.71 U	07/20/2009 13:10)	ug/kg	0.71	2.6	1
1,1,2,2-Tetrachloroethane	8260	0.79 U	07/20/2009 13:10)	ug/kg	0.79	2.6	1
1,1,2-Trichloroethane	8260	1.1 U	07/20/2009 13:10)	ug/kg	1.1	2.6	1
1,1-Dichloroethane	8260	0.9 U	07/20/2009 13:10)	ug/kg	0.9	2.6	1
1,1-Dichloroethene	8260	0.87 U	07/20/2009 13:10)	ug/kg	0.87	2.6	1
1.1-Dichloropropene	8260	0.63 U	07/20/2009 13:10)	ug/kg	0.63	2.6	1
1.2.3-Trichlorobenzene	8260	0.64 U	07/20/2009 13:10	ס	ug/kg	0.64	2.6	1
1,2,3-Trichloropropane	8260	1.2 ป	07/20/2009 13:10	ס	ug/kg	1.2	2.6	1
1,2,4-Trichlorobenzene	8260	0.76 U	07/20/2009 13:10	ס	ug/kg	0.76	2.6	1
1,2,4-Trimethylbenzene	8260	0.43 U	07/20/2009 13:10	0	ug/kg	0.43	2.6	1
1,2-Dibromo-3-chioropropane	8260	2.9 U	07/20/2009 13:10	0	ug/kg	2.9	13.1	1
1,2-Dibromoethane(EDB)	8260	1.3 U	07/20/2009 13:1	0	ug/kg	1.3	2.6	1
1,2-Dichlorobenzene	8260	0.63 U	07/20/2009 13:1	0	ug/kg	0.63	2.6	1
1,2-Dichloroethane	8260	0.66 U	07/20/2009 13:1	0	ug/kg	0.66	2.6	1
1,2-Dichloropropane	8260	1.2 U	07/20/2009 13:1	0	ug/kg	1.2	2.6	1
1,3,5-Trimethylbenzene	8260	0.54 U	07/20/2009 13:1	0	ug/kg	0.54	2.6	1
1,3-Dichlorobenzene	8260	0.7 U	07/20/2009 13:1	0	ug/kg	0.7	2.6	1
1,3-Dichloropropane	8260	0.71 U	07/20/2009 13:1	0	ug/kg	0.71	2.6	1
1,4-Dichlorobenzene	8260	0.71 U	07/20/2009 13:1	0	ug/kg	0.71	2.6	1
2,2-Dichloropropane	8260	0.8 U	07/20/2009 13:1	0	ug/kg	8.0	2.6	1
2-Butanone	8260	2.2 U	07/20/2009 13:1	0	ug/kg	2.2	13.1	1
2-Chlorotoluene	8260	0.59 U	07/20/2009 13:1	0	ug/kg	0.59	2.6	1
2-Hexanone	8260	2.1 J3U	07/20/2009 13:1	0	ug/kg	2.1	13.1	1
4-Chlorotoluene	8260	0.47 U	07/20/2009 13:1	0	ug/kg	0.47	2.6	1
4-Isopropyltoluene	8260	1.2 U	07/20/2009 13:1	0	ug/kg	1.2	2.6	1
4-Methyl-2-pentanone	8260	1.6 U	07/20/2009 13:1	0	ug/kg	1.6	13.1	1
Acetone	8260	6.3 U	07/20/2009 13:1	0	ug/kg	6.3	13.1	1
Acrolein	8260	5.9 J3U	07/20/2009 13:1		ug/kg	5.9	32.8	1
Acrylonitrile	8260	4.6 U	07/20/2009 13:1	10	ug/kg	4.6	6.6	1
Benzene	8260	0.55 U	07/20/2009 13:1	10	ug/kg	0.55	2.6	1
Deligelle								

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313003 Collection Information:

Sample Date: 7/17/2009 2:25:00 PM

Client ID: SB 5 at 5ft
Matrix: SO

			Analysis	Prep			r	Dilution
Davamatar	B# -41 J	Results	Date	Date	Units	MDL	RL	Factor
Parameter	Method 8260	0.89 U	07/20/2009 13:10		ug/kg	0.89	2.6	1
Bromobenzene Bromochloromethane	8260	1 U	07/20/2009 13:10		ug/kg	1	2.6	1
	8260 8260	0.56 U	07/20/2009 13:10		ug/kg	0.56	2.6	1
Bromodichloromethane	8260	2.6 J3RU	07/20/2009 13:10		ug/kg	2.6	6.6	1
Bromoform Bromomethane	8260	1.3 U	07/20/2009 13:10		ug/kg	1.3	2.6	1
Carbon disulfide	8260	0.66 U	07/20/2009 13:10		ug/kg	0.66	2.6	1
	8260	0.64 U	07/20/2009 13:10		ug/kg	0.64	2.6	1
Carbon tetrachloride	8260	0.71 U	07/20/2009 13:10		ug/kg	0.71	2.6	1
Chlorobenzene	8260	1.6 U	07/20/2009 13:10		ug/kg	1.6	6.6	1
Chloroethane Chloroform	8260	0.68 U	07/20/2009 13:10		ug/kg	0.68	2.6	1
Chloromethane	8260	1.1 U	07/20/2009 13:10		ug/kg	1.1	2.6	1
cis-1,2-Dichloroethene	8260	1.6 U	07/20/2009 13:10		ug/kg	1.6	2.6	1
•	8260	0.58 U	07/20/2009 13:10		ug/kg	0.58	2.6	1
cis-1,3-Dichloropropene Dibromochloromethane	8260	0.85 U	07/20/2009 13:10		ug/kg	0.85	2.6	1
Dibromomethane	8260	1.1 U	07/20/2009 13:10		ug/kg	1.1	2.6	1
Dichlorodifluoromethane	8260	0.87 U	07/20/2009 13:10		ug/kg	0.87	2.6	1
=	8260	1 U	07/20/2009 13:10		ug/kg	1	2.6	1
Ethylbenzene Hexachlorobutadiene	8260	1.1 U	07/20/2009 13:10		ug/kg	1.1	5.2	1
isopropyibenzene (Cumene)	8260	1 U	07/20/2009 13:10		ug/kg	1	2.6	1
	8260	0.6 U	07/20/2009 13:10		ug/kg	0.6	2.6	1
Methyl iodide Methylene chloride	8260	1.6 U	07/20/2009 13:10		ug/kg	1.6	6.6	1
MTBE	8260	0.74 U	07/20/2009 13:10		ug/kg	0.74	2.6	1
	8260	0.89 U	07/20/2009 13:10		ug/kg	0.89	2.6	1
Naphthalene	8260	0.6 U	07/20/2009 13:10		ug/kg	0.6	2.6	1
n-Butylbenzene	8260	0.52 U	07/20/2009 13:10		ug/kg	0.52	2.6	1
n-Propylbenzene	8260	0.68 U	07/20/2009 13:10		ug/kg	0.68	2.6	1
o-Xylene	8260	0.85 U	07/20/2009 13:10		ug/kg	0.85	5.2	1
p,m-Xylene	8260	0.79 U	07/20/2009 13:10		ug/kg	0.79	2.6	1
sec-Butylbenzene	8260	0.56 U	07/20/2009 13:10		ug/kg	0.56	2.6	1
Styrene	8260	0.87 U	07/20/2009 13:10		ug/kg	0.87	2.6	1
tert-Butylbenzene	8260	0.68 U	07/20/2009 13:10		ug/kg	0.68	2.6	1
Tetrachloroethene	8260	1.1 U	07/20/2009 13:10		ug/kg	1.1	2.6	1
Toluene	8260	1 U	07/20/2009 13:10		ug/kg	1	2.6	1
trans-1,2-Dichloroethene	8260	0.74 U	07/20/2009 13:10		ug/kg	0.74	2.6	1
trans-1,3-Dichloropropene	8260 8260	1.2 U	07/20/2009 13:10		ug/kg	1.2	2.6	1
Trichloroethene	8260 8260	0.83 U	07/20/2009 13:10		ug/kg	0.83	2.6	1
Trichlorofluoromethane		1.4 U	07/20/2009 13:10		ug/kg	1.4	6.6	1
Vinyl acetate	8260	1.4 U	07/20/2009 13:10		ug/kg	1.2	2.6	1
Vinyl chloride	8260	102	07/20/2009 13:10		% %	1.2	(71 - 124	
1,2-Dichloroethane-d4(SURR)	8260	98.6	07/20/2009 13:10		%	1.2	(54 - 126	
4-Bromofluorobenzene(SURR)	8260 8260	98.4	07/20/2009 13:10		%	1.2	(68 - 119	
Dibromofluoromethane(SURR)	8260	90.2	07/20/2009 13:10		%	1.2	(59 - 127	•
Toluene d8(SURR)	8260	90.2 44 U	07/31/2009 20:25	07/30/2009 13:51	ug/kg	44	205	1
1,2,4-Trichlorobenzene	8270		07/31/2009 20:25		ug/kg	43.2	205	1
1,2-Dichlorobenzene	8270	43.2 U	07/31/2009 20:25		ug/kg	46.3	205	1
1,3-Dichlorobenzene	8270	46.3 U	0113 112008 20.23	01/00/2009 TO:01	~9,1.9	10.0		•

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313003

Client ID: SB 5 at 5ft

Matrix: SO

Collection Information:

		Descrito	Analysis Date	Prep Date	Units	MDL	RL	Dilution Factor
Parameter	Method	Results		07/30/2009 13:51	ug/kg	47.8	205	1
1,4-Dichlorobenzene	8270	47.8 U		07/30/2009 13:51	ug/kg	47.0	205	1
1-Methylnaphthalene	8270	47 U		07/30/2009 13:51	ug/kg	167	205	1
2,2-Oxybis(1-chloropropane)	8270	167 U		07/30/2009 13:51	ug/kg ug/kg	56.1	202	1
2,4,5-Trichlorophenol	8270	56.1 U		07/30/2009 13:51	ug/kg ug/kg	51.6	202	1
2,4,6-Trichlorophenol	8270	51.6 U		07/30/2009 13:51	ug/kg ug/kg	56.9	202	1
2,4-Dichlorophenol	8270	56.9 U		07/30/2009 13:51	ug/kg	43.2	202	1
2,4-Dimethylphenol	8270	43.2 U		07/30/2009 13:51		167	1020	1
2,4-Dinitrophenol	8270	167 J3U		07/30/2009 13:51	ug/kg ug/kg	37.2	205	1
2,4-Dinitrotoluene	8270	37.2 J3U	• • • • • • • • • • • • • • • • • • • •	07/30/2009 13:51		37.2	205	1
2,6-Dinitrotoluene	8270	37.9 J3U		07/30/2009 13:51	ug/kg ug/kg	50.6	205	1
2-Chloronaphthalene	8270	50.6 U		07/30/2009 13:51	ug/kg ug/kg	52.4	205	1
2-Chlorophenol	8270	52.4 U		07/30/2009 13:51	ug/kg ug/kg	202	205	1
2-Methyl-4,6-dinitrophenol	8270	202 U		07/30/2009 13:51	ug/kg	44	205	, 1
2-Methylnaphthalene	8270	44 J3U		07/30/2009 13:51		72.8	202	1
2-Methylphenol (o-Cresol)	8270	72.8 U		07/30/2009 13:51	ug/kg ug/kg	43.2	205	1
2-Nitroaniline	8270	43.2 J3U		07/30/2009 13:51		54.6	205	1
2-Nitrophenol	8270	54.6 U		07/30/2009 13:51	ug/kg ug/kg	44.8	205	1
3,3'-Dichlorobenzidine	8270	44.8 U		07/30/2009 13:51	ug/kg ug/kg	60.7	202	1
3-Nitroaniline	8270	60.7 J3MU	• • • • • • • • • • • • • • • • • • • •	07/30/2009 13:51		37.2	205	1
4-Bromophenyl-phenylether	8270	37.2 U			ug/kg	42.5	205	1
4-Chloro-3-methylphenol	8270	42.5 U		07/30/2009 13:51	ug/kg ug/kg	47.8	205	1
4-Chloroaniline	8270	47.8 U		07/30/2009 13:51		38.7	205	1
4-Chlorophenyl-phenylether	8270	38.7 U		07/30/2009 13:51	ug/kg	44.8	205	1
4-Methylphenol	8270	44.8 U		6 07/30/2009 13:51 6 07/30/2009 13:51	ug/kg	66.8	203	1
4-Nitroaniline	8270	66.8 J3U			ug/kg	40.2	506	1
4-Nitrophenol	8270	40.2 U		07/30/2009 13:51	ug/kg	37.2	205	, 1
Acenaphthene	8270	37.2 U		5 07/30/2009 13:51 5 07/30/2009 13:51	ug/kg	41.7	205	1
Acenaphthylene	8270	41.7 U			ug/kg	58.4	205	1
Aniline	8270	58.4 U		5 07/30/2009 13:51 5 07/30/2009 13:51	ug/kg	45.5	205	1
Anthracene	8270	45.5 U			ug/kg	45.5 455	508	1
Benzidine	8270	455 U		5 07/30/2009 13:51	ug/kg	43.2	205	1
Benzo(a)anthracene	8270	43.2 U		5 07/30/2009 13:51	ug/kg	32.6	205	1
Benzo(a)pyrene	8270	32.6 U		5 07/30/2009 13:51	ug/kg	47.8	205	1
Benzo(b)fluoranthene	8270	47.8 U		5 07/30/2009 13:51	ug/kg	30.3	205	1
Benzo(g,h,i)perylene	8270	30.3 U		5 07/30/2009 13:51	ug/kg	43.2	205	1
Benzo(k)fluoranthene	8270	43.2 U		5 07/30/2009 13:51	ug/kg	205	506	4
Benzoic acid	8270	205 U		5 07/30/2009 13:51	ug/kg			1
Benzyl alcohol	8270	69.8 J3U		5 07/30/2009 13:51	ug/kg	69.8	506	1
Bis(2-Chloroethoxy)methane	8270	43.2 U		5 07/30/2009 13:51	ug/kg	43.2	202	1
Bis(2-Chloroethyl)ether	8270	50.8 U		5 07/30/2009 13:51	ug/kg	50.8	205	1
bis(2-ethylhexyl)phthalate	8270	63 U		5 07/30/2009 13:51		63	205	1
Butylbenzylphthalate	8270	47.8 U		5 07/30/2009 13:51		47.8	205	1
Chrysene	8270	25.8 U		5 07/30/2009 13:51		25.8	202	1
Dibenz(a,h)anthracene	8270	31.1 U		5 07/30/2009 13:51		31.1	205	1
Dibenzofuran	8270	41 J3MU	07/31/2009 20:2	5 07/30/2009 13:51	ug/kg	41	205	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313003

Client ID: SB 5 at 5ft

Matrix: SO

Collection Information:

			Analysis	Prep			J	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Diethylphthalate	8270	38.7 U	07/31/2009 20:25	07/30/2009 13:51	ug/kg	38.7	205	1
Dimethyl-phthalate	8270	44.8 U	07/31/2009 20:25	07/30/2009 13:51	ug/kg	44.8	205	1
Di-n-butylphthalate	8270	33.4 U	07/31/2009 20:25	07/30/2009 13:51	ug/kg	33.4	205	1
Di-n-octylphthalate	8270	44 U		07/30/2009 13:51	ug/kg	44	205	1
Fluoranthene	8270	36.4 J3U		07/30/2009 13:51	ug/kg	36.4	205	1
Fluorene	8270	38.7 U		07/30/2009 13:51	ug/kg	38.7	205	1
Hexachlorobenzene	8270	40.2 J3MU	07/31/2009 20:25	07/30/2009 13:51	ug/kg	40.2	202	1
Hexachlorobutadiene	8270	44 U	07/31/2009 20:25	07/30/2009 13:51	ug/kg	44	205	1
Hexachlorocyclopentadiene	8270	30.3 U		07/30/2009 13:51	ug/kg	30.3	506	1
Hexachloroethane	8270	37.9 U		07/30/2009 13:51	ug/kg	37.9	205	1
Indeno(1,2,3-cd)pyrene	8270	39.4 U		07/30/2009 13:51	ug/kg	39.4	205	1
Isophorone	8270	44.8 U	07/31/2009 20:25	07/30/2009 13:51	ug/kg	44.8	205	1
Naphthalene	8270	48.6 U		07/30/2009 13:51	ug/kg	48.6	205	1
Nitrobenzene	8270	45.5 U		07/30/2009 13:51	ug/kg	45.5	205	1
N-Nitrosodimethylamine	8270	53.9 U	07/31/2009 20:25	07/30/2009 13:51	ug/kg	53.9	202	1
N-Nitroso-di-n-propylamine	8270	46.3 U		07/30/2009 13:51	ug/kg	46.3	205	1
N-Nitrosodiphenylamine	8270	47.8 U		07/30/2009 13:51	ug/kg	47.8	202	1
Pentachlorophenol	8270	101 U		07/30/2009 13:51	ug/kg	101	205	1
Phenanthrene	8270	42.5 U		07/30/2009 13:51	ug/kg	42.5	205	1
Phenol	8270	49.3 U		07/30/2009 13:51	ug/kg	49.3	1010	1
Pyrene	8270	69.8 U		07/30/2009 13:51	ug/kg	69.8	205	1
2,4,6-Tribromophenol(SURR)	8270	74.4		07/30/2009 13:51	%	69.8	(19 - 122	•
2-Fluorobiphenyl(SURR)	8270	69.4	07/31/2009 20:25	07/30/2009 13:51	%	69.8	(30 - 115	•
2-Fluorophenol(SURR)	8270	75.3		07/30/2009 13:51	· %	69.8	(25 - 121	•
Nitrobenzene-d5(SURR)	8270	76.7		07/30/2009 13:51	%	69.8	(23 - 120	•
Phenol-d5(SURR)	8270	69		07/30/2009 13:51	%	69.8	(24 - 113	•
p-Terphenyl-d14(SURR)	8270	66.2	07/31/2009 20:25	07/30/2009 13:51	%	69.8	(18 - 137	•
1-Methylnaphthalene	8310	3.2 U	07/24/2009 1:11	07/23/2009 13:51	ug/kg	3.2	7.9	1
2-Methylnaphthalene	8310	3.1 U	07/24/2009 1:11	07/23/2009 13:51	ug/kg	3.1	7.9	1
Acenaphthene	8310	0.86 U	07/24/2009 1:11	07/23/2009 13:51	ug/kg	0.86	7.9	1
Acenaphthylene	8310	0.94 U	07/24/2009 1:11		ug/kg	0.94	7.9	1
Anthracene	8310	6.3 1	07/24/2009 1:11	07/23/2009 13:51	ug/kg	0.86	7.9	1
Benzo(a)anthracene	8310	22.7	07/24/2009 1:11		ug/kg	1.6	7.9	1
Benzo(a)pyrene	8310	15.1	07/24/2009 1:11	07/23/2009 13:51	ug/kg	2.6	7.9	1
Benzo(b)fluoranthene	8310	15.7	07/24/2009 1:11	07/23/2009 13:51	ug/kg	2	7.9	1
Benzo(g,h,i)perylene	8310	17.8	07/24/2009 1:11		ug/kg	2	7.9	1
Benzo(k)fluoranthene	8310	8	07/24/2009 1:11		ug/kg	1.1	7.9	1
Chrysene	8310	23.4	07/24/2009 1:11	07/23/2009 13:51	ug/kg	2.2	7.9	1
Dibenz(a,h)anthracene	8310	0.86 U	07/24/2009 1:11	07/23/2009 13:51	ug/kg	0.86	7.9	1
Fluoranthene	8310	48.8	07/24/2009 1:11	07/23/2009 13:51	ug/kg	1.6	7.9	1
Fluorene	8310	4.4 1	07/24/2009 1:11	07/23/2009 13:51	ug/kg	1.5	7.9	1
Indeno(1,2,3-cd)pyrene	8310	11.4	07/24/2009 1:11	07/23/2009 13:51	ug/kg	0.86	7.9	1
Naphthalene	8310	2 U	07/24/2009 1:11	07/23/2009 13:51	ug/kg	2	7.9	1
Phenanthrene	8310	27.9	07/24/2009 1:11			1.3	7.9	1
	8310	35.8	07104100000444	07/23/2009 13:51	ug/kg	2.4	7.9	1

FLDOH #E84207

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

Collection Information:

PEL Lab#: 251313003

Client ID: SB 5 at 5ft

Sample D

Matrix: SO

			Analysis	Prep]	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
p-Terphenyl-d14(SURR)	8310	86	07/24/2009 1:11	07/23/2009 13:51	%	2.4	(17 - 119)	1
TPH	FL-PRO	10.3 U	07/24/2009 7:45	07/23/2009 16:20	mg/Kg	10.3	18.2	1
C39 Surrogate(SURR)	FL-PRO	65.8	07/24/2009 7:45	07/23/2009 16:20	%	10.3	(60 - 118)	1
o-Terphenyl Surrogate(SURR)	FL-PRO	71.7	07/24/2009 7:45	07/23/2009 16:20	%	10.3	(62 - 109)	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313004

Client ID: SB 2 at 8ft

Matrix: GW

Collection Information:

Sample Date: 7/17/2009 11:50:00 AM

			Analysis	Prep				ilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Arsenic	6010	5.73 I		07/21/2009 13:19	ug/L	3.31	10	1
Cadmium	6010	0.906 I		07/21/2009 13:19	ug/L	0.72	5	1
Chromium	6010	10.9		07/21/2009 13:19	ug/L	0.43	10	1
Lead	6010	3.7 U		07/21/2009 13:19	ug/L	3.7	15	1
1,2-Dibromoethane(EDB)	8011	0.00595 U		07/22/2009 15:36	ug/L	0.006	0.0195	1
1,1,2,2-Tetrachloroethane(SURR	8011	121	07/23/2009 17:27	07/22/2009 15:36	%	0.006	(70 - 130)	1
Aroclor-1016	8082	0.36 U	07/24/2009 0:24	07/23/2009 12:45	ug/L	0.36	0.51	1
Aroclor-1221	8082	0.44 U	07/24/2009 0:24	07/23/2009 12:45	ug/L	0.44	0.51	1
Aroclor-1232	8082	0.2 U	07/24/2009 0:24	07/23/2009 12:45	ug/L	0.2	0.51	1
Aroclor-1242	8082	0.31 U	07/24/2009 0:24	07/23/2009 12:45	ug/L	0.31	0.51	1
Aroclor-1248	8082	0.13 U	07/24/2009 0:24	07/23/2009 12:45	ug/L	0.13	0.51	1
Aroclor-1254	8082	0.12 U	07/24/2009 0:24	07/23/2009 12:45	ug/L	0.12	0.51	1
Aroclor-1260	8082	0.25 U	07/24/2009 0:24	07/23/2009 12:45	ug/L	0.25	0.51	1
Aroclor-1262	8082	0.057 U	07/24/2009 0:24	07/23/2009 12:45	ug/L	0.057	0.51	1
Aroclor-1268	8082	0.038 U	07/24/2009 0:24		ug/L	0.038	0.51	1
Decachlorobiphenyl(SURR)	8082	84		07/23/2009 12:45	%	0.038	(16 - 116)	
1,1,1,2-Tetrachloroethane	8260	0.25 U	07/21/2009 22:34		ug/l	0.25	1	1
1,1,1-Trichloroethane	8260	0.19 U	07/21/2009 22:34		ug/l	0.19	1	1
1,1,2,2-Tetrachloroethane	8260	0.33 U	07/21/2009 22:34		ug/l	0.33	1	1
1,1,2-Trichloroethane	8260	0.28 U	07/21/2009 22:34		ug/l	0.28	1	1
1,1-Dichloroethane	8260	0.28 U	07/21/2009 22:34		ug/l	0.28	1	1
1,1-Dichloroethene	8260	0.24 U	07/21/2009 22:34		ug/l	0.24	1	1
1,1-Dichloropropene	8260	0.19 U	07/21/2009 22:34		ug/l	0.19	1	1
1,2,3-Trichlorobenzene	8260	0.61 U	07/21/2009 22:34		ug/l	0.61	1	1
1,2,3-Trichloropropane	8260	0.76 U	07/21/2009 22:34		ug/l	0.76	1	1
1,2,4-Trichlorobenzene	8260	0.5 U	07/21/2009 22:34		ug/i	0.5	1	1
1,2,4-Trimethylbenzene	8260	0.17 U	07/21/2009 22:34		ug/l	0.17	1	1
1,2-Dibromo-3-chloropropane	8260	1.4 U	07/21/2009 22:34		ug/l	1.4	2	1
1,2-Dibromoethane(EDB)	8260	0.33 U	07/21/2009 22:34		ug/l	0.33	1	1
1,2-Dichlorobenzene	8260	0.26 U	07/21/2009 22:34		ug/l	0.26	1	1
1,2-Dichloroethane	8260	0.4 U	07/21/2009 22:34		ug/l	0.4	1	1
1,2-Dichloropropane	8260	0.27 U	07/21/2009 22:34		ug/l	0.27	1	1
1,3,5-Trimethylbenzene	8260	0.22 U	07/21/2009 22:34		ug/l	0.22	1	1
1,3-Dichlorobenzene	8260	0.2 U	07/21/2009 22:34		ug/l	0.2	1	1
1,3-Dichloropropane	8260	0.19 U	07/21/2009 22:3		ug/l	0.19	1	1
1,4-Dichlorobenzene	8260	0.24 U	07/21/2009 22:3		ug/l	0.24	1	1
2,2-Dichloropropane	8260	0.32 U	07/21/2009 22:3		ug/i	0.32	1	1
2-Butanone	8260	4 U	07/21/2009 22:3		ug/l	4	4	1
2-Chlorotoluene	8260	0.32 U	07/21/2009 22:3		ug/l	0.32		1
2-Hexanone	8260	0.95 U	07/21/2009 22:3		ug/l	0.95		1
4-Chiorotoluene	8260	0.12 U	07/21/2009 22:3		ug/l	0.12		1
4-Isopropyltoluene	8260	0.24 U	07/21/2009 22:3		ug/l	0.24		1
4-Methyl-2-pentanone	8260	0.61 U	07/21/2009 22:3	4	ug/l	0.61		1
Acetone	8260	5.6 U	07/21/2009 22:3		ug/l	5.6	10	1
Acrolein	8260	3.3 U	07/21/2009 22:3	4	ug/i	3.3	10	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313004

Client ID: SB 2 at 8ft

Matrix: GW

Collection Information:

Sample Date: 7/17/2009 11:50:00 AM

Parameter	Method	Results	Analysis Date	Prep Date	Units	MDL	RL	Dilution Factor
Acrylonitrile	8260	1.3 U	07/21/2009 22:34		ug/l	1.3	4	1
Benzene	8260	0.16 U	07/21/2009 22:34		ug/l	0.16	1	1
Bromobenzene	8260	0.27 U	07/21/2009 22:34		ug/l	0.27	1	1
Bromochloromethane	8260	0.38 U	07/21/2009 22:34		ug/l	0.38	1	1
Bromodichloromethane	8260	0.15 U	07/21/2009 22:34		ug/l	0.15	1	1
Bromoethane	8260	0.45 U	07/21/2009 22:34		ug/l	0.45	1	1
Bromoform	8260	0.36 U	07/21/2009 22:34		ug/l	0.36	1	1
Bromomethane	8260	0.76 U	07/21/2009 22:34		ug/l	0.76	1	1
Carbon disulfide	8260	0.29 U	07/21/2009 22:34		ug/l	0.29	1	1
Carbon tetrachloride	8260	0.33 U	07/21/2009 22:34		ug/l	0.33	1	1
Chlorobenzene	8260	0.18 U	07/21/2009 22:34		ug/l	0.18	1	1
Chloroethane	8260	0.99 J3MU	07/21/2009 22:34		ug/i	0.99	1	1
Chloroform	8260	0.29 U	07/21/2009 22:34		ug/l	0.29	1	1
Chloromethane	8260	0.68 U	07/21/2009 22:34		ug/l	0.68	1	1
cis-1,2-Dichloroethene	8260	0.29 U	07/21/2009 22:34		ug/l	0.29	1	1
cis-1,3-Dichloropropene	8260	0.23 U	07/21/2009 22:34		ug/l	0.23	1	1
Dibromochloromethane	8260	0.34 U	07/21/2009 22:34		ug/l	0.34	1	1
Dibromomethane	8260	0.53 U	07/21/2009 22:34		ug/l	0.53	1	1
Dichlorodifluoromethane	8260	0.23 U	07/21/2009 22:34		ug/l	0.23	1	1
Ethylbenzene	8260	0.43 U	07/21/2009 22:34		ug/l	0.43	1	1
Hexachlorobutadiene	8260	0.62 U	07/21/2009 22:34		ug/l	0.62	1	1
Isopropylbenzene (Cumene)	8260	0.41 U	07/21/2009 22:34		ug/l	0.41	1	1
	8260	0.4 U	07/21/2009 22:34		ug/i	0.4	1	1
Methyl iodide	8260	0.52 U	07/21/2009 22:34		ug/l	0.52	1	1
Methylene chloride MTBE	8260 8260	0.26 U	07/21/2009 22:34		ug/l	0.26	1	1
	8260	0.32 U	07/21/2009 22:34		ug/l	0.32	1	1
Naphthalene	8260	0.22 U	07/21/2009 22:34		ug/l	0.22	1	1
n-Butylbenzene	8260	0.28 U	07/21/2009 22:34		ug/i	0.28	1	1
n-Propylbenzene	8260	0.2 U	07/21/2009 22:34		ug/l	0.2	1	1
o-Xylene		0.27 U	07/21/2009 22:34		ug/i	0.27	2	1
p,m-Xylene	8260	0.21 U	07/21/2009 22:34		ug/l	0.2	1	1
sec-Butylbenzene	8260	0.2 U	07/21/2009 22:34		ug/i	0.2	, 1	1
Styrene	8260		07/21/2009 22:34		ug/l	0.28	1	1
tert-Butylbenzene	8260	0.28 U	07/21/2009 22:34		<u> </u>	0.25	1	1
Tetrachloroethene	8260	0.35 U	07/21/2009 22:34		ug/l	0.33	1	1
Toluene	8260	0.22 U			ug/l	0.22	1	1
trans-1,2-Dichloroethene	8260	0.23 U	07/21/2009 22:34		ug/l ug/l	0.23	1	1
trans-1,3-Dichloropropene	8260	0.17 U	07/21/2009 22:34		•	0.17	1	1
Trichloroethene	8260	0.42 U	07/21/2009 22:34		ug/l			1
Trichlorofluoromethane	8260	0.45 U	07/21/2009 22:34		ug/l	0.45	1	1
Vinyl acetate	8260	0.36 U	07/21/2009 22:34		ug/l	0.36	2	
Vinyl chloride	8260	0.28 U	07/21/2009 22:34		ug/i	0.28	1 (90 43)	1
1,2-Dichloroethane-d4(SURR)	8260	104	07/21/2009 22:34		%	0.28	(80 - 120	•
4-Bromofluorobenzene(SURR)	8260	101	07/21/2009 22:34		%	0.28	(86 - 11	,
Dibromofluoromethane(SURR)	8260	103	07/21/2009 22:34		%	0.28	(86 - 11	•
Toluene d8(SURR)	8260	99.4	07/21/2009 22:34		%	0.28	(88 - 11)	0) 1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313004

Client ID: SB 2 at 8ft

Matrix: GW

Collection Information:

Sample Date: 7/17/2009 11:50:00 AM

			Analysis	Prep				Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
1-Methylnaphthalene	8270 SIM	0.044	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
2-Methylnaphthalene	8270 SIM	0.086	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Acenaphthene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Acenaphthylene	8270 SIM	0.036	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Anthracene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/i	0.02	0.05	1
Benzo(a)anthracene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(a)pyrene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(b)fluoranthene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/i	0.02	0.05	1
Benzo(g,h,i)perylene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(k)fluoranthene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Chrysene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Dibenz(a,h)anthracene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Fluoranthene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Fluorene	8270 SIM	0.029 1	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Indeno(1,2,3-cd)pyrene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/i	0.02	0.05	1
Naphthalene	8270 SIM	0.14	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Phenanthrene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
Pyrene	8270 SIM	0.02 U	07/25/2009 22:58	07/23/2009 13:12	ug/l	0.02	0.05	1
p-Terphenyl-d14(SURR)	8270 SIM	66	07/25/2009 22:58	07/23/2009 13:12	%	0.02	(33 - 141) 1
TPH	FL-PRO	0.25 U	07/22/2009 0:20	07/21/2009 10:27	mg/L	0.25	0.34	1
C39 Surrogate(SURR)	FL-PRO	52	07/22/2009 0:20	07/21/2009 10:27	%	0.25	(42 - 193	3) 1
o-Terphenyl Surrogate(SURR)	FL-PRO	58 J1	07/22/2009 0:20	07/21/2009 10:27	%	0.25	(82 - 142	2) 1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313005

Client ID: SB 4 at 10ft

Matrix: GW

Collection Information:

			Analysis	Prep			Ľ	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Cadmium	6010	1.04 l	07/22/2009 16:25	07/21/2009 13:19	UG/L	0.72	5	1
Chromium	6010	3.49		07/21/2009 13:19	UG/L	0.43	10	1
Lead	6010	3.7 U		07/21/2009 13:19	UG/L	3.7	15	1
Arsenic	6010	14.8	07/23/2009 16:17	07/21/2009 13:19	UG/L	6.62	20	2
1,2-Dibromoethane(EDB)	8011	0.00603 U		07/22/2009 15:36	ug/L	0.0060	0.0198	1
1,1,2,2-Tetrachloroethane(SURR	8011	125	07/23/2009 18:00	07/22/2009 15:36	%		(70 - 130)	1
Aroclor-1016	8082	0.36 U	07/24/2009 0:55	07/23/2009 12:45	ug/L	0.36	0.51	1
Aroclor-1221	8082	0.44 U	07/24/2009 0:55	07/23/2009 12:45	ug/L	0.44	0.51	1
Aroclor-1232	8082	0.2 U	07/24/2009 0:55	07/23/2009 12:45	ug/L	0.2	0.51	1
Aroclor-1242	8082	0.31 U	07/24/2009 0:55	07/23/2009 12:45	ug/L	0.31	0.51	1
Aroclor-1248	8082	0.13 U	07/24/2009 0:55	07/23/2009 12:45	ug/L	0.13	0.51	1
Aroclor-1254	8082	0.12 U	07/24/2009 0:55	07/23/2009 12:45	ug/L	0.12	0.51	1
Aroclor-1260	8082	0.25 U	07/24/2009 0:55		ug/L	0.25	0.51	1
Aroclor-1262	8082	0.057 U	07/24/2009 0:55		ug/L	0.057	0.51	1
Aroclor-1268	8082	0.038 U		07/23/2009 12:45	ug/L	0.038	0.51	1
Decachlorobiphenyl(SURR)	8082	96	07/24/2009 0:55		%	0.038	(16 - 116)	
1,1,1,2-Tetrachloroethane	8260	0.25 U	07/21/2009 22:58		ug/l	0.25	1	1
1,1,1-Trichloroethane	8260	0.19 U	07/21/2009 22:58		ug/l	0.19	1	1
1,1,2,2-Tetrachloroethane	8260	0.33 U	07/21/2009 22:58		ug/l	0.33	1	1
1,1,2-Trichloroethane	8260	0.28 U	07/21/2009 22:58		ug/l	0.28	1	1
1,1-Dichloroethane	8260	0.28 U	07/21/2009 22:58		ug/l	0.28	1	1
1,1-Dichloroethene	8260	0.24 U	07/21/2009 22:58		ug/l	0.24	1	1
1,1-Dichloropropene	8260	0.19 U	07/21/2009 22:58		ug/l	0.19	1	1
1,2,3-Trichlorobenzene	8260	0.61 U	07/21/2009 22:58		ug/l	0.61	1	1
1,2,3-Trichloropropane	8260	0.76 U	07/21/2009 22:58		ug/l	0.76	1	1
1,2,4-Trichlorobenzene	8260	0.5 U	07/21/2009 22:58		ug/l	0.5	1	1
1,2,4-Trimethylbenzene	8260	0.17 U	07/21/2009 22:58		ug/l	0.17	1	1 1
1,2-Dibromo-3-chloropropane	8260	1.4 U	07/21/2009 22:58		ug/l	1.4	2	
1,2-Dibromoethane(EDB)	8260	0.33 U	07/21/2009 22:58		ug/i	0.33	1	1
1,2-Dichlorobenzene	8260	0.26 U	07/21/2009 22:58		ug/l	0.26	1 1	1 1
1,2-Dichloroethane	8260	0.4 U	07/21/2009 22:58		ug/l	0.4	. 1	1
1,2-Dichloropropane	8260	0.27 U	07/21/2009 22:58		ug/i	0.27	. I	ι 1
1,3,5-Trimethylbenzene	8260	0.22 U	07/21/2009 22:58		ug/l	0.22 0.2	1	1
1,3-Dichlorobenzene	8260	0.2 U	07/21/2009 22:58		ug/l	0.2	1	1
1,3-Dichloropropane	8260	0.19 U	07/21/2009 22:58		ug/l	0.19	1	1
1,4-Dichlorobenzene	8260	0.24 U	07/21/2009 22:58		ug/l	0.24	1	1
2,2-Dichloropropane	8260	0.32 U	07/21/2009 22:58		ug/l		4	1
2-Butanone	8260	4 U	07/21/2009 22:5		ug/l	4	1	1
2-Chlorotoluene	8260	0.32 U	07/21/2009 22:5		ug/l	0.32 0.95		1
2-Hexanone	8260	0.95 U	07/21/2009 22:5		ug/l	0.93		1
4-Chlorotoluene	8260	0.12 U	07/21/2009 22:5		ug/l	0.12		1
4-isopropyltoluene	8260	0.24 U	07/21/2009 22:5		ug/l	0.24	5	1
4-Methyl-2-pentanone	8260	0.61 U	07/21/2009 22:5		ug/l	5.6	10	1
Acetone	8260	5.6 U	07/21/2009 22:5		ug/l	3.3	10	1
Acrolein	8260	3.3 U	07/21/2009 22:5	Ö	ug/l	3.3	10	

Jim Cheze To:

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313005

Client ID: SB 4 at 10ft

Matrix: GW

Collection Information:

Sample Date: 7/17/2009 2:30:00 PM

Damanastan		Results	Analysis Date	Prep Date	Units	MDL	RL	Dilution Factor
Parameter	Method 8260	1.3 U	07/21/2009 22:58		ug/l	1.3	4	1
Acrylonitrile	8260 8260	0.16 U	07/21/2009 22:58		ug/l	0.16	1	1
Benzene	8260 8260	0.10 U	07/21/2009 22:58		ug/i	0.27	1	1
Bromobenzene		0.27 U	07/21/2009 22:58		ug/l	0.38	1	1
Bromochloromethane	8260 8260	0.38 U	07/21/2009 22:58		ug/l	0.15	1	1
Bromodichloromethane		0.45 U	07/21/2009 22:58		ug/i	0.45	1	1
Bromoethane	8260	0.45 U	07/21/2009 22:58		ug/l	0.36	1	1
Bromoform	8260	0.76 U	07/21/2009 22:58		ug/l	0.76	1	1
Bromomethane	8260	0.78 U	07/21/2009 22:58		ug/l	0.29	1	1
Carbon disulfide	8260		07/21/2009 22:58		ug/l	0.33	1	1
Carbon tetrachloride	8260	0.33 U 0.18 U	07/21/2009 22:58		ug/l	0.18	1	1
Chlorobenzene	8260	0.16 U 0.99 J3MU	07/21/2009 22:58		ug/i	0.99	1	1
Chloroethane	8260		07/21/2009 22:58		ug/l	0.29	1	1
Chloroform	8260	0.29 U	07/21/2009 22:58		ug/l	0.68	1	1
Chloromethane	8260	0.68 U	07/21/2009 22:58		ug/l	0.29	1	1
cis-1,2-Dichloroethene	8260	0.29 U			ug/l	0.23	1	1
cis-1,3-Dichloropropene	8260	0.23 U	07/21/2009 22:58		ug/l	0.23	1	1
Dibromochloromethane	8260	0.34 U	07/21/2009 22:58		•	0.53	1	1
Dibromomethane	8260	0.53 U	07/21/2009 22:58		ug/l	0.53	1	1
Dichlorodifluoromethane	8260	0.23 U	07/21/2009 22:58		ug/l	0.23	1	1
Ethylbenzene	8260	0.43 U	07/21/2009 22:58		ug/l	0.43	1	1
Hexachlorobutadiene	8260	0.62 U	07/21/2009 22:58		ug/l	0.62	1	1
Isopropylbenzene (Cumene)	8260	0.41 U	07/21/2009 22:58		ug/l		1	1
Methyl iodide	8260	0.4 U	07/21/2009 22:58		ug/l	0.4	-	1
Methylene chloride	8260	0.52 ป	07/21/2009 22:58		ug/l	0.52	1	1
MTBE	8260	0.26 U	07/21/2009 22:58		ug/l	0.26	1	1
Naphthalene	8260	0.32 U	07/21/2009 22:58		ug/l	0.32	1	
n-Butylbenzene	8260	0.22 U	07/21/2009 22:58		ug/l	0.22	1	1
n-Propylbenzene	8260	0.28 U	07/21/2009 22:58		ug/l	0.28	1	1
o-Xylene	8260	0.2 U	07/21/2009 22:58		ug/l	0.2	1	1
p,m-Xylene	8260	0.27 U	07/21/2009 22:58		ug/l	0.27	2	1
sec-Butylbenzene	8260	0.2 U	07/21/2009 22:58		ug/i	0.2	1	1
Styrene	8260	0.2 U	07/21/2009 22:58		ug/l	0.2	1	1
tert-Butylbenzene	8260	0.28 U	07/21/2009 22:58		ug/l	0.28	1	1
Tetrachloroethene	8260	0.35 U	07/21/2009 22:58		ug/l	0.35	1	1
Toluene	8260	0.22 U	07/21/2009 22:58		ug/l	0.22	1	1
trans-1,2-Dichloroethene	8260	0.23 U	07/21/2009 22:58		ug/l	0.23	1	1
trans-1,3-Dichloropropene	8260	0.17 U	07/21/2009 22:58		ug/l	0.17	1	1
Trichloroethene	8260	0.42 U	07/21/2009 22:58		ug/l	0.42	1	1
Trichlorofluoromethane	8260	0.45 U	07/21/2009 22:58		ug/l	0.45	1	1
Vinyl acetate	8260	0.36 U	07/21/2009 22:58		ug/l	0.36	2	1
Vinyl chloride	8260	0.28 U	07/21/2009 22:58		ug/l	0.28	1	1
1,2-Dichloroethane-d4(SURR)	8260	111	07/21/2009 22:58		%	0.28	(80 - 12	0) 1
4-Bromofluorobenzene(SURR)	8260	105	07/21/2009 22:58		%	0.28	(86 - 11	5) 1
Dibromofluoromethane(SURR)	8260	109	07/21/2009 22:58		%	0.28	(86 - 11	8) 1
Toluene d8(SURR)	8260	104	07/21/2009 22:58		%	0.28	(88 - 11	0) 1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

Collection Information:

Sample Date: 7/17/2009 2:30:00 PM

PEL Lab#: 251313005

Client ID: SB 4 at 10ft

Matrix: GW

			Analysis	Prep	Timita	MDL	RL	Dilution Factor
Parameter	Method	Results	Date	Date	Units			ractor
1-Methylnaphthalene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
2-Methylnaphthalene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/i	0.02	0.051	1
Acenaphthene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Acenaphthylene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/i	0.02	0.051	1
Anthracene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(a)anthracene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(a)pyrene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(b)fluoranthene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(g,h,i)perylene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(k)fluoranthene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Chrysene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Dibenz(a,h)anthracene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Fluoranthene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Fluorene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Indeno(1,2,3-cd)pyrene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/f	0.02	0.051	1
Naphthalene	8270 SIM	0.025	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Phenanthrene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/l	0.02	0.051	1
Pyrene	8270 SIM	0.02 U	07/25/2009 23:27	07/23/2009 13:12	ug/i	0.02	0.051	1
p-Terphenyl-d14(SURR)	8270 SIM	94.1	07/25/2009 23:27	07/23/2009 13:12	%	0.02	(33 - 141) 1
ТРН	FL-PRO	0.26 U	07/22/2009 0:47	07/21/2009 10:27	mg/L	0.26	0.35	1
C39 Surrogate(SURR)	FL-PRO	80	07/22/2009 0:47	07/21/2009 10:27	%	0.26	(42 - 193) 1
o-Terphenyl Surrogate(SURR)	FL-PRO	86	07/22/2009 0:47	07/21/2009 10:27	%	0.26	(82 - 142) 1

Jim Cheze To:

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313006

Client ID: SB 3 at 10ft

Matrix: GW

Collection Information:

Sample Date: 7/17/2009 2:50:00 PM

			Analysis	Prep			Γ	Dilution
Parameter	N# - 41 J	Results	Date	Date	Units	MDL	\mathbf{RL}	Factor
Arsenic	Method 6010	3.31 U	07/22/2009 16:21	07/21/2009 13:19	ug/L	3.31	10	1
Cadmium	6010	1.11 l	07/22/2009 16:21	07/21/2009 13:19	ug/L	0.72	5	1
	6010	5.1 \		07/21/2009 13:19	ug/L	0.43	10	1
Chromium	6010	3.7 U		07/21/2009 13:19	ug/L	3.7	15	1
Lead 1,2-Dibromoethane(EDB)	8011	0.00603 U		07/22/2009 15:36	ug/L	0.0060	0.0198	1
1,1,2,2-Tetrachloroethane(SURR	8011	121		07/22/2009 15:36	%	0.0060	(70 - 130)	1
Aroclor-1016	8082	0.37 U	07/24/2009 1:26	07/23/2009 12:45	ug/L	0.37	0.51	1
Aroclor-1221	8082	0.44 U	07/24/2009 1:26	07/23/2009 12:45	ug/L	0.44	0.51	1
* **	8082	0.2 U	07/24/2009 1:26	07/23/2009 12:45	ug/L	0.2	0.51	1
Aroclor-1232	8082	0.32 U	07/24/2009 1:26	07/23/2009 12:45	ug/L	0.32	0.51	1
Aroclor 1242	8082	0.13 U	07/24/2009 1:26	07/23/2009 12:45	ug/L	0.13	0.51	1
Aroclor-1248	8082	0.12 U	07/24/2009 1:26	07/23/2009 12:45	ug/L	0.12	0.51	1
Aroclor-1254	8082	0.26 U	07/24/2009 1:26	07/23/2009 12:45	ug/L	0.26	0.51	1
Aroclor-1260	8082	0.057 U	07/24/2009 1:26	07/23/2009 12:45	ug/L	0.057	0.51	1
Aroclor-1262	8082	0.039 U	07/24/2009 1:26	07/23/2009 12:45	ug/L	0.039	0.51	1
Aroclor-1268	8082	100	07/24/2009 1:26	07/23/2009 12:45	%	0.039	(16 - 116)	1
Decachlorobiphenyl(SURR)	8260	0.25 U	07/21/2009 23:21		ug/l	0.25	1	1
1,1,1,2-Tetrachloroethane	8260	0.19 U	07/21/2009 23:21		ug/l	0.19	1	1
1,1,1-Trichloroethane	8260	0.33 U	07/21/2009 23:21		ug/l	0.33	1	1
1,1,2,2-Tetrachloroethane	8260	0.28 U	07/21/2009 23:21		ug/l	0.28	1	1
1,1,2-Trichloroethane	8260	0.28 U	07/21/2009 23:21		ug/l	0.28	1	1
1,1-Dichloroethane	8260	0.24 U	07/21/2009 23:21		ug/l	0.24	1	1
1,1-Dichloroethene	8260	0.19 U	07/21/2009 23:21		ug/i	0.19	1	1
1,1-Dichloropropene	8260	0.61 U	07/21/2009 23:21		ug/l	0.61	1	1
1,2,3-Trichlorobenzene	8260	0.76 U	07/21/2009 23:21		ug/l	0.76	1	1
1,2,3-Trichloropropane	8260 8260	0.5 U	07/21/2009 23:2		ug/i	0.5	1	1
1,2,4-Trichlorobenzene	8260 8260	0.17 U	07/21/2009 23:2		ug/l	0.17	1	1
1,2,4-Trimethylbenzene	8260 8260	1.4 U	07/21/2009 23:2		ug/l	1.4	2	1
1,2-Dibromo-3-chloropropane	8260 8260	0.33 U	07/21/2009 23:2:		ug/l	0.33	1	1
1,2-Dibromoethane(EDB)	8260 8260	0.26 U	07/21/2009 23:2		ug/i	0.26	1	1
1,2-Dichlorobenzene		0.4 U	07/21/2009 23:2		ug/l	0.4	1	1
1,2-Dichloroethane	8260 8260	0.4 U	07/21/2009 23:2		ug/l	0.27	1	1
1,2-Dichloropropane		0.22 U	07/21/2009 23:2		ug/l	0.22	1	1
1,3,5-Trimethylbenzene	8260	0.2 U	07/21/2009 23:2		ug/l	0.2	1	1
1,3-Dichlorobenzene	8260	0.2 U 0.19 U	07/21/2009 23:2		ug/l	0.19	1	1
1,3-Dichloropropane	8260	0.19 U 0.24 U	07/21/2009 23:2		ug/l	0.24	1	1
1,4-Dichlorobenzene	8260		07/21/2009 23:2		ug/l	0.32	1	1
2,2-Dichloropropane	8260	0.32 U	07/21/2009 23:2		ug/l	4	4	1
2-Butanone	8260	4 U			ug/l	0.32	1	1
2-Chlorotoluene	8260	0.32 U	07/21/2009 23:2 07/21/2009 23:2		ug/l	0.95	5	1
2-Hexanone	8260	0.95 U	07/21/2009 23:2		ug/l	0.12	1	1
4-Chlorotoluene	8260	0.12 U	07/21/2009 23:2		ug/l	0.12	1	1
4-Isopropyltoluene	8260	0.24 U			ug/l	0.24	5	1
4-Methyl-2-pentanone	8260	0.61 U	07/21/2009 23:2		ug/i ug/l	5.6	10	1
Acetone	8260	5.6 U	07/21/2009 23:2 07/21/2009 23:2		ug/l	3.3	10	1
Acrolein	8260	3.3 U	0112112009 23:2	. 1	ug/i		,,	•

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313006

Client ID: SB 3 at 10ft

Matrix: GW

Collection Information:

			Analysis	Prep				Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Acrylonitrile	8260	1.3 U	07/21/2009 23:21		ug/i	1.3	4	1
Benzene	8260	0.16 U	07/21/2009 23:21		ug/l	0.16	1	1
Bromobenzene	8260	0.27 U	07/21/2009 23:21		ug/l	0.27	1	1
Bromochloromethane	8260	0.38 U	07/21/2009 23:21		ug/l	0.38	1	1
Bromodichloromethane	8260	0.15 U	07/21/2009 23:21		ug/l	0.15	1	1
Bromoethane	8260	0.45 U	07/21/2009 23:21		ug/l	0.45	1	1
Bromoform	8260	0.36 U	07/21/2009 23:21		ug/l	0.36	1	1
Bromomethane	8260	0.76 U	07/21/2009 23:21		ug/l	0.76	1	1
Carbon disulfide	8260	0.29 U	07/21/2009 23:21		ug/l	0.29	1	1
Carbon tetrachloride	8260	0.33 U	07/21/2009 23:21		ug/l	0.33	1	1
Chlorobenzene	8260	0.18 U	07/21/2009 23:21		ug/l	0.18	1	1
Chloroethane	8260	0.99 J3MU	07/21/2009 23:21		ug/i	0.99	1	1
Chloroform	8260	0.29 U	07/21/2009 23:21		ug/l	0.29	1	1
Chloromethane	8260	0.68 U	07/21/2009 23:21		ug/l	0.68	1	1
cis-1,2-Dichloroethene	8260	0.29 U	07/21/2009 23:21		ug/l	0.29	1	1
cis-1,3-Dichloropropene	8260	0.23 U	07/21/2009 23:21		ug/l	0.23	1	1
Dibromochloromethane	8260	0.34 U	07/21/2009 23:21		ug/l	0.34	1	1
Dibromomethane	8260	0.53 U	07/21/2009 23:21		ug/i	0.53	1	1
Dichlorodifluoromethane	8260	0.23 U	07/21/2009 23:21		ug/l	0.23	1	1
Ethylbenzene	8260	0.43 U	07/21/2009 23:21		ug/l	0.43	1	1
Hexachlorobutadiene	8260	0.62 U	07/21/2009 23:21		ug/l	0.62	1	1
Isopropylbenzene (Cumene)	8260	0.41 U	07/21/2009 23:21		ug/l	0.41	1	1
Methyl iodide	8260	0.4 U	07/21/2009 23:21		ug/l	0.4	1	1
Methylene chloride	8260	0.52 U	07/21/2009 23:21		ug/l	0.52	1	1
MTBE	8260	0.26 U	07/21/2009 23:21		ug/l	0.26	1	1
Naphthalene	8260	0.32 ป	07/21/2009 23:21		ug/l	0.32	1	1
n-Butylbenzene	8260	0.22 U	07/21/2009 23:21		ug/l	0.22	1	1
n-Propylbenzene	8260	0.28 U	07/21/2009 23:21		ug/l	0.28	1	1
o-Xylene	8260	0.2 U	07/21/2009 23:21		ug/l	0.2	1	1
p,m-Xylene	8260	0.27 U	07/21/2009 23:21		ug/l	0.27	2	1
sec-Butylbenzene	8260	0.2 U	07/21/2009 23:21		ug/i	0.2	1	1
Styrene	8260	0.2 U	07/21/2009 23:21		ug/l	0.2	1	1
tert-Butylbenzene	8260	0.28 U	07/21/2009 23:21		ug/l	0.28	1	1
Tetrachloroethene	8260	0.35 U	07/21/2009 23:21		ug/l	0.35	1	1
Toluene	8260	0.22 U	07/21/2009 23:21		ug/l	0.22	1	1
trans-1,2-Dichloroethene	8260	0.23 U	07/21/2009 23:21		ug/l	0.23	1	1
trans-1,3-Dichloropropene	8260	0.17 U	07/21/2009 23:21		ug/l	0.17	•	•
Trichloroethene	8260	0.42 Ú	07/21/2009 23:21		ug/l	0.42	1	1
Trichlorofluoromethane	8260	0.45 U	07/21/2009 23:21		ug/l	0.45	1	1
Vinyl acetate	8260	0.36 U	07/21/2009 23:21		ug/l	0.36	2	1
Vinyl chloride	8260	0.28 U	07/21/2009 23:21		ug/l	0.28	1 (00 100	1
1,2-Dichloroethane-d4(SURR)	8260	112	07/21/2009 23:21		% «	0.28	(80 - 120	•
4-Bromofluorobenzene(SURR)	8260	107	07/21/2009 23:21		% «	0.28	(86 - 115	
Dibromofluoromethane(SURR)	8260	110	07/21/2009 23:21		%	0.28	(86 - 118	-
Toluene d8(SURR)	8260	106	07/21/2009 23:21		%	0.28	(88 - 110	0) 1

Jim Cheze To:

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

Collection Information:

Sample Date: 7/17/2009 2:50:00 PM

PEL Lab#: 251313006

Client ID: SB 3 at 10ft

Matrix: GW

			Analysis	Prep Date	Units	MDL	RL	Dilution Factor
Parameter	Method	Results	Date					Tactor
1-Methylnaphthalene	8270 SIM	0.02 U		07/23/2009 13:12	ug/l	0.02	0.051	1
2-Methylnaphthalene	8270 SIM	0.02 U		07/23/2009 13:12	ug/l	0.02	0.051	1
Acenaphthene	8270 SIM	0.02 U		07/23/2009 13:12	ug/l	0.02	0.051	1
Acenaphthylene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Anthracene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(a)anthracene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(a)pyrene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(b)fluoranthene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(g,h,i)perylene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Benzo(k)fluoranthene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Chrysene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Dibenz(a,h)anthracene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Fluoranthene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Fluorene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Indeno(1,2,3-cd)pyrene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Naphthalene	8270 SIM	0.028 1	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Phenanthrene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
Pyrene	8270 SIM	0.02 U	07/25/2009 23:57	07/23/2009 13:12	ug/l	0.02	0.051	1
p-Terphenyl-d14(SURR)	8270 SIM	88	07/25/2009 23:57	07/23/2009 13:12	%	0.02	(33 - 141	l) 1
	FL-PRO	0.26 U	07/22/2009 1:15	07/21/2009 10:27	mg/L	0.26	0.35	1
TPH	FL-PRO	80	07/22/2009 1:15	07/21/2009 10:27	%	0.26	(42 - 193	3) 1
C39 Surrogate(SURR) o-Terphenyl Surrogate(SURR)	FL-PRO	92	07/22/2009 1:15	•	%	0.26	(82 - 142	•

Jim Cheze To:

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313007

Client ID: SB 5 at 10ft

Matrix: GW

Collection Information:

Sample Date: 7/17/2009 3:30:00 PM

Factor 1 1 1 1 99 1 30) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 99 1 30) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 99 1 30) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 99 1 30) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
99 1 30) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 116) 1
1 1 1 1 1 1 1 1 1 1 1 1 116) 1
1 1 1 1 1 1 1 1 1 1 1 1 116) 1
1 1 1 1 1 1 1 1 116) 1
1 1 1 1 1 1 116) 1 1
1 1 1 1 116) 1 1
1 1 16) 1 1
116) 1 1 1
1
1
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5 1
1
1
5 1
0 1
0 1
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 4 1 5 1 1 1 5 1 1 1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313007

Client ID: SB 5 at 10ft

Matrix: GW

Collection Information:

			Analysis	Prep	WT *4	MDI		Dilution Factor
Parameter	Method	Results	Date	Date	Units	MDL	RL	
Acrylonitrile	8260	1.3 U	07/21/2009 23:45		ug/i	1.3	4	1
Benzene	8260	0.16 U	07/21/2009 23:45		ug/l	0.16	1	1
Bromobenzene	8260	0.27 U	07/21/2009 23:45		ug/l	0.27	1	1
Bromochloromethane	8260	0.38 U	07/21/2009 23:45		ug/l	0.38	1	1
Bromodichloromethane	8260	0.15 U	07/21/2009 23:45		ug/l	0.15	1	1
Bromoethane	8260	0.45 U	07/21/2009 23:45		ug/l	0.45	1	1
Bromoform	8260	0.36 U	07/21/2009 23:45		ug/l	0.36	1	1
Bromomethane	8260	0.76 U	07/21/2009 23:45		ug/i	0.76	1	1
Carbon disulfide	8260	0.29 U	07/21/2009 23:45		ug/l	0.29	1	1
Carbon tetrachloride	8260	0.33 U	07/21/2009 23:45		ug/l	0.33	1	1
Chlorobenzene	8260	0.18 U	07/21/2009 23:45		ug/l	0.18	1	1
Chloroethane	8260	0.99 J3MU	07/21/2009 23:45		ug/l	0.99	1	1
Chloroform	8260	0.29 U	07/21/2009 23:45		ug/l	0.29	1	1
Chloromethane	8260	0.68 U	07/21/2009 23:45		ug/l	0.68	1	1
cis-1,2-Dichloroethene	8260	0.29 U	07/21/2009 23:45		ug/l	0.29	1	1
cis-1,3-Dichloropropene	8260	0.23 U	07/21/2009 23:45		ug/l	0.23	1	1
Dibromochloromethane	8260	0.34 U	07/21/2009 23:45		ug/l	0.34	1	1
Dibromomethane	8260	0.53 U	07/21/2009 23:45		ug/i	0.53	1	1
Dichlorodifluoromethane	8260	0.23 U	07/21/2009 23:45		ug/l	0.23	1	1
Ethylbenzene	8260	0.43 U	07/21/2009 23:45		ug/l	0.43	1	1
Hexachlorobutadiene	8260	0.62 U	07/21/2009 23:45		ug/l	0.62	1	1
Isopropylbenzene (Cumene)	8260	0.41 U	07/21/2009 23:45		ug/l	0.41	1	1
Methyl iodide	8260	0.4 U	07/21/2009 23:45		ug/l	0.4	1	1
Methylene chloride	8260	0.52 U	07/21/2009 23:45		ug/l	0.52	1	1
MTBE	8260	0.26 U	07/21/2009 23:45		ug/i	0.26	1	1
Naphthalene	8260	0.32 U	07/21/2009 23:45		ug/l	0.32	1	1
n-Butylbenzene	8260	0.22 U	07/21/2009 23:45		ug/l	0.22	1	1
n-Propylbenzene	8260	0.28 U	07/21/2009 23:45		ug/l	0.28	1	1
o-Xylene	8260	0.2 U	07/21/2009 23:45		ug/l	0.2	1	1
p,m-Xylene	8260	0.27 U	07/21/2009 23:45		ug/l	0.27	2	1
sec-Butylbenzene	8260	0.2 U	07/21/2009 23:45		ug/i	0.2	1	1
Styrene	8260	0.2 U	07/21/2009 23:45		ug/i	0.2	1	1
tert-Butylbenzene	8260	0.28 U	07/21/2009 23:45		ug/l	0.28	1	1
Tetrachloroethene	8260	0.35 U	07/21/2009 23:45		ug/l	0.35	1	1
Toluene	8260	0.22 U	07/21/2009 23:45		ug/l	0.22	1	1
trans-1,2-Dichloroethene	8260	0.23 U	07/21/2009 23:45		ug/i	0.23	1	1
trans-1,3-Dichloropropene	8260	0.17 U	07/21/2009 23:45		ug/l	0.17	1	1
Trichloroethene	8260	0.42 U	07/21/2009 23:45		ug/l	0.42	1	1
Trichlorofluoromethane	8260	0.45 U	07/21/2009 23:45		ug/l	0.45	1	1
Vinyl acetate	8260	0.36 U	07/21/2009 23:45		ug/l	0.36	2	1
Vinyl chloride	8260	0.28 U	07/21/2009 23:45		ug/l	0.28	1	1
1,2-Dichloroethane-d4(SURR)	8260	106	07/21/2009 23:45		%	0.28	(80 - 12	0) 1
4-Bromofluorobenzene(SURR)	8260	102	07/21/2009 23:45		%	0.28	(86 - 11	5) 1
	8260	106	07/21/2009 23:45		%	0.28	(86 - 11	8) 1
					%	0.28	(88 - 11	0) 1
Dibromofluoromethane(SURR) Toluene d8(SURR)	8260 8260	101	07/21/2009 23:45				•	

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313007

Client ID: SB 5 at 10ft

Collection Information:

Sample Date: 7/17/2009 3:30:00 PM

Matrix: GW

			Analysis	Prep		1 (D)	D.	Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
1-Methylnaphthalene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
2-Methylnaphthalene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Acenaphthene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Acenaphthylene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Anthracene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(a)anthracene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(a)pyrene	8270 SIM	0.02 ป	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(b)fluoranthene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Benzo(g,h,i)perylene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/i	0.02	0.05	1
Benzo(k)fluoranthene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Chrysene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Dibenz(a,h)anthracene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Fluoranthene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Fluorene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Indeno(1,2,3-cd)pyrene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Naphthalene	8270 SIM	0.022 1	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Phenanthrene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
Pyrene	8270 SIM	0.02 U	07/26/2009 0:27	07/23/2009 13:12	ug/l	0.02	0.05	1
p-Terphenyl-d14(SURR)	8270 SIM	92	07/26/2009 0:27	07/23/2009 13:12	%	0.02	(33 - 14	1) 1
TPH	FL-PRO	0.26 U	07/22/2009 1:43	07/21/2009 10:27	mg/L	0.26	0.35	1
C39 Surrogate(SURR)	FL-PRO	107	07/22/2009 1:43	07/21/2009 10:27	%	0.26	(42 - 19	3) 1
o-Terphenyl Surrogate(SURR)	FL-PRO	99	07/22/2009 1:43	07/21/2009 10:27	%	0.26	(82 - 14	2) 1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313008

Client ID: SB 2 at 3ft

Matrix: SO

Collection Information:

Sample Date: 7/17/2009 11:05:00 AM

- ·		Dogults	Analysis Date	Prep Date	Units	MDL	I RL	Dilution Factor
Parameter	Method	0.527 U	07/22/2009 2:07	07/21/2009 12:10	mg/Kg	0.527	1.05	1
Arsenic	6010		07/22/2009 2:07	07/21/2009 12:10	mg/Kg	0.0527	0.527	1
Cadmium	6010	0.152	07/22/2009 2:07	07/21/2009 12:10	mg/Kg	0.169	0.527	1
Chromium	6010	1.74	07/22/2009 2:07	07/21/2009 12:10	mg/Kg	0.359	0.844	1
Lead	6010	0.359 U	07/22/2009 2:07	07/21/2009 17:21	ug/Kg	3.4	24	1
Aroclor-1016	8082	3.4 U	07/22/2009 6:07	07/21/2009 17:21	ug/Kg	5.9	24	1
Aroclor-1221	8082	5.9 U	07/22/2009 6:07	07/21/2009 17:21	ug/Kg	16	24	1
Aroclor-1232	8082	16 U			ug/Kg ug/Kg	5.9	24	1
Aroclor-1242	8082	5.9 U	07/22/2009 6:07		ug/Kg ug/Kg	8.8	24	1
Aroclor-1248	8082	8.8 U	07/22/2009 6:07		ug/Kg ug/Kg	2.5	24	1
Aroclor-1254	8082	2.5 U	07/22/2009 6:07		ug/Kg ug/Kg	3.7	24	1
Aroclor-1260	8082	3.7 U	07/22/2009 6:07		ug/Kg ug/Kg	4	24	1
Aroclor-1262	8082	4 U	07/22/2009 6:07			4.6	24	1
Aroclor-1268	8082	4.6 U	07/22/2009 6:07	07/21/2009 17:21	ug/Kg %	4.6	(33 - 140)	
Decachlorobiphenyl(SURR)	8082	93.6				0.8	2.2	1
1,1,1,2-Tetrachloroethane	8260	0.8 U	07/20/2009 14:25		ug/kg	0.58	2.2	1
1,1,1-Trichloroethane	8260	0.58 U	07/20/2009 14:25		ug/kg	0.56	2.2	1
1,1,2,2-Tetrachloroethane	8260	0.64 U	07/20/2009 14:25		ug/kg	0.87	2.2	1
1,1,2-Trichloroethane	8260	0.87 U	07/20/2009 14:25		ug/kg	0.74	2.2	1
1,1-Dichloroethane	8260	0.74 U	07/20/2009 14:25		ug/kg	0.74	2.2	1
1,1-Dichloroethene	8260	0.71 U	07/20/2009 14:25		ug/kg	0.71	2.2 2.2	1
1,1-Dichloropropene	8260	0.52 U	07/20/2009 14:25		ug/kg	0.52	2.2	1
1,2,3-Trichlorobenzene	8260	0.53 U	07/20/2009 14:25		ug/kg	0.95	2.2	1
1,2,3-Trichloropropane	8260	0.95 U	07/20/2009 14:25		ug/kg	0.95	2.2	1
1,2,4-Trichlorobenzene	8260	0.62 U	07/20/2009 14:25		ug/kg	0.36	2.2	, 1
1,2,4-Trimethylbenzene	8260	0.36 U	07/20/2009 14:2		ug/kg		10.8	1
1,2-Dibromo-3-chloropropane	8260	2.4 U	07/20/2009 14:29		ug/kg	2.4 1.1	2.2	1
1,2-Dibromoethane(EDB)	8260	1.1 U	07/20/2009 14:2		ug/kg	0.52	2.2	1
1,2-Dichlorobenzene	8260	0.52 U	07/20/2009 14:2		ug/kg		2.2	1
1,2-Dichloroethane	8260	0.54 U	07/20/2009 14:2		ug/kg	0.54	2.2 2.2	1
1,2-Dichloropropane	8260	1 U	07/20/2009 14:2		ug/kg	1	2.2 2.2	1
1,3,5-Trimethylbenzene	8260	0.44 U	07/20/2009 14:2		ug/kg	0.44	2.2	1
1,3-Dichlorobenzene	8260	0.57 U	07/20/2009 14:2		ug/kg	0.57		1
1,3-Dichloropropane	8260	0.58 U	07/20/2009 14:2		ug/kg	0.58	2.2	1
1,4-Dichlorobenzene	8260	0.58 U	07/20/2009 14:2		ug/kg	0.58	2.2	
2,2-Dichloropropane	8260	0.66 U	07/20/2009 14:2		ug/kg	0.66	2.2	1
2-Butanone	8260	1.8 U	07/20/2009 14:2		ug/kg	1.8	10.8	1
2-Chlorotoluene	8260	0.48 U	07/20/2009 14:2		ug/kg	0.48	2.2	1
2-Hexanone	8260	1.7 J3U	07/20/2009 14:2		ug/kg	1.7	10.8	1
4-Chlorotoluene	8260	0.39 U	07/20/2009 14:2		ug/kg	0.39		1
4-isopropyltoluene	8260	1 U	07/20/2009 14:2		ug/kg	1	2.2	1
4-Methyl-2-pentanone	8260	1.3 U	07/20/2009 14:2		ug/kg	1.3	10.8	1
Acetone	8260	5.2 U	07/20/2009 14:2		ug/kg	5.2	10.8	1
Acrolein	8260	4.8 J3U	07/20/2009 14:2		ug/kg	4.8	26.9	1
Acrylonitrile	8260	3.8 U	07/20/2009 14:2		ug/kg		5.4	1
Benzene	8260	0.45 U	07/20/2009 14:2	25	ug/kg	0.45	2.2	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313008

Client ID: SB 2 at 3ft

Matrix: SO

Collection Information:

Sample Date: 7/17/2009 11:05:00 AM

			Analysis	Prep			I	Dilution
Downwatar	Mr. Al. a.d	Results	Date	Date	Units	MDL	RL	Factor
Parameter Bromobenzene	Method 8260	0.73 U	07/20/2009 14:25		ug/kg	0.73	2.2	1
Bromochloromethane	8260	0.82 U	07/20/2009 14:25		ug/kg	0.82	2.2	1
Bromodichloromethane	8260	0.46 U	07/20/2009 14:25		ug/kg	0.46	2.2	1
	8260	2.2 J3RU	07/20/2009 14:25		ug/kg	2.2	5.4	1
Bromoform	8260	1.1 U	07/20/2009 14:25		ug/kg	1.1	2.2	1
Bromomethane	8260	0.54 U	07/20/2009 14:25		ug/kg	0.54	2.2	1
Carbon disulfide	8260	0.53 U	07/20/2009 14:25		ug/kg	0.53	2.2	1
Carbon tetrachloride	8260	0.58 U	07/20/2009 14:25		ug/kg	0.58	2.2	1
Chlorobenzene	8260	1.3 U	07/20/2009 14:25		ug/kg	1.3	5.4	1
Chloroethane	8260	0.56 U	07/20/2009 14:25		ug/kg	0.56	2.2	1
Chloroform	8260	0.92 U	07/20/2009 14:25		ug/kg	0.92	2.2	1
Chloromethane	8260	1.3 U	07/20/2009 14:25		ug/kg	1.3	2.2	1
cis-1,2-Dichloroethene	8260	0.47 U	07/20/2009 14:25		ug/kg	0.47	2.2	1
cis-1,3-Dichloropropene	8260	0.7 U	07/20/2009 14:25		ug/kg	0.7	2.2	1
Dibromochloromethane	8260 8260	0.94 U	07/20/2009 14:25		ug/kg	0.94	2.2	1
Dibromomethane	8260 8260	0.71 U	07/20/2009 14:25		ug/kg	0.71	2.2	1
Dichlorodifluoromethane	8260 8260	0.82 U	07/20/2009 14:25		ug/kg	0.82	2.2	1
Ethylbenzene	8260 8260	0.88 U	07/20/2009 14:25		ug/kg	0.88	4.3	1
Hexachlorobutadiene		0.85 U	07/20/2009 14:25		ug/kg	0.85	2.2	1
Isopropylbenzene (Cumene)	8260	0.5 U	07/20/2009 14:25		ug/kg	0.5	2.2	1
Methyl iodide	8260 8260	1.3 U	07/20/2009 14:25		ug/kg	1.3	5.4	1
Methylene chloride		0.6 U	07/20/2009 14:25		ug/kg	0.6	2.2	1
MTBE	8260	0.73 U	07/20/2009 14:25		ug/kg	0.73	2.2	1
Naphthalene	8260	0.75 U	07/20/2009 14:25		ug/kg	0.5	2.2	1
n-Butylbenzene	8260	0.43 U	07/20/2009 14:25		ug/kg	0.43	2.2	1
n-Propylbenzene	8260	0.56 U	07/20/2009 14:25		ug/kg	0.56	2.2	1
o-Xylene	8260	0.7 U	07/20/2009 14:25		ug/kg	0.7	4.3	1
p,m-Xylene	8260	0.7 U 0.64 U	07/20/2009 14:25		ug/kg	0.64	2.2	1
sec-Butylbenzene	8260	0.46 U	07/20/2009 14:25		ug/kg	0.46	2.2	1
Styrene	8260		07/20/2009 14:25		ug/kg	0.71	2.2	1
tert-Butylbenzene	8260	0.71 U 0.56 U	07/20/2009 14:25		ug/kg	0.56	2.2	1
Tetrachloroethene	8260		07/20/2009 14:25		ug/kg	0.94	2.2	1
Toluene	8260	0.94 U	07/20/2009 14:25		ug/kg	0.82	2.2	1
trans-1,2-Dichloroethene	8260	0.82 U	07/20/2009 14:25		ug/kg	0.6	2.2	1
trans-1,3-Dichloropropene	8260	0.6 U	07/20/2009 14:25		ug/kg	0.99	2.2	1
Trichloroethene	8260	0.99 U	07/20/2009 14:25		ug/kg	0.68	2.2	1
Trichlorofluoromethane	8260	0.68 U	• • • • • • • • • • • • • • • • • • • •		ug/kg	1.2	5.4	1
Vinyl acetate	8260	1.2 U	07/20/2009 14:25			1	2.2	1
Vinyl chloride	8260	1 U	07/20/2009 14:25		ug/kg %	1	(71 - 124	
1,2-Dichloroethane-d4(SURR)	8260	113	07/20/2009 14:25			1	(54 - 126	
4-Bromofluorobenzene(SURR)	8260	117	07/20/2009 14:25		% %	1	(68 - 119	•
Dibromofluoromethane(SURR)	8260	118	07/20/2009 14:25				(59 - 12)	•
Toluene d8(SURR)	8260	110	07/20/2009 14:25	07/00/0000 40 74	% 	1	7.8	/) i 1
1-Methylnaphthalene	8310	3.2 U		07/23/2009 13:51		3.2	7.8 7.8	1
2-Methylnaphthalene	8310	3 U	07/24/2009 1:37				7.8 7.8	1
Acenaphthene	8310	0.86 U	07/24/2009 1:37	07/23/2009 13:51	ug/kg	0.86	7.0	•

FLDOH #E84207

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

PEL Lab#: 251313008

Client ID: SB 2 at 3ft

Matrix: SO

Collection Information:

Sample Date: 7/17/2009 11:05:00 AM

			Analysis	Prep	¥1	MDI	RL	Dilution Factor
Parameter	Method	Results	Date	Date	Units	MDL		ractor
Acenaphthylene	8310	0.94 U	07/24/2009 1:37	07/23/2009 13:51	ug/kg	0.94	7.8	1
Anthracene	8310	0.86 U	07/24/2009 1:37	07/23/2009 13:51	ug/kg	0.86	7.8	1
Benzo(a)anthracene	8310	3.2	07/24/2009 1:37	07/23/2009 13:51	ug/kg	1.6	7.8	1
Benzo(a)pyrene	8310	3.5 l	07/24/2009 1:37	07/23/2009 13:51	ug/kg	2.6	7.8	1
Benzo(b)fluoranthene	8310	2 U	07/24/2009 1:37	07/23/2009 13:51	ug/kg	2	7.8	1
Benzo(g,h,i)perylene	8310	5.2 I	07/24/2009 1:37	07/23/2009 13:51	ug/kg	2	7.8	1
Benzo(k)fluoranthene	8310	1.1 U	07/24/2009 1:37	07/23/2009 13:51	ug/kg	1.1	7.8	1
Chrysene	8310	5.6 I	07/24/2009 1:37	07/23/2009 13:51	ug/kg	2.2	7.8	1
Dibenz(a,h)anthracene	8310	0.86 U	07/24/2009 1:37	07/23/2009 13:51	ug/kg	0.86	7.8	1
Fluoranthene	8310	3.8 1	07/24/2009 1:37	07/23/2009 13:51	ug/kg	1.6	7.8	1
Fluorene	8310	1.5 U	07/24/2009 1:37	07/23/2009 13:51	ug/kg	1.5	7.8	1
Indeno(1,2,3-cd)pyrene	8310	2.7	07/24/2009 1:37	07/23/2009 13:51	ug/kg	0.86	7.8	1
Naphthalene	8310	2 U	07/24/2009 1:37	07/23/2009 13:51	ug/kg	2	7.8	1
Phenanthrene	8310	1.3 U	07/24/2009 1:37	07/23/2009 13:51	ug/kg	1.3	7.8	1
Pyrene	8310	4.3 1	07/24/2009 1:37	07/23/2009 13:51	ug/kg	2.3	7.8	1
p-Terphenyl-d14(SURR)	8310	86.9	07/24/2009 1:37	07/23/2009 13:51	%	2.3	(17 - 119) 1
TPH	FL-PRO	6.2 U	07/27/2009 1:34	07/26/2009 15:23	mg/Kg	6.2	10.9	1
C39 Surrogate(SURR)	FL-PRO	106	07/27/2009 1:34	07/26/2009 15:23	%	6.2	(60 - 118	3) 1
o-Terphenyl Surrogate(SURR)	FL-PRO	100	07/27/2009 1:34		%	6.2	(62 - 109) 1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

QC SUMMARY

METHOD: 6010

Method Blank 288878

Matrix: SQ

Associated Lab Samples:

251313001 251313002 251313002DL1 251313003 251313008 288878 288879 288880

		Analysis	Prep			Dilution
Parameter	Results	Date	Date	Units	RL	Factor
Arsenic	U	7/22/2009	7/21/2009	mg/Kg	0.5	1
Cadmium	U	7/22/2009	7/21/2009	mg/Kg	0.05	1
Chromium	U	7/22/2009	7/21/2009	mg/Kg	0.16	1
Lead	U	7/22/2009	7/21/2009	mg/Kg	0.34	1

Method Blank 288910

Matrix: WQ

Associated Lab Samples: 251313004 251313005 251313005DL1 251313006 251313007 288910 288911 288912

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
Arsenic	U	7/22/2009	7/21/2009	ug/L	3.31	1
Cadmium	U	7/22/2009	7/21/2009	ug/L	0.72	1
Chromium	U	7/22/2009	7/21/2009	ug/L	0.43	1
Lead	U	7/22/2009	7/21/2009	ug/L	3.7	1

LABORATORY CONT	ROL SAMPL	E: 28887	9	Matrix:	SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD Limit
Arsenic	mg/Kg	50	46.8	93.6	(80-120)		
Cadmium	mg/Kg	50	47.7	95.4	(80-120)		
Chromium	mg/Kg	50	47.6	95.2	(80-120)		
Lead	mg/Kg	50	49.6	99.2	(80-120)		
LABORATORY CONT	ROL SAMPL	E: 28888	30	Matrix:	SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Arsenic	mg/Kg	50	47.7	95.4	(80-120)	1.9	20
Cadmium	mg/Kg	50	48.2	96.4	(80-120)	1	20
Chromium	mg/Kg	50	48.3	96.6	(80-120)	1.5	20
Lead	mg/Kg	50	50.1	100.2	(80-120)	1	20
LABORATORY CONT	TROL SAMPL	Æ: 28891	11	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC	RPD	RPD LIMIT

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID: Pinellas Bayway Site #4

METHOD: 6010

an	ATODY CONTROL	CAMPIE.	288011	70.

LABORATORY CONTROL	SAMPLE:	288911		Matrix :	WQ		
PARAMETER		SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Arsenic	ug/L	500	452	90.4	(80-120)		
Cadmium	ug/L	500	440	88	(80-120)		
Chromium	ug/L	500	436	87.2	(80-120)		
Lead	ug/L	500	459	91.8	(80-120)		
LABORATORY CONTROL	SAMPLE:	288912		Matrix:	WQ		
		SPIKE	LCS	SPIKE	% REC		RPD

PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Arsenic	ug/L	500	494	98.8	(80-120)	8.9	20
Cadmium	ug/L	500	476	95.2	(80-120)	7.9	20
Chromium	ug/L	500	476	95.2	(80-120)	8.8	20
Lead	ug/L	500	500	100	(80-120)	8.6	20

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID: Pinellas Bayway Site #4

METHOD: 8011

Method Blank 288991

Matrix: WQ

Associated Lab Samples: 251313004 251313005 251313006 251313007 288991 288992 288993

Parameter	Results	_	alysis ate	Prep Date	Unit	s RI	,	Dilution Factor
1,2-Dibromoethane(EDB) 1,1,2,2-Tetrachloroethane(SURR	U 104			7/22/2009 7/22/2009	ug/L %	0.00 (70 -		1
LABORATORY CONTROL	SAMPLE	: 288992	2	Matrix	:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE F % REC		% REC LIMITS	RPE	RPD LIMIT
1,2-Dibromoethane(EDB) 1,1,2,2-Tetrachloroethane(SURR	ug/L ug/L	0.12 0.24	0.14 0.29	117 121		(60-140) (70-130)		
LABORATORY CONTROL PARAMETER	SAMPLE	: 288993 SPIKE CONC	LCS RESUL	Matrix SPIKE T % REC	Ē	WQ % REC LIMITS	RPI	RPD LIMIT
1,2-Dibromoethane(EDB) 1,1,2,2-Tetrachloroethane(SURR	ug/L ug/L	0.12 0.24	0.14 0.28	117 117		(60-140) (70-130)	0	10

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8082

Method Blank 288869

Matrix: SQ

Associated Lab Samples:

251313001 251313002 251313003 251313008 288869 288870

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
Aroclor-1016	U	7/22/2009	7/21/2009	ug/Kg	4.3	1
Aroclor-1221	υ	7/22/2009	7/21/2009	ug/Kg	7.4	1
Aroclor-1232	U	7/22/2009	7/21/2009	ug/Kg	20	1
Aroclor-1242	U	7/22/2009	7/21/2009	ug/Kg	7.4	1
Aroclor-1248	U	7/22/2009	7/21/2009	ug/Kg	11	1
Aroclor-1254	U	7/22/2009	7/21/2009	ug/Kg	3.2	1
Aroclor-1260	U	7/22/2009	7/21/2009	ug/Kg	4.7	1
Aroclor-1262	U	7/22/2009	7/21/2009	ug/Kg	5	1
Aroclor-1268	U	7/22/2009	7/21/2009	ug/Kg	5.8	1
Decachlorobiphenyl(SURR) (S)	83.7	7/22/2009	7/21/2009	%	(33 - 140)	1

Method Blank 289003

Matrix: WQ

Associated Lab Samples:

251313004 251313005 251313006 251313007 289003 289004 289005

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
Aroclor-1016	U	7/23/2009	7/23/2009	ug/L	0.36	1
Aroclor-1221	U	7/23/2009	7/23/2009	ug/L	0.43	1
Aroclor-1232	U	7/23/2009	7/23/2009	ug/L	0.2	1
Aroclor-1242	บ	7/23/2009	7/23/2009	ug/L	0.31	1
Aroclor-1248	U	7/23/2009	7/23/2009	ug/L	0.13	1
Aroclor-1254	U	7/23/2009	7/23/2009	ug/L	0.12	1
Aroclor-1260	U	7/23/2009	7/23/2009	ug/L	0.25	1
Aroclor-1262	U	7/23/2009	7/23/2009	ug/L	0.056	1
Aroclor-1268	U	7/23/2009	7/23/2009	ug/L	0.038	1
Decachlorobiphenyl(SURR) (S)	98	7/23/2009	7/23/2009	%	(16 - 116)	1

LABORATORY CONTRO	L SAMPL	E: 28887	0	Matrix:	ŞQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Aroclor-1016	ug/Kg	667	508	76.2	(40-140)		
Aroclor-1260	ug/Kg	667	438	65.7	(60-125)		
Decachlorobiphenyl(SURR) (S)	ug/Kg	66.7	66.1	99.1	(33-140)		
LABORATORY CONTRO	L SAMPL	E: 28900	14	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID: Pinellas Bayway Site #4

METHOD: 8082

LABORATORY CONTROL	L SAMPLI	E: 289004	ļ	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Aroclor-1016	ug/L	10	8.7	87	(39-122)		
Aroclor-1260	ug/L	10	7.4	74	(30-118)		
Decachlorobiphenyl(SURR) (S)	ug/L	1	0.94	94	(16-116)		•
LABORATORY CONTRO	L SAMPLI	E: 289005	5	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Aroclor-1016	ug/L	10	9.2	92	(39-122)	5.6	15
Aroclor-1260	ug/L	10	7.6	76	(30-118)	2.7	12
Decachlorobiphenyl(SURR) (S)	ug/L	1	0.98	98	(16-116)		

To: Jim Cheze

WORK ORDER: 2513130

Shaw Group

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8260

Method Blank 072009BLK22

Matrix: SQ

Associated Lab Samples: 072009BLK22 072009LCS22 072009LCS22D 251313001 251313002 251313003 251313008

		Analysis	Prep		D.	Dilution
Parameter	Results	Date	Date	Units	RL	Factor
1,1,1,2-Tetrachioroethane	U	7/20/2009		ug/kg	0.74	1
I,1,1-Trichloroethane	U	7/20/2009		ug/kg	0.54	1
I,1,2,2-Tetrachloroethane	U	7/20/2009		ug/kg	0.6	1
1,1,2-Trichloroethane	U	7/20/2009		ug/kg	0.81	1
I,1-Dichloroethane	U	7/20/2009		ug/kg	0.69	1
1,1-Dichloroethene	U	7/20/2009		ug/kg	0.66	1
1,1-Dichloropropene	U	7/20/2009		ug/kg	0.48	1
1,2,3-Trichlorobenzene	U	7/20/2009		ug/kg	0.49	1
1,2,3-Trichloropropane	U	7/20/2009		ug/kg	0.88	1
1,2,4-Trichlorobenzene	U	7/20/2009		ug/kg	0.58	1
1,2,4-Trimethylbenzene	U	7/20/2009		ug/kg	0.33	1
1,2-Dibromo-3-chloropropane	U	7/20/2009		ug/kg	2.2	1
1,2-Dibromoethane(EDB)	U	7/20/2009		ug/kg	1	1
1,2-Dichlorobenzene	U	7/20/2009		ug/kg	0.48	1
1,2-Dichloroethane	U	7/20/2009		ug/kg	0.5	1
1,2-Dichloropropane	U	7/20/2009		ug/kg	0.93	1
1,3,5-Trimethylbenzene	U	7/20/2009		ug/kg	0.41	1
1,3-Dichlorobenzene	U	7/20/2009		ug/kg	0.53	1
1,3-Dichloropropane	U	7/20/2009		ug/kg	0.54	1
1,4-Dichlorobenzene	U	7/20/2009		ug/kg	0.54	1
2,2-Dichloropropane	U	7/20/2009		ug/kg	0.61	1
2-Butanone	U	7/20/2009		ug/kg	1.7	1
2-Chlorotoluene	U	7/20/2009		ug/kg	0.45	1
2-Hexanone	J3U	7/20/2009		ug/kg	1.6	1
4-Chiorotoluene	U	7/20/2009		ug/kg	0.36	1
4-Isopropyltoluene	U	7/20/2009		ug/kg	0.94	1
4-Methyl-2-pentanone	U	7/20/2009		ug/kg	1.2	1
Acetone	U	7/20/2009		ug/kg	4.8	1
Acrolein	J3U	7/20/2009		ug/kg	4.5	1
Acrylonitrile	U	7/20/2009		ug/kg	3.5	1
Benzene	U	7/20/2009		ug/kg	0.42	1
Bromobenzene	U	7/20/2009		ug/kg	0.68	1
Bromochloromethane	U	7/20/2009		ug/kg	0.76	1
Bromodichloromethane	U	7/20/2009		ug/kg	0.43	1
Bromoform	J3RU	7/20/2009		ug/kg	2	1
Bromomethane	U	7/20/2009		ug/kg	1	1
Carbon disulfide	Ū	7/20/2009		ug/kg	0.5	1
Carbon tetrachloride	Ü	7/20/2009		ug/kg	0.49	1
Chlorobenzene	Ū	7/20/2009		ug/kg	0.54	1
Chloroethane	U	7/20/2009		ug/kg	1.2	1
Chloroform	Ü	7/20/2009		ug/kg	0.52	1
Chloromethane	Ü	7/20/2009		ug/kg	0.86	1

FLDOH #E84207

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8260

Method Blank 072009BLK22

Matrix: SQ

Associated Lab Samples: 072009BLK22 072009LCS22 072009LCS22D 251313001 251313002 251313003 251313008

		Analysis	Prep			Dilution
Parameter	Results	Date	Date	Units	RL	Factor
cis-1,2-Dichloroethene	U	7/20/2009		ug/kg	1.2	1
cis-1,3-Dichloropropene	U	7/20/2009		ug/kg	0.44	1
Dibromochloromethane	U	7/20/2009		ug/kg	0.65	1
Dibromomethane	U	7/20/2009		ug/kg	0.87	1
Dichlorodifluoromethane	U	7/20/2009		ug/kg	0.66	1
Ethylbenzene	U	7/20/2009		ug/kg	0.76	1
Hexachlorobutadiene	U	7/20/2009		ug/kg	0.82	1
Isopropylbenzene (Cumene)	U	7/20/2009		ug/kg	0.79	1
Methyl iodide	U	7/20/2009		ug/kg	0.46	1
Methylene chloride	U	7/20/2009		ug/kg	1.2	1
MTBE	U	7/20/2009		ug/kg	0.56	1
Naphthalene	U	7/20/2009		ug/kg	0.68	1
n-Butylbenzene	U	7/20/2009		ug/kg	0.46	1
n-Propylbenzene	U	7/20/2009		ug/kg	0.4	1
o-Xylene	U	7/20/2009		ug/kg	0.52	1
p,m-Xylene	U	7/20/2009		ug/kg	0.65	1
sec-Butylbenzene	U	7/20/2009		ug/kg	0.6	1
Styrene	U	7/20/2009		ug/kg	0.43	1
tert-Butylbenzene	U	7/20/2009		ug/kg	0.66	1
Tetrachloroethene	U	7/20/2009		ug/kg	0.52	1
Toluene	U	7/20/2009		ug/kg	0.87	1
trans-1,2-Dichloroethene	U	7/20/2009		ug/kg	0.76	1
trans-1,3-Dichloropropene	U	7/20/2009		ug/kg	0.56	1
Trichloroethene	ប	7/20/2009		ug/kg	0.92	1
Trichlorofluoromethane	U	7/20/2009		ug/kg	0.63	1
Vinyl acetate	U	7/20/2009		ug/kg	1.1	1
Vinyl chloride	U	7/20/2009		ug/kg	0.95	1
1,2-Dichloroethane-d4(SURR) (S	120	7/20/2009		%	(71 - 124)	1
4-Bromofluorobenzene(SURR) (113	7/20/2009		%	(54 - 126)	1
Dibromofluoromethane(SURR) (115	7/20/2009		%	(68 - 119)	1
Toluene d8(SURR) (S)	109	7/20/2009		%	(59 - 127)	1

Method Blank 0721BLK55

Matrix: WQ

Associated Lab Samples: 0721BLK55 0721LCS52 0721LCS52D 251313004 251313005 251313006 251313007

		Analysis	Prep			Dilution
Parameter	Results	Date	Date	Units	RL	Factor
1,1,1,2-Tetrachloroethane	U	7/21/2009		ug/l	0.25	1

FLDOH #E84207

Jim Cheze To:

WORK ORDER: 2513130 Shaw Group

Pinellas Bayway Site #4 PROJECT ID:

METHOD: 8260

Method Blank 0721BLK55

Matrix: WQ

Associated Lab Samples: 0721BLK55 0721LCS52 0721LCS52D 251313004 251313005 251313006 251313007

		Analysis	Prep			Dilution
Parameter	Results	Date	Date	Units	RL	Factor
1,1,1-Trichloroethane	U	7/21/2009		ug/l	0.19	1
1,1,2,2-Tetrachloroethane	U	7/21/2009		ug/i	0.33	1
1,1,2-Trichloroethane	U	7/21/2009		ug/l	0.28	1
1,1-Dichloroethane	U	7/21/2009		ug/l	0.28	1
1,1-Dichloroethene	U	7/21/2009		ug/l	0.24	1
1,1-Dichloropropene	U	7/21/2009		ug/l	0.19	1
1,2,3-Trichlorobenzene	U	7/21/2009		ug/i	0.61	1
1,2,3-Trichloropropane	U	7/21/2009		ug/l	0.76	1
1,2,4-Trichlorobenzene	U	7/21/2009		ug/l	0.5	1
1,2,4-Trimethylbenzene	U	7/21/2009		ug/l	0.17	1
1,2-Dibromo-3-chloropropane	U	7/21/2009		ug/l	1.4	1
1,2-Dibromoethane(EDB)	U	7/21/2009		ug/l	0.33	1
1,2-Dichlorobenzene	U	7/21/2009		ug/l	0.26	1
1,2-Dichloroethane	U	7/21/2009		ug/l	0.4	1
1,2-Dichloropropane	U	7/21/2009		ug/l	0.27	1
1,3,5-Trimethylbenzene	U	7/21/2009		ug/l	0.22	1
1,3-Dichlorobenzene	U	7/21/2009		ug/l	0.2	1
1,3-Dichloropropane	U	7/21/2009		ug/l	0.19	, 1
1,4-Dichlorobenzene	U	7/21/2009		ug/l	0.24	1
2,2-Dichloropropane	U	7/21/2009		ug/l	0.32	1
2-Butanone	U	7/21/2009		ug/l	4	1
2-Chlorotoluene	U	7/21/2009		ug/l	0.32	1
2-Hexanone	U	7/21/2009		ug/l	0.95	1
4-Chlorotoluene	U	7/21/2009		ug/l	0.12	1
4-Isopropyitoluene	U	7/21/2009		ug/l	0.24	1
4-Methyl-2-pentanone	U	7/21/2009		ug/l	0.61	1
Acetone	U	7/21/2009		ug/l	5.6	1
Acrolein	U	7/21/2009		ug/l	3.3	1
Acrylonitrile	U	7/21/2009		ug/l	1.3	1
Benzene	U	7/21/2009		ug/l	0.16	1
Bromobenzene	U	7/21/2009		ug/l	0.27	1
Bromochloromethane	U	7/21/2009		ug/l	0.38	1
Bromodichloromethane	U	7/21/2009		ug/l	0.15	1
Bromoethane	U	7/21/2009		ug/l	0.45	1
Bromoform	U	7/21/2009		ug/l	0.36	1
Bromomethane	U	7/21/2009		ug/l	0.76	1
Carbon disulfide	U	7/21/2009		ug/l	0.29	1
Carbon tetrachloride	U	7/21/2009		ug/l	0.33	1
Chlorobenzene	U	7/21/2009		ug/l	0.18	1
Chloroethane	J3MU	7/21/2009		ug/i	0.99	1
Chloroform	U	7/21/2009		ug/l	0.29	1
Chloromethane	U	7/21/2009		ug/i	0.68	1

To: Jim Cheze **WORK ORDER: 2513130**

Shaw Group

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8260

Method Blank 0721BLK55

Matrix: WQ

Associated Lab Samples: 0721BLK55 0721LCS52 0721LCS52D 251313004 251313005 251313006 251313007

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
cis-1,2-Dichloroethene	U	7/21/2009		ug/l	0.29	1
cis-1,3-Dichloropropene	Ü	7/21/2009		ug/l	0.23	1
Dibromochloromethane	ŭ	7/21/2009		ug/i	0.34	1
Dibromomethane	Ü	7/21/2009		ug/l	0.53	1
Dichlorodifluoromethane	Ū	7/21/2009		ug/l	0.23	1
Ethylbenzene	Ü	7/21/2009		ug/l	0.43	1
Hexachlorobutadiene	Ū	7/21/2009		ug/l	0.62	1
Isopropylbenzene (Cumene)	Ü	7/21/2009		ug/l	0.41	1
Methyl iodide	Ū	7/21/2009		ug/l	0.4	1
Methylene chloride	Ū	7/21/2009		ug/l	0.52	1
MTBE	Ü	7/21/2009		ug/l	0.26	1
Naphthalene	U	7/21/2009		ug/l	0.32	1
n-Butylbenzene	U	7/21/2009		ug/l	0.22	1
n-Propylbenzene	U	7/21/2009		ug/l	0.28	1
o-Xylene	U	7/21/2009		ug/l	0.2	1
p,m-Xylene	υ	7/21/2009		ug/l	0.27	1
sec-Butylbenzene	U	7/21/2009		ug/l	0.2	1
Styrene	U	7/21/2009		ug/l	0.2	1
tert-Butylbenzene	U	7/21/2009		ug/l	0.28	1
Tetrachloroethene	U	7/21/2009		ug/l	0.35	1
Toluene	U	7/21/2009		ug/l	0.22	1
trans-1,2-Dichloroethene	U	7/21/2009		ug/l	0.23	1
trans-1,3-Dichloropropene	U	7/21/2009		ug/l	0.17	1
Trichloroethene	U	7/21/2009		ug/l	0.42	1
Trichlorofluoromethane	U	7/21/2009		ug/l	0.45	1
Vinyl acetate	U	7/21/2009		ug/l	0.36	1
Vinyl chloride	U	7/21/2009		ug/l	0.28	1
1,2-Dichloroethane-d4(SURR) (S	106	7/21/2009		%	(80 - 120)	1
4-Bromofluorobenzene(SURR) (104	7/21/2009		%	(86 - 115)	1
Dibromofluoromethane(SURR) (104	7/21/2009		%	(86 - 118)	1
Toluene d8(SURR) (S)	102	7/21/2009		%	(88 - 110)	1

LABORATORY CONTR	OL SAMPL	E: 07200	9LCS22	Matrix :	SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1,1,1,2-Tetrachloroethane	ug/kg	20	21.6	108	(82-121)		
1,1,1-Trichloroethane	ug/kg	20	18.9	94.5	(70-130)		
1,1,2,2-Tetrachloroethane	ug/kg	20	21.5	108	(82-122)		
1.1.2-Trichloroethane	ug/kg	20	20.2	101	(70-130)		
1,1-Dichloroethane	ug/kg	20	19.6	98	(70-130)		

To: Jim Cheze

WORK ORDER: 2513130

Shaw Group

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8260

LABORATORY CONTROL SAMPLE: 072009LCS22 Matrix: SQ

LABORATORY CONTRO	L SAMPL	E: 0/200	19LCS22	Matrix:	sQ		
		SPIKE	LCS	SPIKE	% REC		RPI
PARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMI
1,1-Dichloroethene	ug/kg	20	18	90	(73-130)		
1,1-Dichloropropene	ug/kg	20	19.2	96	(70-130)		
1,2,3-Trichlorobenzene	ug/kg	20	18. 4	92	(70-130)		
1,2,3-Trichloropropane	ug/kg	20	23.7	118	(74-129)		
1,2,4-Trichlorobenzene	ug/kg	20	19.1	95.5	(70-130)		
1,2,4-Trimethylbenzene	ug/kg	20	19.6	98	(70-130)		
1,2-Dibromo-3-chloropropane	ug/kg	20	19.2	96	(72-143)		
1,2-Dibromoethane(EDB)	ug/kg	20	20.4	102	(70-130)		
1,2-Dichlorobenzene	ug/kg	20	19.3	96.5	(70-130)		
1,2-Dichloroethane	ug/kg	20	20.2	101	(78-136)		
1,2-Dichloropropane	ug/kg	20	19.3	96.5	(70-130)		
1,3,5-Trimethylbenzene	ug/kg	20	20	100	(70-130)		
1,3-Dichlorobenzene	ug/kg	20	19.8	99	(70-130)		
1,3-Dichloropropane	ug/kg	20	20.2	101	(70-130)		
1,4-Dichlorobenzene	ug/kg	20	20.4	102	(70-130)		
2,2-Dichloropropane	ug/kg	20	19.5	97.5	(73-132)		
2-Butanone	ug/kg	40	51.5	129	(72-136)		
2-Chlorotoluene	ug/kg	20	19.1	95.5	(81-122)		
2-Hexanone	ug/kg	40	52.4	131	* (72-127)		
4-Chlorotoluene	ug/kg	20	19.6	98	(70-130)		
4-Isopropyltoluene	ug/kg	20	19.1	95.5	(70-130)		
4-Methyl-2-pentanone	ug/kg	40	43.8	110	(80-125)		
Acetone	ug/kg	40	53.4	134	(59-142)		
Acrolein	ug/kg	40	45.2	113	* (70-111)		
Acrylonitrile	ug/kg	40	43	108	(74-117)		
Benzene	ug/kg	20	19.2	96	(70-130)		
Bromobenzene	ug/kg	20	19.9	99.5	(79-141)		
Bromochloromethane	ug/kg	20	19.3	96.5	(70-130)		
Bromodichloromethane	ug/kg	20	20.3	102	(70-130)		
Bromoform	ug/kg	20	23.3	116	(79-119)		
Bromomethane	ug/kg	20	18.9	94.5	(22-136)		
Carbon disulfide	ug/kg	20	18.6	93	(76-121)		
Carbon tetrachloride	ug/kg	20	19.8	99	(70-130)		
Chlorobenzene	ug/kg	20	20	100	(70-130)		
Chloroethane	ug/kg	20	20	100	(48-147)		
Chloroform	ug/kg	20	19.3	96.5	(70-130)		
Chloromethane	ug/kg	20	19	95	(63-135)		
cis-1,2-Dichloroethene	ug/kg	20	19.9	99.5	(70-130)		
cis-1,3-Dichloropropene	ug/kg	20	20.3	102	(70-130)		
Dibromochloromethane	ug/kg	20	20.4	102	(75-131)		
Dibromomethane	ug/kg	20	20	100	(82-133)		
Dichlorodifluoromethane	ug/kg	20	17.9	89.5	(52-139)		
Ethylbenzene	ug/kg	20	19.3	96.5	(70-130)		
Hexachlorobutadiene	ug/kg	20	20.8	104	(70-130)		
Isopropylbenzene (Cumene)	ug/kg	20	21.1	106	(70-130)		
Methyl iodide	ug/kg	20	18.9	94.5	(70-130)		
Methylene chloride	ug/kg	20	18.3	91.5	(78-122)		

LCS

RESULT

To: Jim Cheze Shaw Group

PARAMETER

WORK ORDER: 2513130

% REC

LIMITS

SPIKE

% REC

PROJECT ID:

SPIKE

CONC

Pinellas Bayway Site #4

RPD

RPD

LIMIT

METHOD: 8260

UNITS

LABORATORY CONTROL SAMPLE:	072009LCS22	Matrix:	SQ
----------------------------	-------------	---------	----

Al Caller Liv							
MTBE	ug/kg	20	19.9	99.5	(79-132)		
Naphthalene	ug/kg	20	19.9	99.5	(70-130)		
n-Butylbenzene	ug/kg	20	17.8	89	(70-130)		
n-Propylbenzene	ug/kg	20	19.5	97.5	(81-116)		
o-Xylene	ug/kg	20	19.3	96.5	(70-130)		
p,m-Xylene	ug/kg	40	40.4	101	(70-130)		
sec-Butylbenzene	ug/kg	20	19.6	98	(70-130)		
Styrene	ug/kg	20	20.6	103	(70-130)		
tert-Butylbenzene	ug/kg	20	19.9	99.5	(70-130)		
Tetrachloroethene	ug/kg	20	18.9	94.5	(69-134)		
Toluene	ug/kg	20	19.2	96	(70-130)		
trans-1,2-Dichloroethene	ug/kg ug/kg	20	18.1	90.5	(70-130)		
	ug/kg ug/kg	20	20.5	102	(82-129)		
trans-1,3-Dichloropropene		20	19.7	98.5	(75-126)		
Trichloroethene	ug/kg	20	19	95	(61-136)		
Trichlorofluoromethane	ug/kg	20	19.1	95.5	(60-115)		
Vinyl acetate	ug/kg		19.1	93.5 93.5	(65-113)		
Vinyl chloride	ug/kg	20	48	93.5 96	(71-124)		
1,2-Dichloroethane-d4(SURR) (S	ug/kg	50			•		
4-Bromofluorobenzene(SURR) (ug/kg	50	47.3	94.6	(54-126)		
		50	44.8	89.6	(68-119)		
Dibromofluoromethane(SURR) (ug/kg "			040	(50.407)		
Toluene d8(SURR) (S)	ug/kg	50	47.3	94.6	(59-127)		
	ug/kg	50		94.6 Matrix :	(59-127) SQ		
Toluene d8(SURR) (S)	ug/kg	50	47.3		•		RPD
Toluene d8(SURR) (S)	ug/kg	50 E: 07200	47.3 99LCS22D	Matrix:	SQ	RPD	RPD LIMIT
Toluene d8(SURR) (S) LABORATORY CONTROL	ug/kg J SAMPL	50 E: 07200 SPIKE	47.3 99LCS22D LCS	Matrix : SPIKE	SQ % REC	RPD 2.3	
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER	ug/kg SAMPL UNITS	50 E: 07200 SPIKE CONC	47.3 99LCS22D LCS RESULT	Matrix : SPIKE % REC	SQ % REC LIMITS		LIMIT
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane	ug/kg SAMPL UNITS ug/kg	50 E: 07200 SPIKE CONC	47.3 09LCS22D LCS RESULT 21.1	Matrix: SPIKE % REC	SQ % REC LIMITS (82-121)	2.3	LIM [7
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/kg SAMPL UNITS ug/kg ug/kg ug/kg ug/kg	50 E: 07200 SPIKE CONC 20 20	47.3 09LCS22D LCS RESULT 21.1 17.9	Matrix: SPIKE REC 106 89.5	SQ % REC LIMITS (82-121) (70-130)	2.3 5.4	9 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Trichloroethane	ug/kg SAMPL UNITS ug/kg ug/kg ug/kg ug/kg ug/kg	50 E: 07200 SPIKE CONC 20 20 20	47.3 09LCS22D LCS RESULT 21.1 17.9 20.6	Matrix : SPIKE % REC 106 89.5 103	SQ % REC LIMITS (82-121) (70-130) (82-122)	2.3 5.4 4.3	9 30 18
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	ug/kg L SAMPL UNITS ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 E: 07200 SPIKE CONC 20 20 20 20	47.3 09LCS22D LCS RESULT 21.1 17.9 20.6 20.1	Matrix : SPIKE % REC 106 89.5 103 100	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130)	2.3 5.4 4.3 0.5	9 30 18 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	ug/kg SAMPL UNITS ug/kg ug/kg ug/kg ug/kg ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20	47.3 09LCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1	Matrix: SPIKE % REC 106 89.5 103 100 95.5	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130)	2.3 5.4 4.3 0.5 2.6	9 30 18 30 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene	ug/kg J SAMPL UNITS ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20	47.3 09LCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (73-130)	2.3 5.4 4.3 0.5 2.6 5.4	9 30 18 30 30 16
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene	ug/kg L SAMPL UNITS ug/kg	50 E: 07200 SPIKE CONC 20 20 20 20 20 20 20 20 20	47.3 99LCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 .19	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (73-130) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6	9 30 18 30 30 30 16 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ug/kg L SAMPL UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 99LCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 .19 19.7 18.5	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (73-130) (70-130) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5	9 30 18 30 30 16 30 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ug/kg L SAMPL UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 99LCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 .19 19.7 18.5 21 18.7	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (74-129) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1	9 30 18 30 30 16 30 30 13
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ug/kg L SAMPL UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 99LCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 19 19.7 18.5 21 18.7 19.6	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (74-129)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1	9 30 18 30 30 16 30 30 13 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ug/kg J SAMPL UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 D9LCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 19 19.7 18.5 21 18.7 19.6 16.9	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (72-143)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0	9 30 18 30 30 16 30 30 13 30 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane(EDB)	ug/kg J SAMPL UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 99LCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 .19 19.7 18.5 21 18.7 19.6 16.9 19.9	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5 99.5	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (72-143) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0 12.7 2.5	9 30 18 30 30 16 30 30 13 30 23 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane(EDB) 1,2-Dichlorobenzene	ug/kg J. SAMPL UNITS ug/kg	50 E: 07200 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 PSLCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 .19 19.7 18.5 21 18.7 19.6 16.9 19.9 19.6	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5 99.5 98.5	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (72-143) (70-130) (70-130) (70-130) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0 12.7 2.5 1.5	9 30 18 30 30 16 30 30 13 30 23 30 30 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane(EDB) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	ug/kg J. SAMPL UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 PSLCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 19 19.7 18.5 21 18.7 19.6 16.9 19.9 19.6 19.3	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5 99.5 98 96.5	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0 12.7 2.5 1.5	9 30 18 30 30 16 30 30 13 30 23 30 30 12
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane(EDB) 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane	ug/kg UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 PSLCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 19 19.7 18.5 21 18.7 19.6 16.9 19.9 19.6 19.3 20.1	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5 99.5 98 96.5 100	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0 12.7 2.5 1.5 4.6 4.1	9 30 18 30 30 16 30 30 13 30 23 30 23 30 12 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane(EDB) 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-5-Trimethylbenzene	ug/kg UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 PSLCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 19 19.7 18.5 21 18.7 19.6 16.9 19.9 19.6 19.3 20.1 19.2	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5 99.5 98 96.5 100 96	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0 12.7 2.5 1.5 4.6 4.1 4.1	9 30 18 30 30 16 30 30 13 30 23 30 30 12 30 30 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ug/kg UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 PSLCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 19 19.7 18.5 21 18.7 19.6 16.9 19.9 19.6 19.3 20.1 19.2 19.1	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5 99.5 98 96.5 100 96 95.5	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0 12.7 2.5 1.5 4.6 4.1 4.1 3.6	9 30 18 30 30 16 30 30 13 30 30 23 30 30 30 30 30 30 30 30 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane(EDB) 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane	ug/kg UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 PSLCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 19.7 18.5 21 18.7 19.6 16.9 19.9 19.6 19.3 20.1 19.2 19.1 19.4	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5 99.5 98 96.5 100 96 95.5 97	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0 12.7 2.5 1.5 4.6 4.1 4.1 3.6 4	9 30 18 30 30 16 30 30 13 30 30 23 30 30 30 30 30 30 30 30 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichloropropane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane(EDB) 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichloropropane 1,4-Dichlorobenzene	ug/kg UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 PSLCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 19 19.7 18.5 21 18.7 19.6 16.9 19.9 19.6 19.3 20.1 19.2 19.1 19.4 19.3	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5 99.5 98 96.5 100 96 95.5 97 96.5	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0 12.7 2.5 1.5 4.6 4.1 4.1 3.6 4 5.5	9 30 18 30 30 16 30 30 13 30 30 30 30 30 30 30 30 30 30 30 30
Toluene d8(SURR) (S) LABORATORY CONTROL PARAMETER 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane(EDB) 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane	ug/kg UNITS ug/kg	50 SPIKE CONC 20 20 20 20 20 20 20 20 20 20 20 20 20	47.3 PSLCS22D LCS RESULT 21.1 17.9 20.6 20.1 19.1 19.7 18.5 21 18.7 19.6 16.9 19.9 19.6 19.3 20.1 19.2 19.1 19.4	Matrix: SPIKE % REC 106 89.5 103 100 95.5 95 98.5 92.5 105 93.5 98 84.5 99.5 98 96.5 100 96 95.5 97	SQ % REC LIMITS (82-121) (70-130) (82-122) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130) (70-130)	2.3 5.4 4.3 0.5 2.6 5.4 2.6 0.5 12.1 2.1 0 12.7 2.5 1.5 4.6 4.1 4.1 3.6 4	9 30 18 30 30 16 30 30 13 30 30 23 30 30 30 30 30 30 30 30 30

To: Jim Cheze Shaw Group **WORK ORDER: 2513130**

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8260

LABORATORY CONTROL SAMPLE: 072009LCS22D Matrix: SQ

LABORATORY CONTRO)L SAMPL	MPLE: 0/2009LCS22D		Matrix:	SQ			
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT	
2-Chlorotoluene	ug/kg	20	19.1	95.5	(81-122)	0	12	
2-Hexanone	ug/kg	40	48.9	122	(72-127)	6.9	21	
4-Chiorotoluene	ug/kg	20	19.7	98.5	(70-130)	0.5	30	
4-Isopropyltoluene	ug/kg	20	19.4	97	(70-130)	1.6	30	
4-Methyl-2-pentanone	ug/kg	40	41.9	105	(80-125)	4.4	15	
Acetone	ug/kg	40	51.6	129	(59-142)	3.4	30	
Acrolein	ug/kg	40	46.3	116 *	(70-111)	2.4	30	
Acrylonitrile	ug/kg	40	42.8	107	(74-117)	0.5	30	
Benzene	ug/kg	20	19.7	98.5	(70-130)	2.6	30	
Bromobenzene	ug/kg	20	19.5	97.5	(79-141)	2	13	
Bromochloromethane	ug/kg	20	18.4	92	(70-130)	4.8	30	
Bromodichloromethane	ug/kg	20	20.3	102	(70-130)	0	30	
Bromoform	ug/kg	20	18.9	94.5	(79-119)	20.9 *	13	
Bromomethane	ug/kg	20	18.4	92	(22-136)	2.7	30	
Carbon disulfide	ug/kg	20	18.7	93.5	(76-121)	0.5	17	
Carbon tetrachloride	ug/kg	20	20.2	101	(70-130)	2	30	
Chlorobenzene	ug/kg	20	19.5	97.5	(70-130)	2.5	30	
Chloroethane	ug/kg	20	19.3	96.5	(48-147)	3.6	16	
Chloroform	ug/kg	20	19.4	97	(70-130)	0.5	30	
Chloromethane	ug/kg	20	18.7	93.5	(63-135)	1.6	18	
cis-1,2-Dichloroethene	ug/kg	20	19.8	99	(70-130)	0.5	30	
cis-1,3-Dichloropropene	ug/kg	20	19	95	(70-130)	6.6	30	
Dibromochloromethane	ug/kg	20	19.9	99.5	(75-131)	2.5	10	
Dibromomethane	ug/kg	20	19.4	97	(82-133)	3	13	
Dichlorodifluoromethane	ug/kg	20	18	90	(52-139)	0.6	20	
Ethylbenzene	ug/kg	20	19.4	97	(70-130)	0.5	30	
Hexachlorobutadiene	ug/kg	20	19.4	97	(70-130)	7	30	
Isopropylbenzene (Cumene)	ug/kg	20	18.7	93.5	(70-130)	12.1	30	
Methyl iodide	ug/kg	20	19.2	96	(70-130)	1.6	30	
Methylene chloride	ug/kg	20	17.6	88	(78-122)	3.9	17	
MTBE	ug/kg	20	20.2	101	(79-132)	1.5	17	
Naphthalene	ug/kg	20	19.2	96	(70-130)	3.6	30	
n-Butylbenzene	ug/kg	20	19.2	96	(70-130)	7.6	30	
n-Propylbenzene	ug/kg	20	19	95	(81-116)	2.6	10	
o-Xylene	ug/kg	20	19.5	97.5	(70-130)	1	30	
p,m-Xylene	ug/kg	40	39.8	99.5	(70-130)	1.5	30	
sec-Butylbenzene	ug/kg	20	20	100	(70-130)	2	30	
Styrene	ug/kg	20	19.8	99	(70-130)	4	30	
tert-Butylbenzene	ug/kg	20	19.3	96.5	(70-130)	3.1	30	
Tetrachloroethene	ug/kg	20	19	95	(69-134)	0.5	16	
Toluene	ug/kg	20	19.2	96	(70-130)	0	30	
trans-1,2-Dichloroethene	ug/kg	20	19.6	98	(70-130)	8	30	
trans-1,3-Dichloropropene	ug/kg	20	21.1	106	(82-129)	2.9	14	
Trichloroethene	ug/kg	20	19.5	97.5	(75-126)	1	12	
Trichlorofluoromethane	ug/kg	20	20.6	103	(61-136)	8.1	14	
Vinyl acetate	ug/kg	20	18.7	93.5	(60-115)	2.1	30	
Vinyl chloride	ug/kg	20	19.3	96.5	(65-129)	3.2	21	

To: Jim Cheze

WORK ORDER: 2513130

Shaw Group

PROJECT ID: P

Pinellas Bayway Site #4

METHOD: 8260

LABORATORY CONTROL	SAMPLE	: 07200	9LCS22D	Matrix:	SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1,2-Dichloroethane-d4(SURR) (S	ug/kg	50	58	116	(71-124)		
4-Bromofluorobenzene(SURR) (ug/kg	50	55.7	111	(54-126)		
Dibromofluoromethane(SURR) (ug/kg	50	55.2	110	(68-119)		
Toluene d8(SURR) (S)	ug/kg	50	54.6	109	(59-127)		
LABORATORY CONTROL	SAMPLE	: 07211	LCS52	Matrix:	WQ		

Toluene d8(SURR) (S)	ug/kg	50	54.6	109	(59-127)		
LABORATORY CONTRO	DL SAMPL	E: 0721I	LCS52	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1,1,1,2-Tetrachloroethane	ug/l	20	22.3	112	(75-133)		
1,1,1-Trichloroethane	ug/l	20	21.6	108	(79-123)		
1,1,2,2-Tetrachloroethane	ug/l	20	19.6	98	(84-113)		
1,1,2-Trichloroethane	ug/l	20	20.4	102	(80-117)		
1,1-Dichloroethane	ug/l	20	21.4	107	(76-118)		
1,1-Dichloroethene	ug/l	20	21.4	107	(81-119)		
1,1-Dichloropropene	ug/l	20	21.3	106	(80-119)		
1,2,3-Trichlorobenzene	ug/l	20	21.3	106	(73-141)		
1,2,3-Trichloropropane	ug/l	20	18.5	92.5	(84-119)		
1,2,4-Trichlorobenzene	ug/l	20	21.2	106	(83-123)		
1,2,4-Trimethylbenzene	ug/l	20	21.5	108	(82-124)		
1,2-Dibromo-3-chloropropane	ug/l	20	20	100	(63-130)		
1,2-Dibromoethane(EDB)	ug/l	20	20.2	101	(84-121)		
1,2-Dichlorobenzene	ug/l	20	21.2	106	(70-130)		
1,2-Dichloroethane	ug/l	20	21.9	110	(83-114)		
1,2-Dichloropropane	ug/l	20	18.7	93.5	(74-118)		
1,3,5-Trimethylbenzene	ug/l	20	21.6	108	(84-124)		
1,3-Dichlorobenzene	ug/l	20	21	105	(84-118)		
1,3-Dichloropropane	ug/l	20	19.9	99.5	(83-112)		
1,4-Dichlorobenzene	ug/l	20	20.3	102	(70-130)		
2,2-Dichloropropane	ug/l	20	24.2	121	(52-147)		
2-Butanone	ug/l	40	38	95	(76-124)		
2-Chlorotoluene	ug/l	20	21.7	108	(70-130)		
2-Hexanone	ug/l	40	38.8	97	(75-132)		
4-Chlorotoluene	ug/l	20	20.9	104	(83-123)		
4-Isopropyltoluene	ug/l	20	22	110	(83-126)		
4-Methyl-2-pentanone	ug/i	40	40.7	102	(61-134)		
Acetone	ug/l	40	32.5	81.2	(45-156)		
Acrolein	ug/l	40	33.9	84.8	(61-125)		
Acrylonitrile	ug/i	40	41.9	105	(62-132)		
Benzene	ug/l	20	21	105	(71-120)		
Bromobenzene	ug/l	20	20.8	104	(74-120)		
Bromochloromethane	ug/l	20	20.4	102	(70-116)		
Bromodichloromethane	ug/l	20	21.4	107	(78-117)		
Bromoethane	ug/l	20	24.3	122	(60-150)		
Bromoform	ug/l	20	20.2	101	(71-128)		
Bromomethane	ug/i	20	25.3	126	(58-144)		
Carbon disulfide	ug/l	20	22.6	113	(65-121)		
			00.5	400	(07.400)		

20.5

ug/l

Carbon tetrachloride

20

102

(67-138)

METHOD: 8260

To: Jim Cheze

WORK ORDER: 2513130

Shaw Group PROJECT ID:

Pinellas Bayway Site #4

ABORATORY CONTROL SAMPLE: 0721LCS52 Matrix: WC

LABORATORY CONTROL	SAMPLE	: 07211	CS52	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Chlorobenzene	ug/l	20	21.1	106	(70-130)		
Chloroethane	ug/l	20	30.9	154 *	(72-135)		
hloroform	ug/l	20	20.8	104	(80-115)		
nloromethane	ug/l	20	19.4	97	(63-124)		
s-1,2-Dichloroethene	ug/l	20	22.1	110	(75-123)		
s-1,3-Dichloropropene	ug/l	20	22.4	112	(63-129)		
bromochloromethane	ug/l	20	21.9	110	(78-123)		
bromomethane	ug/l	20	20.4	102	(75-119)		
chlorodifluoromethane	ug/l	20	21.1	106	(62-133)		
nylbenzene	ug/l	20	21	105	(70-130)		
xachlorobutadiene	ug/l	20	23	115	(68-149)		
propylbenzene (Cumene)	ug/i	20	21.3	106	(83-123)		
ethyl iodide	ug/l	20	21.3	106	(56-133)		
ethylene chloride	ug/l	20	21.6	108	(75-111)		
TBE	ug/i	20	21.1	106	(76-123)		
aphthalene	ug/i	20	20.6	103	(80-131)		
•	ug/l	20	22.1	110	(83-125)		
Butylbenzene Propylbenzene	ug/l	20	21.7	108	(82-121)		
(ylene	ug/l	20	21.7	108	(70-130)		
•	ug/l	40	41.8	104	(70-130)		
ı-Xylene	ug/i	20	21.8	109	(83-122)		
-Butylbenzene	-	20	21.2	106	(70-130)		
ene	ug/l	20	21.6	108	(82-125)		
-Butylbenzene	ug/l	20	21.0	106	(70-130)		
rachloroethene	ug/l		21.1	106	(75-130) (75-119)		
uene	ug/l	20		96	(79-119) (79-121)		
ns-1,2-Dichloroethene	ug/l	20	19.2				
ns-1,3-Dichloropropene	ug/l	20	20	100	(68-127)		
chloroethene	ug/l	20	21.7	108	(76-123)		
chlorofluoromethane	ug/l	20	22.8	114	(74-135)		
yl acetate	ug/l	20	20.4	102	(49-136)		
nyl chloride	ug/l	20	23.4	117	(60-124)		
P-Dichloroethane-d4(SURR) (S	ug/l	50	51.8	104	(80-120)		
Bromofluorobenzene(SURR) (ug/l	50	52.1	104	(86-115)		
bromofluoromethane(SURR) (ug/i	50	51.7	103	(86-118)		
luene d8(SURR) (S)	ug/l	50	50.6	101	(88-110)		
ABORATORY CONTROL	. SAMPLI	E: 0721	LCS52D	Matrix:	WQ		
		SPIKE	LCS	SPIKE	% REC		RPD
ARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMIT
1,1,2-Tetrachloroethane	ug/l	20	22.6	113	(75-133)	1.3	20
1,1-Trichloroethane	ug/l	20	21.8	109	(79-123)	0.9	20
1,2,2-Tetrachloroethane	ug/l	20	19.9	99.5	(84-113)	1.5	20
1,2-Trichloroethane	ug/i	20	20.5	102	(80-117)	0.5	20
1-Dichloroethane	ug/l	20	21.5	108	(76-118)	0.5	20
1-Dichloroethene	ug/l	20	23.6	118	(81-119)	9.8	20
1-Dichloropropene	ug/l	20	21.4	107	(80-119)	0.5	20
2,3-Trichlorobenzene	ug/i	20	21.1	106	(73-141)	0.9	20

To: Jim Cheze Shaw Group **WORK ORDER: 2513130**

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8260

LABORATORY CONTROL SAMPLE:	0721LCS52D	Matrix
----------------------------	------------	--------

LABORATORY CONTRO	N. SAMPI	F• 07211	LCS52D	Matrix :	WQ		
LABORATORI CONTRO	L SAMIL				-		222
PARAMETER	UNITS	SPIKE	LCS RESULT	SPIKE % REC	% REC	RPD	RPD LIMIT
1,2,3-Trichloropropane	ug/l	20	19.2	96	(84-119)	3.7	20
1,2,4-Trichlorobenzene	ug/l	20	21.1	106	(83-123)	0.5	20
1,2,4-Trimethylbenzene	ug/l	20	21.6	108	(82-124)	0.5	20
1,2-Dibromo-3-chloropropane	ug/l	20	20.7	104	(63-130)	3.4	20
1,2-Dibromoethane(EDB)	ug/l	20	20.3	102	(84-121)	0.5	20
1,2-Dichlorobenzene	ug/l	20	20.9	104	(70-130)	1.4	20
1,2-Dichloroethane	ug/l	20	20.8	104	(83-114)	5.2	20
1,2-Dichloropropane	ug/l	20	21.5	108	(74-118)	13.9	20
1,3,5-Trimethylbenzene	ug/l	20	21.8	109	(84-124)	0.9	20
1,3-Dichlorobenzene	ug/l	20	21.2	106	(84-118)	0.9	20
1,3-Dichloropropane	ug/i	20	20.1	100	(83-112)	1	20
1,4-Dichlorobenzene	ug/l	20	20.2	101	(70-130)	0.5	20
2,2-Dichloropropane	ug/l	20	24.4	122	(52-147)	0.8	20
2-Butanone	ug/l	40	38.7	96.8	(76-124)	1.8	20
2-Chlorotoluene	ug/l	20	21.8	109	(70-130)	0.5	20
2-Hexanone	ug/l	40	40	100	(75-132)	3	20
4-Chlorotoluene	ug/l	20	21.4	107	(83-123)	2.4	20
4-Isopropyltoluene	ug/l	20	21.9	110	(83-126)	0.5	20
4-Methyl-2-pentanone	ug/i	40	40.9	102	(61-134)	0.5	20
Acetone	ug/i	40	33.4	83.5	(45-156)	2.7	20
Acrolein	ug/l	40	33	82.5	(61-125)	2.7	20
Acrylonitrile	ug/l	40	41.9	105	(62-132)	0	20
Benzene	ug/l	20	21.2	106	(71-120)	0.9	20
Bromobenzene	ug/l	20	21.1	106	(74-120)	1.4	20
Bromochloromethane	ug/l	20	20.4	102	(70-116)	0	20
Bromodichloromethane	ug/l	20	21.4	107	(78-117)	0	20
	ug/l	20	24.7	124	(60-150)	1.6	20
Bromoethane	ug/i ug/i	20	20.9	104	(71-128)	3.4	20
Bromoform	-	20	20.9	120	(58-144)	5.3	20
Bromomethane	ug/l	20	21.8	109	(65-121)	3.6	20
Carbon disulfide	ug/l	20	20.9	104	(67-138)	1.9	20
Carbon tetrachloride	ug/l			104	(70-130)	0.5	20
Chlorobenzene	ug/l	20	21.2 28.7	144	•	7.4	20
Chloroethane	ug/l	20		104	(80-115)	0	20
Chloroform	ug/l	20	20.8		, ,	3.5	20
Chloromethane	ug/l	20	20.1	100	(63-124)	2.3	20
cis-1,2-Dichloroethene	ug/l	20	21.6	108	(75-123)		20
cis-1,3-Dichloropropene	ug/l	20	22	110	(63-129)	1.8	
Dibromochloromethane	ug/l	20	21.4	107	(78-123)	2.3	20
Dibromomethane	ug/l	20	20.3	102	(75-119)	0.5	20
Dichlorodifluoromethane	ug/i	20	21.2	106	(62-133)	0.5	20
Ethylbenzene	ug/l	20	21.4	107	(70-130)	1.9	20
Hexachlorobutadiene	ug/l	20	22.5	112	(68-149)	2.2	20
Isopropylbenzene (Cumene)	ug/l	20	21.8	109	(83-123)	2.3	20
Methyl iodide	ug/l	20	22	110	(56-133)	3.2	20
Methylene chloride	ug/l	20	21.4	107	(75-111)	0.9	20
MTBE	ug/i	20	20.8	104	(76-123)	1.4	20
Naphthalene	ug/l	20	20.6	103	(80-131)	0	20

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8260

LABORATORY CONTRO	L SAMPLE	07211	LCS52D	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
n-Butylbenzene	ug/l	20	22.1	110	(83-125)	0	20
n-Propylbenzene	ug/l	20	21.6	108	(82-121)	0.5	20
o-Xylene	ug/i	20	21.9	110	(70-130)	0.9	20
p,m-Xylene	ug/i	40	41.9	105	(70-130)	0.2	20
sec-Butylbenzene	ug/l	20	21.9	110	(83-122)	0.5	20
Styrene	ug/l	20	21.1	106	(70-130)	0.5	20
tert-Butylbenzene	ug/l	20	21.9	110	(82-125)	1.4	20
Tetrachloroethene	ug/l	20	20.8	104	(70-130)	1.4	20
Toluene	ug/l	20	21.4	107	(75-119)	0.5	20
trans-1,2-Dichloroethene	ug/l	20	21.6	108	(79-121)	11.8	20
trans-1,3-Dichloropropene	ug/l	20	20.2	101	(68-127)	1	20
Trichloroethene	ug/l	20	22	110	(76-123)	1.4	20
Trichlorofluoromethane	ug/l	20	23.7	118	(74-135)	3.9	21
Vinyl acetate	ug/l	20	20.4	102	(49-136)	0	20
Vinyl chloride	ug/l	20	23.4	117	(60-124)	0	20
1,2-Dichloroethane-d4(SURR) (S	ug/l	50	51.7	103	(80-120)		
4-Bromofluorobenzene(SURR) (ug/l	50	52	104	(86-115)		
Dibromofluoromethane(SURR) (_	50	51.6	103	(86-118)		
Toluene d8(SURR) (S)	ug/l	50	50.7	101	(88-110)		

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8270

Method Blank 289402

Matrix: SQ

Associated Lab Samples : 251313001 251313002 251313003 289402 289403

T	D 14 .	Analysis	Prep Date	Units	RL	Dilution Factor
Parameter	Results	Date				
1,2,4-Trichlorobenzene	U	7/31/2009	7/30/2009	ug/kg	58	1
1,2-Dichlorobenzene	U	7/31/2009	7/30/2009	ug/kg	57	1
1,3-Dichlorobenzene	U	7/31/2009	7/30/2009	ug/kg	61	1
1,4-Dichlorobenzene	U	7/31/2009	7/30/2009	ug/kg	63	1
1-Methylnaphthalene	U	7/31/2009	7/30/2009	ug/kg	62	1
2,2-Oxybis(1-chloropropane)	U	7/31/2009	7/30/2009	ug/kg	220	1
2,4,5-Trichlorophenol	U	7/31/2009	7/30/2009	ug/kg	74	1
2,4,6-Trichlorophenol	U	7/31/2009	7/30/2009	ug/kg	68	1
2,4-Dichlorophenol	U	7/31/2009	7/30/2009	ug/kg	75	1
2,4-Dimethylphenol	U	7/31/2009	7/30/2009	ug/kg	57	1
2,4-Dinitrophenol	J3U	7/31/2009	7/30/2009	ug/kg	220	1
2,4-Dinitrotoluene	J3U	7/31/2009	7/30/2009	ug/kg	49	1
2,6-Dinitrotoluene	J3U	7/31/2009	7/30/2009	ug/kg	50	1
2-Chloronaphthalene	U	7/31/2009	7/30/2009	ug/kg	66.7	1
2-Chlorophenol	U	7/31/2009	7/30/2009	ug/kg	69	1
2-Methyl-4,6-dinitrophenol	U	7/31/2009	7/30/2009	ug/kg	266	1
2-Methylnaphthalene	J3U	7/31/2009	7/30/2009	ug/kg	58	1
2-Methylphenol (o-Cresol)	U	7/31/2009	7/30/2009	ug/kg	96	1
2-Nitroaniline	J3U	7/31/2009	7/30/2009	ug/kg	57	1
2-Nitrophenol	U	7/31/2009	7/30/2009	ug/kg	72	1
3,3'-Dichlorobenzidine	U	7/31/2009	7/30/2009	ug/kg	59	1
3-Nitroaniline	J3MU	7/31/2009	7/30/2009	ug/kg	80	1
4-Bromophenyl-phenylether	U	7/31/2009	7/30/2009	ug/kg	49	1
4-Chloro-3-methylphenol	U	7/31/2009	7/30/2009	ug/kg	56	1
4-Chloroaniline	U	7/31/2009	7/30/2009	ug/kg	63	1
4-Chlorophenyl-phenylether	U	7/31/2009	7/30/2009	ug/kg	51	1
4-Methylphenol	U	7/31/2009	7/30/2009	ug/kg	59	1
4-Nitroaniline	J3U	7/31/2009	7/30/2009	ug/kg	88	1
4-Nitrophenol	U	7/31/2009	7/30/2009	ug/kg	53	1
Acenaphthene	Ū	7/31/2009	7/30/2009	ug/kg	49	1
Acenaphthylene	Ū	7/31/2009	7/30/2009	ug/kg	55	1
Aniline	Ü	7/31/2009	7/30/2009	ug/kg	77	1
Anthracene	Ü	7/31/2009	7/30/2009	ug/kg	60	1
Benzidine	Ü	7/31/2009	7/30/2009	ug/kg	600	1
Benzo(a)anthracene	Ü	7/31/2009	7/30/2009	ug/kg	57	1
Benzo(a)pyrene	Ü	7/31/2009	7/30/2009	ug/kg	43	1
, ., ,	Ü	7/31/2009	7/30/2009	ug/kg	63	1
Benzo(b)fluoranthene	Ü	7/31/2009	7/30/2009	ug/kg ug/kg	40	1
Benzo(g,h,i)perylene	U	7/31/2009	7/30/2009	ug/kg ug/kg	57	1
Benzo(k)fluoranthene					270	1
Benzoic acid	U	7/31/2009	7/30/2009	ug/kg	270 92	1
Benzyl alcohol	J3U	7/31/2009	7/30/2009	ug/kg		1
Bis(2-Chloroethoxy)methane	U	7/31/2009	7/30/2009	ug/kg	57	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8270

Method Blank 289402

Matrix: SQ

Associated Lab Samples:

251313001 251313002 251313003 289402 289403

		Analysis	Prep			Dilution
Parameter	Results	Date	Date	Units	RL	Factor
Bis(2-Chloroethyl)ether	U	7/31/2009	7/30/2009	ug/kg	67	1
bis(2-ethylhexyl)phthalate	U	7/31/2009	7/30/2009	ug/kg	83	1
Butylbenzylphthalate	U	7/31/2009	7/30/2009	ug/kg	63	1
Chrysene	U	7/31/2009	7/30/2009	ug/kg	34	1
Dibenz(a,h)anthracene	U	7/31/2009	7/30/2009	ug/kg	41	1
Dibenzofuran	J3MU	7/31/2009	7/30/2009	ug/kg	54	1
Diethylphthalate	U	7/31/2009	7/30/2009	ug/kg	51	1
Dimethyl-phthalate	U	7/31/2009	7/30/2009	ug/kg	59	1
Di-n-butylphthalate	U	7/31/2009	7/30/2009	ug/kg	44	1
Di-n-octylphthalate	U	7/31/2009	7/30/2009	ug/kg	58	1
Fluoranthene	J3U	7/31/2009	7/30/2009	ug/kg	48	1
Fluorene	U	7/31/2009	7/30/2009	ug/kg	51	1
Hexachlorobenzene	J3MU	7/31/2009	7/30/2009	ug/kg	53	1
Hexachlorobutadiene	U	7/31/2009	7/30/2009	ug/kg	58	1
Hexachlorocyclopentadiene	U	7/31/2009	7/30/2009	ug/kg	40	1
Hexachloroethane	U	7/31/2009	7/30/2009	ug/kg	50	1
Indeno(1,2,3-cd)pyrene	U	7/31/2009	7/30/2009	ug/kg	52	1
Isophorone	U	7/31/2009	7/30/2009	ug/kg	59	1
Naphthalene	U	7/31/2009	7/30/2009	ug/kg	64	1
Nitrobenzene	U	7/31/2009	7/30/2009	ug/kg	60	1
N-Nitrosodimethylamine	U	7/31/2009	7/30/2009	ug/kg	71	1
N-Nitroso-di-n-propylamine	U	7/31/2009	7/30/2009	ug/kg	61	1
N-Nitrosodiphenylamine	U	7/31/2009	7/30/2009	ug/kg	63	1
Pentachlorophenol	U	7/31/2009	7/30/2009	ug/kg	133	1
Phenanthrene	U	7/31/2009	7/30/2009	ug/kg	56	1
Phenol	U	7/31/2009	7/30/2009	ug/kg	65	1
Pyrene	บ	7/31/2009	7/30/2009	ug/kg	92	1
2,4,6-Tribromophenol(SURR) (S)	73.9	7/31/2009	7/30/2009	%	(19 - 122)	1
2-Fluorobiphenyl(SURR) (S)	71.8	7/31/2009	7/30/2009	%	(30 - 115)	1
2-Fluorophenol(SURR) (S)	77.4	7/31/2009	7/30/2009	%	(25 - 121)	1
Nitrobenzene-d5(SURR) (S)	79.6	7/31/2009	7/30/2009	%	(23 - 120)	1
Phenol-d5(SURR) (S)	70.9	7/31/2009	7/30/2009	%	(24 - 113)	1
p-Terphenyl-d14(SURR) (S)	68.1	7/31/2009	7/30/2009	%	(18 - 137)	1

LABORATORY CONTR	OL SAMPL	Æ: 28940)3	Matrix:	SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1,2,4-Trichlorobenzene	ug/kg	2670	1920	71.9	(71-110)		
1,2-Dichlorobenzene	ug/kg	2670	1830	68.5	(65-95)		
1,3-Dichlorobenzene	ug/kg	2670	1820	68.2	(67-100)		

To: Jim Cheze **WORK ORDER: 2513130**

Shaw Group

PROJECT ID: Pinellas Bayway Site #4

METHOD: 8270

Ŧ	ABORATORY	CONTROL	SAMPLE:	289403
L	ABUKATUKT	CONTROL	SAMITLE	4074UJ

Matrix: SQ

LABORATORI CONTRO	L SAMIL	111. 207TC	,,,	Matika	•	54		
		SPIKE	LCS	SPIKE		% REC		RPD
PARAMETER	UNITS	CONC	RESULT	% REC		LIMITS	RPD	LIMIT
1,4-Dichlorobenzene	ug/kg	2670	1810	67.8		(62-105)		
1-Methylnaphthalene	ug/kg	2670	1980	74.2		(67-145)		
2,2-Oxybis(1-chloropropane)	ug/kg	2670	2130	79.8		(52-115)		
2,4,5-Trichlorophenol	ug/kg	2670	1980	74.2		(61-110)		
2,4,6-Trichlorophenol	ug/kg	2670	1860	69.7		(62-110)		
2,4-Dichlorophenol	ug/kg	2670	1920	71.9		(64-110)		
2,4-Dimethylphenol	ug/kg	2670	1960	73.4		(65-105)		
2,4-Dinitrophenol	ug/kg	5330	1510	28.3	*	(29-130)		
2,4-Dinitrotoluene	ug/kg	2670	1960	73.4	*	(77-115)		
2,6-Dinitrotoluene	ug/kg	2670	1920	71.9	*	(73-110)		
2-Chloronaphthalene	ug/kg	2670	1930	72.3		(72-105)		
2-Chlorophenol	ug/kg	2670	1900	71.2		(54-105)		
2-Methyl-4,6-dinitrophenol	ug/kg	2670	1260	47.2		(34-135)		
2-Methylnaphthalene	ug/kg	2670	1870	70	*	(72-105)		
2-Methylphenol (o-Cresol)	ug/kg	2670	1940	72.7		(58-105)		
2-Nitroaniline	ug/kg	2670	1880	70.4	*	(71-120)		
2-Nitrophenol	ug/kg	2670	1950	73		(61-110)		
3,3'-Dichlorobenzidine	ug/kg	2670	1680	62.9		(41-130)		
3-Nitroaniline	ug/kg	2670	1620	60.7	*	(76-110)		
4-Bromophenyl-phenylether	ug/kg	2670	2160	80.9		(59-115)		
4-Chloro-3-methylphenol	ug/kg	2670	1960	73.4		(62-115)		
4-Chloroaniline	ug/kg	2670	1540	57.7		(57-95)		
4-Chlorophenyl-phenylether	ug/kg	2670	2120	79.4		(65-110)		
4-Methylphenol	ug/kg	2670	1890	70.8		(57-105)		
4-Nitroaniline	ug/kg	2670	1740	65.2	*	(70-115)		
4-Nitrophenol	ug/kg	2670	1650	61.8		(52-140)		
Acenaphthene	ug/kg	2670	1820	68.2		(65-110)		
Acenaphthylene	ug/kg	2670	1870	70		(66-105)		
Aniline	ug/kg	2670	1790	67		(47-140)		
Anthracene	ug/kg	2670	1880	70.4		(67-105)		
Benzidine	ug/kg	2670	644	24.1		(10-149)		
Benzo(a)anthracene	ug/kg	2670	1840	68.9		(67-110)		
Benzo(a)pyrene	ug/kg	2670	1840	68.9		(60-110)		
Benzo(b)fluoranthene	ug/kg	2670	1820	68.2		(49-115)		
Benzo(g,h,i)perylene	ug/kg	2670	1930	72.3		(41-125)		
Benzo(k)fluoranthene	ug/kg	2670	1900	71.2		(53-125)		
Benzoic acid	ug/kg	5330	1410	26.5		(10-106)		
Benzyl alcohol	ug/kg	2670	1670	62.5	*	(64-125)		
Bis(2-Chloroethoxy)methane	ug/kg	2670	2180	81.6		(70-110)		
Bis(2-Chloroethyl)ether	ug/kg	2670	2070	77.5		(61-105)		
bis(2-ethylhexyl)phthalate	ug/kg	2670	2460	92.1		(65-125)		
Butylbenzylphthalate	ug/kg	2670	2510	94		(66-125)		
• • •	ug/kg	2670	1850	69.3		(65-110)		
Chrysene Dibonz(a b)anthracene	ug/kg ug/kg	2670	1820	68.2		(40-125)		
Dibenz(a,h)anthracene	ug/kg ug/kg	2670	1830	68.5	*	(75-105)		
Dibenzofuran Diethylphthalate	ug/kg ug/kg	2670	2190	82		(68-115)		
Diethylphthalate	-					(69-110)		
Dimethyl-phthalate	ug/kg	2670	2150	80.5		(09-110)		

Jim Cheze To:

Shaw Group

WORK ORDER: 2513130

PROJECT ID: Pinellas Bayway Site #4

METHOD: 8270

LABORATORY	CONTROL SAMPLE:	28940
------------	-----------------	-------

Matrix		SQ
MATHE	٠	20

LABORATORY CONTROL	L SAMPLE	: 28940	3	Matrix	:	SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC		% REC LIMITS	RPD	RPD LIMIT
Di-n-butylphthalate	ug/kg	2670	2200	82.4		(67-110)		
Di-n-octylphthalate	ug/kg	2670	2360	88.4		(64-130)		
Fluoranthene	ug/kg	2670	1820	68.2	*	(74-115)		
Fluorene	ug/kg	2670	1800	67.4		(67-110)		
fexachlorobenzene	ug/kg	2670	1850	69.3	*	(77-120)		
lexachlorobutadiene	ug/kg	2670	2130	79.8		(79-115)		
lexachlorocyclopentadiene	ug/kg	2670	1800	67.4		(34-139)		
lexachloroethane	ug/kg	2670	1850	69.3		(65-110)		
ndeno(1,2,3-cd)pyrene	ug/kg	2670	1770	66.3		(40-120)		
ophorone	ug/kg	2670	2080	77.9		(69-110)		
aphthalene	ug/kg	2670	1870	70		(67-105)		
litrobenzene	ug/kg	2670	1930	72.3		(71-115)		
-Nitrosodimethylamine	ug/kg	2670	2080	77.9		(48-115)		
-Nitroso-di-n-propylamine	ug/kg	2670	2040	76.4		(59-115)		
-Nitrosodiphenylamine	ug/kg	2670	2190	82		(77-115)		
entachlorophenol	ug/kg	2670	1380	51.7		(36-120)		
henanthrene	ug/kg	2670	1810	67.8		(67-110)		
henol	ug/kg	2670	1810	67.8		(46-100)		
ryrene	ug/kg	2670	1940	72.7		(67-125)		
,4,6-Tribromophenol(SURR) (S)	ug/kg	13300	9500	71.4		(19-122)		
-Fluorobiphenyl(SURR) (S)	ug/kg	6670	4660	69.9		(30-115)		
Fluorophenol(SURR) (S)	ug/kg	13300	9940	74.7		(25-121)		
litrobenzene-d5(SURR) (S)	ug/kg	6670	5130	76.9		(23-120)		
henol-d5(SURR) (S)	ug/kg	13300	9140	68.7		(24-113)		
o-Terphenyl-d14(SURR) (S)	ug/kg	6670	4450	66.7		(18-137)		

To: Jim Cheze **WORK ORDER: 2513130**

Shaw Group

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8270 SIM

Method Blank 289006

Matrix: WQ

Associated Lab Samples:

251313004 251313005 251313006 251313007 289006 289007 289008

Parameter	Results	Analysis Date	Prep Date	Units	RL_	Dilution Factor
1-Methylnaphthalene	U	7/25/2009	7/23/2009	ug/l	0.02	1
2-Methylnaphthalene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Acenaphthene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Acenaphthylene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Anthracene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(a)anthracene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(a)pyrene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(b)fluoranthene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(g,h,i)perylene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Benzo(k)fluoranthene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Chrysene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Dibenz(a,h)anthracene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Fluoranthene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Fluorene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Indeno(1,2,3-cd)pyrene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Naphthalene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Phenanthrene	U	7/25/2009	7/23/2009	ug/l	0.02	1
Pyrene	U	7/25/2009	7/23/2009	ug/i	0.02	1
p-Terphenyl-d14(SURR) (S)	96	7/25/2009	7/23/2009	%	(33 - 141)	1

LABORATORY CONTRO	L SAMPL	E: 28900	7	Matrix:	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1-Methylnaphthalene	ug/l	0.5	0.4	80	(53-125)		
2-Methylnaphthalene	ug/l	0.5	0.41	82	(38-132)		
Acenaphthene	ug/l	0.5	0.4	80	(70-117)		
Acenaphthylene	ug/l	0.5	0.4	80	(59-124)		
Anthracene	ug/l	0.5	0.4	80	(74-119)		
Benzo(a)anthracene	ug/l	0.5	0.43	86	(72-134)		
Benzo(a)pyrene	ug/l	0.5	0.44	88	(50-142)		
Benzo(b)fluoranthene	ug/l	0.5	0.44	88	(62-147)		
Benzo(g,h,i)perylene	ug/l	0.5	0.43	86	(57-138)		
Benzo(k)fluoranthene	ug/l	0.5	0.42	84	(74-123)		
Chrysene	ug/l	0.5	0.42	84	(75-118)		
Dibenz(a,h)anthracene	ug/l	0.5	0.45	90	(53-150)		
Fluoranthene	ug/l	0.5	0.43	86	(76-117)		
Fluorene	ug/l	0.5	0.41	82	(74-124)		
Indeno(1,2,3-cd)pyrene	ug/i	0.5	0.44	88	(63-135)		
Naphthalene	ug/l	0.5	0.4	80	(74-112)		
Phenanthrene	ug/l	0.5	0.4	80	(80-118)		

To: Jim Cheze

Shaw Group

p-Terphenyl-d14(SURR) (S)

ug/l

0.5

0.45

WORK ORDER: 2513130

(33-141)

90

PROJECT ID:

Pinellas Bayway Site #4

8270 SIM

		ME	THOD: 8	270 SIM			
LABORATORY CONTRO	OL SAMPLE	: 28900	7	Matrix :	WQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
			0.4	80	(71-122)		
Pyrene	ug/l	0.5		100	(33-141)		
Terphenyl-d14(SURR) (S)	ug/l	0.5	0.5				
ABORATORY CONTRO	OL SAMPLE	: 28900	98	Matrix :	WQ		
		SPIKE	LCS	SPIKE	% REC		RPD
ARAMETER	UNITS	CONC	RESULT	% REC	LIMITS	RPD	LIMIT
Methylnaphthalene	ug/l	0.5	0.43	86	(53-125)		
Methylnaphthalene	ug/l	0.5	0.44	88	(38-132)		
enaphthene	ug/l	0.5	0.43	86	(70-117)		
enaphthylene	ug/l	0.5	0.43	86	(59-124)		
hracene	ug/l	0.5	0.42	84	(74-119)		
nzo(a)anthracene	ug/l	0.5	0.45	90	(72-134)		
nzo(a)pyrene	ug/l	0.5	0.46	92	(50-142)		
nzo(b)fluoranthene	ug/l	0.5	0.46	92	(62-147)		
nzo(g,h,i)perylene	ug/l	0.5	0.49	98	(57-138)		
nzo(k)fluoranthene	ug/l	0.5	0.43	86	(74-123)		
nrysene	ug/l	0.5	0.44	88	(75-118)		
benz(a,h)anthracene	ug/l	0.5	0.53	106	(53-150)		
uoranthene	ug/l	0.5	0.42	84	(76-117)		
orene	ug/l	0.5	0.43	86	(74-124)		
leno(1,2,3-cd)pyrene	ug/l	0.5	0.54	108	(63-135)		
phthalene	ug/l	0.5	0.43	86	(74-112)		
enanthrene	ug/l	0.5	0.41	82	(80-118)		
yrene	ug/l	0.5	0.44	88	(71-122)		
,	- "		0.45	00	(22.444)		

Jim Cheze To:

WORK ORDER: 2513130

Shaw Group

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8310

Method Blank 289009

Matrix: SQ

251313001 251313002 251313003 251313008 289009 289010 Associated Lab Samples:

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
1-Methylnaphthalene	U	7/23/2009	7/23/2009	ug/kg	4.1	1
2-Methylnaphthalene	U	7/23/2009	7/23/2009	ug/kg	3.9	1
Acenaphthene	U	7/23/2009	7/23/2009	ug/kg	1.1	1
Acenaphthylene	U	7/23/2009	7/23/2009	ug/kg	1.2	1
Anthracene	U	7/23/2009	7/23/2009	ug/kg	1.1	1
Benzo(a)anthracene	U	7/23/2009	7/23/2009	ug/kg	2	1
Benzo(a)pyrene	U	7/23/2009	7/23/2009	ug/kg	3.3	1
Benzo(b)fluoranthene	U	7/23/2009	7/23/2009	ug/kg	2.6	1
Benzo(g,h,i)perylene	ឋ	7/23/2009	7/23/2009	ug/kg	2.6	1
Benzo(k)fluoranthene	U	7/23/2009	7/23/2009	ug/kg	1.4	1
Chrysene	U	7/23/2009	7/23/2009	ug/kg	2.8	1
Dibenz(a,h)anthracene	U	7/23/2009	7/23/2009	ug/kg	1.1	1
Fluoranthene	ប	7/23/2009	7/23/2009	ug/kg	2	1
Fluorene	U	7/23/2009	7/23/2009	ug/kg	1.9	1
Indeno(1,2,3-cd)pyrene	U	7/23/2009	7/23/2009	ug/kg	1.1	1
Naphthalene	U	7/23/2009	7/23/2009	ug/kg	2.6	1
Phenanthrene	U	7/23/2009	7/23/2009	ug/kg	1.7	1
Pyrene	U	7/23/2009	7/23/2009	ug/kg	3	1
p-Terphenyl-d14(SURR) (S)	82.7	7/23/2009	7/23/2009	%	(17 - 119)	1

LABORATORY CONT	ROL SAMPL	L SAMPLE: 289010			SQ		
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
1-Methylnaphthalene	ug/kg	667	513	76.9	(70-111)		
2-Methylnaphthalene	ug/kg	667	511	76.6	(62-110)		
Acenaphthene	ug/kg	667	504	75.6	(68-109)		
Acenaphthylene	ug/kg	667	482	72.3	(67-112)		
Anthracene	ug/kg	667	478	71.7	(68-117)		
Benzo(a)anthracene	ug/kg	667	498	74.7	(68-112)		
Benzo(a)pyrene	ug/kg	667	432	64.8	(52-116)		
Benzo(b)fluoranthene	ug/kg	667	512	76.8	(69-114)		
Benzo(g,h,i)perylene	ug/kg	667	498	74.7	(53-119)		
Benzo(k)fluoranthene	ug/kg	667	498	74.7	(67-115)		
Chrysene	ug/kg	667	500	75	(66-117)		
Dibenz(a,h)anthracene	ug/kg	667	496	74.4	(68-118)		
Fluoranthene	ug/kg	667	518	77.7	(71-110)		
Fluorene	ug/kg	667	5 15	77.2	(68-118)		
Indeno(1,2,3-cd)pyrene	ug/kg	667	497	74.5	(61-122)		
Naphthalene	ug/kg	667	504	75.6	(69-114)		
Phenanthrene	ug/kg	667	505	75.7	(69-116)		

FLDOH #E84207

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

METHOD: 8310

LABORATORY CONTROL SAMPLE: 289010

Matrix: SQ

PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
Pyrene p-Terphenyl-d14(SURR) (S)	ug/kg ug/kg	667 1330	515 1010	77.2 75.9	(71-115) (17-119)		

Jim Cheze To:

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

RPD

LIMIT

20

RPD

6.9

METHOD: FL-PRO

Method Blank 288853 Matrix: WQ

Associated Lab Samples:

251313004 251313005 251313006 251313007 288853 288854 288855

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
TPH	U	7/21/2009	7/21/2009	mg/L	0.25	1
C39 Surrogate(SURR) (S)	93.3	7/21/2009	7/21/2009	%	(42 - 193)	1
o-Terphenyl Surrogate(SURR) (99	7/21/2009	7/21/2009	%	(82 - 142)	1

Method Blank 289019

Matrix: SQ

Associated Lab Samples:

251313003 289019 289020

Parameter	Results	Analysis Date	Prep Date	Units	RL	Dilution Factor
TPH	U	7/24/2009	7/23/2009	mg/Kg	13	1
C39 Surrogate(SURR) (S)	79	7/24/2009	7/23/2009	%	(60 - 118)	1
o-Terphenyl Surrogate(SURR) (86.6	7/24/2009	7/23/2009	%	(62 - 109)	1

Method Blank 289129

Matrix: SQ

Associated Lab Samples:

PARAMETER

TPH

251313001 251313002 251313008 289129 289130

Parameter	Result		ialysis Date	Prep Date	Units	RL	4	Dilution Factor	
TPH	U	7/2	6/2009	7/26/2009	mg/K	5.9	9	1	
C39 Surrogate(SURR) (S)	102	7/2	6/2009	7/26/2009	%	(60 -	118)	1	
o-Terphenyl Surrogate(SURR) (107	7/2	26/2009	7/26/2009	%	(62 -	109)	1	
PARAMETER	UNITS	SPIKE CONC	LCS RESU	LT % RE	(E	WQ % REC LIMITS	RP	RPE D LIMI	
TPH	mg/L	3.4	2.8	82.	4	(55-118)			
C39 Surrogate(SURR) (S)	mg/L	0.15	0.13	86.	7	(42-193)			
o-Terphenyl Surrogate(SURR) (mg/L	0.1	0.098	98	3	(82-142)			
LABORATORY CONTRO	L SAMPLI	E: 2888	55	Matr	ix :	WQ			

LCS

RESULT

SPIKE

CONC

3.4

UNITS

mg/L

SPIKE

% REC

88.2

% REC

LIMITS

(55-118)

Jim Cheze To:

PARAMETER

C39 Surrogate(SURR) (S)

Shaw Group

WORK ORDER: 2513130

WQ

PROJECT ID:

Pinellas Bayway Site #4

METHOD: FL-PRO

LABORATORY CONTROL SAMPLE	288855		Matrix:
	SPIKE	LCS	SPIKE

UNITS	SPIKE	LCS RESULT	% REC	% REC LIMITS	RPD	LIMIT
mg/L	0.15	0.14	93.3	(42-193)		
mg/L	0.1	0.1	100	(82-142)		

o-Terphenyl Surrogate(SURR) (LABORATORY CONTROL SAMPLE: 289020

SQ Matrix:

PARAMETER	UNITS	SPIKE	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	LIMIT
TPH	mg/Kg	56.7	48.1	84.8	(63-153)		
C39 Surrogate(SURR) (S)	mg/Kg	10	7.8	78	(60-118)		
o-Terphenyl Surrogate(SURR) (mg/Kg	6.7	6	89.6	(62-109)		
					CO		

LABORATORY CONTROL	L SAMPL	0	Matrix:	SQ			
PARAMETER	UNITS	SPIKE CONC	LCS RESULT	SPIKE % REC	% REC LIMITS	RPD	RPD LIMIT
TPH	mg/Kg	25.8	24.8	96.1	(63-153)		
C39 Surrogate(SURR) (S)	mg/Kg	4.5	5.5	122	* (60-118)		
o-Terphenyl Surrogate(SURR) (mg/Kg	3	3.2	107	(62-109)		

To: Jim Cheze

Shaw Group

WORK ORDER: 2513130

PROJECT ID:

Pinellas Bayway Site #4

Brian C. Spann

O. Spann

DN: cn=Brian C. Spann,
o=Spectrum, ou=PEL,
email=bspann@pelab.
com, c=US
Date: 2009.08.04
15:57:59 -04!00' 15:57:59 -04'00'

Brian C. Spann

Laboratory Manager

or

Mark Gudnason

Quality Assurance Officer

															σ	8,	—-г		4 -1	Q.		رم	1					
•	ory approval.	s unless			#4	ال الم			es:	orting Level	☐ Level II	□ Level IV	- Space of a section	of thig standards.	4 PATM	Rates	ති	64	So	3	9	Climt OB		Time:	0530	0490	1881	
Special Handling:	AT-Indicate Date Needed: All TATs subject to laboratory approval.	Min. 24-nour nourication recover for team. Samples disposed of after 60 days unless	ncted.		Str	/ State:	B		Notes:	QA/QC Reporting Level	□ Level I	☐ Level III	Other	State specific reporting standards.	115-7 DAY	MF DOT						adduk per		Date:	2-17-09	1/20/04	7/20/09	
ar.	TAT- Indicate Date Needed: All TATs subject to labo	Min. 24-nour no · Samples dispos	otherwise instructed.		11-5 Bayere	re Verde	M-Speed		de below:				3 h					×	×	×	S X			l A		730 -0 A	7	pelab.com
	ORD		7 7	Project No.:	Name: Pinelles	cation of te	no ler(s) to	27 (5) (5)	t preservative co	Analyses			Ot n±S		×	× ×	×	× ×	X X X	XXX	XXX	XXX		Received by	BAR	2	な	8405 Benjamin Road • Tampa, Florida 33634 • 813-888-9507 • FAX 813-889-7128 • www.pelab.com
	VREC	}	2513130	Pro	Sife	L-17	+ 23	tcqu	List List	لد	b	A2:	7 (109		-	-	У У	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X	×	X			S-811	2	10:34 L	7 • FAX 813-88
	CISTODY RECOR	1100) Jo					RQN:	1=CH ₃ OH	Containers:	S	Glas	mber Jear C	V 10 # A 10 # O 10 #) W		~	3 9	+	+-	3		Relinquished by:	1	***************************************	170-09 10:34	• 813-888-950
	OF CT IS		Page.						6=Ascorbic Acid			-		Type Matrix	+	5 5	3 5	7 (7)	3 5	3	3 0	B		Reli		3	CHAIN THE	Florida 33634
				Invoice To:				P.O. No.:	5=NaOH 6		WW=Wastewater	25			Time:	01/1	14 40	\$ 1.	115.0	202	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.05			200	(fame)	0,3.2,45	Road • Tampa.
			VOLOGY		10				O ₄ 4=HNO ₃	,	5	- 1	C=Composite		Date:	40-21-2	7-17-09	5	7-11-1	7-17-00	00 - 5 - 6	30/11/09			Chece & shewyord, com	EDD Format PIT - C-66660, Tolko Carlos	Addition unon receipt. M Lead Ambient 15°C30,3.2,4	8405 Benjamin
	7	<i></i>	A DIVINIDA ON SPECTRUM ANALYTICAL, INC. INSURER HANIBAL TECHNOLOGY	14 17	US HW 801	FL 33619		es Chare	2=HCl 3=H ₂ SO ₄)= 	GW=Groundwater	- 1	G=Grab C=C		ig (651	1/2	S &	ء م	2 4	7 0	2 70		Š	15, Chece P	1000 J	M Tred	. Y 1000
	<u>u</u>	1 2 7	PECTRUM ANALYTICAL, I	T+3 WALLS	25 5	PA		Project Mgr.: 5cm 25		8= NaHSO4		SW= Surface water X2=			_	533	S S	565	502		585	5,75	8		□ E-mail to Semes,	EDD Format 6.7	July room z-	diana uodn uon
			A DIVININ ON S.	1	Keport	1		Project		~	DW=D				Lab Id:										□ E-1	EDD E		Cond

SAMPLE RECEIPT CONFIRMATION SHEET

		Client	Information					
SDG:	2513130		Req:	87310				
Client:	Shaw		Project:	Generic1				
Level:	1		Date Rec'd:	7/20/2009 10:31:00 A	M			
Rec'd via:	courier		Due Date:	07/27/09				
		Sampl	e Verification					
Samples/Co	oler Secure?	Yes	All Samples on COC	accounted For?	Yes			
Temperature	e of Samples(Celsius)	3.0C-4.5C	All Samples Rec'd Ir	Yes				
pH Verified?		Yes	Sample Vol. Stuff. F	Yes				
pH WNL?		Yes	Samples Rec'd W/I I	Yes				
Soil Origin (Domestic/Foreign):	Domestic	Are All Samples to b	Yes				
Site Locatio	n/Project on COC?	Yes	Correct Sample Cor	Yes				
Client Proje	ct # on COC?	Yes	COC Comments wri	Yes				
Project Mgr.	Indicated on COC?	Yes	Samplers Initials on	COC?	Yes.			
COC relinqu	ished/Dated by Client?	Yes	Sample Date/Time I	ndicated?	Yes			
COC Receiv	ed/Dated by PEL?	Yes	TAT Requested:	STD				
Specific Sul	bcontract Indicated?	No	No Client Requests Verbal Results?					
Samples Re	ceived By	courier	Client Requests Far	ced Results?	No			
PEL to Con	duct ALL Analyses?	Yes						

PEER REVIEW:

PEL a division of Spectrum Analytical, Inc.

Florida Department of Health #E84207 June 30, 2009 CWA - Extractable Organics, General Chemistry, Metals,
Pesticides-herbicides-PCB's, Volatile Organics
RCRA/CERCLS - Extractable Organics, General Chemistry, Metals
Pesticides-Herbicides-PCB's, Volatile Organics

- CERTIFICATE OF ANALYSIS -

Report Date: 09/28/2009

To: Jim Cheze

Shaw Group

725 U.S. Highway 301 South

Tampa, FL 33612

W 813-612-3655

PROJECT ID:

Pinellas Bayway

WORK ORDER:

2513633

DATE RECEIVED:

Wednesday, September 23, 2009

Project Notes:

(†): Short Hold Time Analysis Date

Samples reported on dry weight basis

All test results in this report pertain only to the samples as submitted.

PEL Contact: Mark Gudnason / extension: 242

8405 Benjamin Road, Suite A• Tampa, Florida 33634 813-888-9507• FAX: 813-889-7128 Website: www.pelab.com

PEL a division of Spectrum Analytical, Inc. featuring Hanibal Technology

DATA QUALIFIER CODES

State of Florida, Department of Environmental Protection and Department of Health Rehabilitative Services / NELAC

	The reported value is between the laboratory method detection limit and the
1	laboratory practical quantitation limit.

J Estimated value; value not accurate. This code shall be used in the following instances:

- 1. Surrogate recovery limits have been exceeded.
- 2. No known quality control criteria exits for the component.
- 3. The reported value did not meet the established quality control criteria for either precision or accuracy but falls within the NELAC marginal exceedance range.
- 3M. The reported value did not meet the established quality control criteria for either precision or accuracy and falls beyond the NELAC range for marginal exceedances.
- 3R. The RPD for the LCSD exceeds the laboratory established control limits.
- 4. The sample matrix interfered with the ability to make an accurate determination.
- 5. The data is questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).
- Off-scale high. Actual value is known to be greater than the value given. To be used when the concentration of the analyte is above the acceptable limit for quantitation (exceeds the linear range of the highest calibration standard) and the calibration curve is known to exhibit a negative deflection.
- Sample held beyond acceptable holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for the sample preparation or analysis.
- Indicates that the compound was analyzed for but not detected above the method detection limit (MDL).
- Indicates that the analyte was detected in both the sample and the associated method blank. Note: The value in the blank shall not be subtracted from associated samples.
- Y
 The laboratory analysis was from an unpreserved or improperly preserved sample.
 The data may not be accurate.

CASE NARRATIVE METALS

PEL Lab Reference No./SDG: 2513633

Client: Shaw Group

I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

II. HOLDING TIMES

A. Sample Preparation: All holding times were met.

B. Sample Analysis: All holding times were met.

III. METHOD

Analyses were performed according to the PEL, a Division of Spectrum Analytical, Standard Operating Procedures and EPA Method 6010B for ICP metals.

IV. PREPARATION

Water samples were prepared according to PEL Laboratory's Standard Operating Procedures and EPA Method 3010A.

V. ANALYSIS

A. Calibration:

All acceptance criteria were met.

B. Blanks:

1. Calibration Blanks:

All acceptance criteria were met.

2. Method Blanks:

All acceptance criteria were met.

C. Spikes:

1. Laboratory Control Spikes (LCS):

An LCS/LCSD set was analyzed.
All percent recovery and relative percent difference (RPD) criteria were met.

2. Post Digestion Spike:

All acceptance criteria were met.

CASE NARRATIVE METALS

PEL Lab Reference No./SDG: 2513633

Client: Shaw Group

3. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD):

No spikes requested by client.

D. Duplicate:

No sample duplicates are reported with this method. (Spike duplicates are referenced above in section C. Spikes.)

E. Serial Dilution:

All acceptance criteria were met.

F. ICP Interference Check Samples:

All acceptance criteria were met.

G. Samples:

Sample analysis proceeded normally.

Luda Lee M. Gol

I certify that this data package is in compliance with the terms and conditions agreed to by the client and PEL, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

SIGNED:

DATE: 09/28/2009

FLDOH #E84207

To: Jim Cheze

Shaw Group

WORK ORDER: 2513633

PROJECT ID:

Pinellas Bayway

PEL Lab#: 251363301

Client ID: SB-4R

Collection Information:

Sample Date: 9/23/2009 12:00:00 PM

Matrix: GW

			Analysis	Prep				Dilution
Parameter	Method	Results	Date	Date	Units	MDL	RL	Factor
Arsenic	6010	17.8	09/25/2009 14:01	09/24/2009 12:33	ug/L	3.31	10	1

To: Jim Cheze

Shaw Group

WORK ORDER: 2513633

PROJECT ID:

Pinellas Bayway

QC SUMMARY

METHOD: 6010

Method Blank 291661

Matrix: WQ

Associated Lab Samples:

251363301 291661 291662 291663

Parameter	Result		nalysis Date	Prep Date	Unit	s	RL		ilution Factor
Arsenic	U	9/	25/2009	9/24/2009	ug/l	-	3.31		1
LABORATORY CON	TROL SAMPLE	: 2916	62	Matri	x :	WQ			
		SPIKE	LCS	SPIK	E	% REC			RPD
PARAMETER	UNITS	CONC	RESUL	T % RE	C	LIMITS		RPD	LIMIT
Arsenic	ug/L	500	485	97		(80-120)		
LABORATORY CON	TROL SAMPLE	: 2916	63	Matri	x :	WQ			
		SPIKE	LCS	SPIK	E	% REC			RPD
PARAMETER	UNITS	CONC	RESUL	T % RE	С	LIMITS		RPD	LIMIT
Arsenic	ug/L	500	474	94.8	}	(80-120)	2.3	20

To: Jim Cheze

Shaw Group

WORK ORDER: 2513633

Pinellas Bayway PROJECT ID:

Brian C Spann DN: cn=Brian C Spann, o=PEL, ou=PEL, a Division of Spectrum Analytical, email=bspann@pelab.com, c=US Date: 2009.09.28 15:17:18 -04'00'

Brian C. Spann

Laboratory Manager

or

Mark Gudnason

Quality Assurance Officer

			· · · · · · · · · · · · · · · · · · ·	, ,		—				 		r	 	<u> </u>	څ		
Special Handling: TAT- Indicate Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. · Samples disposed of after 60 days unless otherwise instructed.	Rywy Teen	State: FC	Notes:	QA/QC Reporting Level	□ Other	State specific reporting standards:	10	(3-5 DAY TAT)	(FDOT ROPES)				Date: Time:	24/20 po/24/20	9 12:03	9 23 Way 1553	-
AT No.	Project No.: P. nelles Baywey Site Name: BP (128 Pinelles	Location: Sampler(s): Um Stoue	List preservative code below:	Analyses:									Received by:				1-888-9507 • FAX 813-889-7128 • www.pelab.com
CHAIN OF CUSTODY RECORD		RQN:	6=Ascorbic Acid 7=CH ₃ OH	Ontainers:	COA V	A ło #	× 1 × 1						Relinquished by:	1602 7 m	Jun 3/12/09 1550	MM 9183/07 3:63	XXXXXX
CHAIN OF	Invoice To:	P.O. No.:	4=HNO ₃ 5=NaOH 6=A. 10=	WW=Wastewater SL=Sludge A=Air X3=		Time:	1						wis.			3c 2.6	8405 Benjamin Road • Tampa, Florida
· Ferning HAVIBAL TECHNOLOGY	1 E + I HV > 301 FL 35619		2=HCl 3=H ₂ SO ₄ 4=I	Groundwater SO=Soil S.	G=Grab C=Composite	Sample Id: Date:	76						THE MOST TO SWAS CHEEK @ Show a few Colors	(ot: No Iced Ambient A.C.	
PEL ADVISION OF SPECTREM ANALYTICAL, 190	Report To: SH AW 725 S US 74M RA	Project Mgr.: Jencs	1=Na ₂ S2O ₃ 8= NaHSO ₄	DW=Drinking Water GW= O=Oil SW= Surface Water X1= X2=		S Ide	(y)						T Email to S.w.	EDD Format	okez	Condition upon receipt: 17 Iced	

SAMPLE RECEIPT CONFIRMATION SHEET

Client Information

SDG:	2513633		Req:	87310				
Client:	Shaw		Project:	Generic1				
Level:	1		Date Rec'd:	9/23/2009 3:53:00 PN	Л			
Rec'd via:	courier		Due Date:	09/28/09				
		Samp	le Verification					
Samples/Coo	ler Secure?	Yes	All Samples on COC	accounted For?	Yes			
Temperature	of Samples(Celsius)	2.6C	All Samples Rec'd In	Yes				
pH Verified?		Yes	Sample Vol. Stuff. Fo	Yes				
pH WNL?		Yes	Samples Rec'd W/I H	lold Time?	Yes			
Soil Origin (D	omestic/Foreign):		Are All Samples to b	Yes				
Site Location	Project on COC?	Yes	Correct Sample Con	tainers?	Yes			
Client Project	# on COC?	Yes	COC Comments writ	Yes				
Project Mgr. I	ndicated on COC?	Yes	Samplers Initials on	COC?	Yes			
COC relinquis	shed/Dated by Client?	Yes	Sample Date/Time In	dicated?	Yes			
COC Received	d/Dated by PEL?	Yes	TAT Requested:	TAT Requested:				
Specific Subc	ontract Indicated?	No	Client Requests Verb	al Results?	No			
Samples Rece	eived By	courier	Client Requests Faxe	ed Results?	No			
PEL to Condu	ct ALL Analyses?	Yes						

PEER REVIEW