FINAL POND SITING REPORT

For

US 301 (SR 43) Project Development and Environment (PD&E) Study From Falkenburg Road to Causeway Boulevard WPI SEG. NO.: 421140-6 Hillsborough County

August 2008

Prepared for:

In Cooperation With

Florida Department of Transportation – District 7

TABLE OF CONTENTS

Section	Page
TABLE OF CONTENTS	i
LIST OF FIGURES	i
LIST OF TABLES	ii
LIST OF APPENDICES	ii
1.0 EXECUTIVE SUMMARY	
2.0 INTRODUCTION	
2.1 Purpose	
2.2 Project Description	
3.0 ROADWAY	
3.1 Existing Typical Section	
3.2 Proposed Typical Section	
4.0 EXISTING DRAINAGE CONDITIONS	
5.0 EXISTING DRAINAGE STRUCTURES	
6.0 EXISTING PROJECT CORRIDOR LAND USE AND HYDRO	DLOGY 14
7.0 FLOODPLAINS AND REGULATORY FLOODWAYS	
8.0 LOCAL DRAINAGE ISSUES	
8.1 Stormwater Management Facilities	
8.2 Commingled Stormwater Runoff	
8.3 Special Basin Requirements	
9.0 SOILS	
10.0 PROPOSED ANALYSIS APPROACH	
11.0 STORMWATER MANAGEMENT FACILITIES	
12.0 STORMWATER PERMITTING REQUIREMENTS	
12.1 SWFWMD Treatment Criteria	
12.2 SWFWMD Attenuation Criteria	
12.3 FDOT Attenuation Criteria	
12.4 EIOSION CONTOL.	
14.0 EDOT DISTRICT SEVEN DOND SITING GUIDELINES	
15.0 POND SITING CRITERIA (IF PONDS ARE LITH IZED)	
16.0 OFFSITE WET DETENTION POND OPTION	
17.0 DRY RETENTION SWALE OPTION	37
	····· J /

List of Figures

Page

Figure 1-1 Property Exchange Location	3
Figure 2-1 Site Aerial Map	5
Figure 2-2 Site Location Map	6

Page

Figure 2-3	Site Location Map	. 7
Figure 3-1	Typical Sections	. 8
Figure 4-1	SWFWMD Alafia River Basin	11
Figure 4-2	Hillsborough County and FDEP Alafia Sub-Basins	12
Figure 4-3	1987 USGS Quadrangle Map	13
Figure 5-1	Existing Drainage Structure Map	15
Figure 6-1	FLUCFCS Map	16
Figure 6-2	SCS Curve Number Values – Urban Areas	18
Figure 6-3	SCS Curve Number Values – Other Agricultural Land	19
Figure 7-1	FEMA Flood Insurance Rate Maps	21
Figure 8-1	Hillsborough County Peak and Volume Sensitive Areas	23
Figure 9-1	USDA/SCS Soils Map	25
Figure 12-1	SWFWMD 25 Year/24 Hour Rainfall Map	30
Figure 16-1	Proposed Pond Site Locations	35
Figure 16-2	2 Typical Pond Section	36

List of Tables

Table 5-1	Existing Drainage Structures	14

List of Appendices

Appendix A SWFWD Contour Map Appendix B FDEP Basin Classification Information Appendix C Drainage Calculations Appendix D Geotechnical Report

1.0 EXECUTIVE SUMMARY

A Project Development and Environment (PD&E) Study has been conducted to evaluate capacity improvements for a 0.75 mile section of US Highway 301 from Falkenburg Road to Causeway Boulevard in Hillsborough County, Florida. The proposed improvements will include adding one through lane in each direction to the existing four-lane divided facility.

This Pond Siting Report documents the drainage improvements necessary to facilitate the increase in impervious area to US Highway 301 as well as the procedures used to evaluate the final recommendation. This information is preliminary and subject to change as the design process proceeds until a final design is approved.

Stormwater computations for this project account for the surface runoff from the project corridor. Stormwater runoffs from off-site contributing areas are identified in this report and will be accommodated within the roadside swales as they are in the existing condition.

The existing right-of-way (R/W) is wide enough to accommodate the proposed lane additions. R/W width varies from 200-feet to 249-feet through this segment of US Highway 301. The improvements are one 12-foot through lane in each direction. The median and inside 8-foot shoulders will remain intact, as will the two existing lanes in each direction. One 12-foot wide through lane and a 12-foot wide shoulder, 5 feet of which is paved, will be added to the outside for the existing lanes. The existing two lanes in each direction will be milled and re-surfaced. The outside roadside swales will be re-graded. The existing 5-foot wide sidewalk on either side of the R/W from Causeway Boulevard south to Wes Kearney Way will remain intact.

Three options were explored to provide the necessary stormwater management: 1) an offsite pond, 2) wet detention within roadside swales and 3) dry detention within roadside swales. The offsite pond option would require a 1-acre pond site. The wet detention option would require gravity walls along the entire corridor, so this option was not considered a viable option. The recommended alternative is dry detention utilizing the roadside swales.

Commitments

Hillsborough County is committed to the following:

- If construction activities are anticipated to occur in an area with contamination concerns, a site assessment will be performed to the degree necessary prior to final design approval by FDOT to determine levels of contamination, evaluate clean-up options and associated costs. In the event construction is proposed within an area of known contamination, the contractor will be required to implement avoidance or remediation measures required by the FDOT.
- The developer (Centex Homes) has agreed to exchange property with FDOT for the use of R/W within US Highway 301 for water quality treatment. This property is 0.74 acres consisting of a 10-foot wide, 3,220 feet-long strip, adjacent to the existing west limited access R/W of I-75 (SR 93) and just south of Progress Boulevard (SR 676) (see *Figure 1-1*). Hillsborough County will facilitate this exchange.

Recommendations

Based on the results of the environmental and engineering analysis, interagency coordination, and the public hearing, the alternative recommended for implementation is the Build Alternative, which consists of widening US Highway 301 within the project limits to 6 lanes (3 lanes in each direction). The Build Alternative will complete the important link of US Highway 301 in the north-south roadway transportation system, and increasing the facility from four to six lanes will enhance operation and improve safety. The improvements will also benefit emergency evacuation.

A more detailed description of the improvements is provided in Attachment 1, "Project Description," Section 2.1.2, Proposed Improvements.

2.0 INTRODUCTION

A PD&E Study has been conducted to evaluate capacity improvements for US Highway 301 from Falkenburg Road to Causeway Boulevard in Hillsborough County, Florida. The project length is approximately 0.75 miles. The improvements include adding one through lane in each direction to the existing four-lane, divided facility and 12 foot outside shoulders, 5 feet of which is paved.

2.1 Purpose

The objectives of the PD&E Study is to evaluate capacity improvements to US Highway 301. This Pond Siting Report documents the results of the engineering drainage analyses and the drainage improvements necessary to facilitate the proposed increase in impervious area to US Highway 301.

2.2 **Project Description**

US Highway 301 is a north/south facility with a functional classification of an urban principal arterial roadway according to the FDOT straight-line diagram. The corridor of interest traverses an array of urban land uses including commercial development inter-mixed with parcels of vacant land and residential uses. There are existing wetlands systems both within and adjacent to the existing right-of-way.

The project corridor lies entirely within Hillsborough County and is located in Section 31, Township 29 S, and Range 20 E.

Stormwater computations for this project account for the surface runoff from the project corridor. Stormwater runoff from off-site contributing areas are identified in this report and will be accommodated within the roadside swales as they are in the existing condition.

See Figures 2-1, 2-2 and 2-3 for the site location.

3.0 ROADWAY

3.1 Existing Typical Section

The existing R/W width varies from 200-feet to 249-feet through this segment of US Highway 301. The typical section (see *Figure 3-1*) consists of two 12-foot lanes in each direction with 8-foot shoulders, 4 feet of which is paved, on either side. The northbound and southbound roadways are separated by a 41-foot grassed median containing ditch bottom inlets for conveyance of stormwater. Grassed swales on either side of the roadway serve as part of the roadway stormwater management system. A 5-foot sidewalk exists on either side of the R/W from Causeway Boulevard south to Wes Kearney Way.

Sources: Aerial Express. 2003 AE, LLC. 2003 GDT, Inc. Southwest Florida Water Management District. GIS Data.

NOTE: This information is preliminary and subject to change until the final design is approved.

Kimley-Horn	SITE AERIAL MAP					
and Associates, Inc. 10117 Princess Palm Avenue, Suite 300 Tampa, Florida 33610 Phone: (813) 620-1460 Fax: (813) 620-1542	US 301 Falko W Hil	enburg Road PI Seg No. 4 lsborough C	to Causewa 121140-6 ounty, FL	y Blvd.		
	SCALE:	PROJ. NO.:	DATE:	FIGURE:		
Copyright 2006, Kimley-Horn and Associates, Inc.	1:9,000	048805007	October 2006	2-1		

Sources: Aerial Express. 2003 AE, LLC. 2003 GDT, Inc. Southwest Florida Water Management District. GIS Data.

Ν

NOTE: This information is preliminary and subject to change until the final design is approved.

Kimley-Horn		Site Locatio	n Map	
and Associates, Inc. 10117 Princess Palm Avenue, Suite 300 Tampa, Florida 33610 Phone: (813) 620-1460 Fax: (813) 620-1542	US 301 Falke WI Hill	enburg Road PI Seg. No. 4 Isborough Co	to Causewa 421140-6 ounty, FL	y Blvd.
Copyright 2007, Kimley-Horn and Associates, Inc.	SCALE: NTS	PROJ. NO.: 048805007	DATE: January 2007	FIGURE: 2-3

3.2 Proposed Typical Section

The recommended typical section for the Build Alternative consists of six 12-foot travel lanes, three lanes in each direction, a 41-foot grass median, 12-foot outside shoulders (5 feet of which is paved) and 5-foot sidewalks will be added near the right-of-way (R/W) line from Falkenburg Road to Wes Kearney Way, thereby making the sidewalks continuous on both sides of the road for the length of the project. The existing 8-foot wide inside shoulders, 4 feet of which are paved, will be retained. The existing roadside swales will be re-graded for stormwater treatment. The R/W width varies from 200 to 249 feet.

4.0 EXISTING DRAINAGE CONDITIONS

The US Highway 301 project lies entirely within the Alafia River Basin (see *Figure 4-1*). The project corridor lies entirely within the Delaney Creek Basin according to Hillsborough County and Florida Department of Environmental Protection (FDEP) (see *Figure 4-2*).

Existing drainage patterns were identified using the most current contour information available through the United States Geologic Service (USGS) Quadrangle Maps (see *Figure 4-3*) and the SWFWMD 1-ft Contour Aerials (see *Appendix A*). The date for the SWFWMD 1-ft aerial contour map is August 1986. Due to the dated nature of these source documents, a field review was performed to more accurately determine the current field conditions.

According to the online (09/25/06) State of Florida F.A.C., Chapters 62-302.400 and 700, there are no surface waters requiring special water quality criteria within or along the project corridor. There are no issued ERP/Stormwater permits for this section of US Highway 301.

According to the SWFWMD aerial, there is one existing outfall point within this section of roadway located approximately at Station 1073+00. This segment of roadway currently outfalls directly into Delaney Creek. Another outfall exists at Falkenburg Road consisting of the roadway drainage network that flows to the west.

5.0 EXISTING DRAINAGE STRUCTURES

A double 36-inch pipe cross drain exists along this section of US Highway 301 located approximately at station 1064+00.

There are several side drains whose sizes to range from 18-inch reinforced concrete pipe (RCP) to 48-inch RCP. *Table 5-1* contains the existing drainage structure data for each of the side drains within the project corridor. A recent field review (09/12/06) found no visible failures; however, many were not entirely visibly due to extremely heavy brush and high water levels.

The FDOT District Seven Maintenance Office did not have as-built drawing for this section of US Highway 301; therefore, the existing drainage structures could not be verified. Structure size, type and locations are based on both field estimates and research of existing SWFWMD and FDOT permits along US Highway 301.

This information is preliminary and subject to change until the final design is approved. Figure 4-1 SWFWMD Alafia River Basin US 301 Falkenburg Road to Causeway Blvd. WPI Seg. No. 421140-6 Hillsborough County, FL

Table 5-1 Existing Drainage Structures									
Structure	Structure Type	Approximate Station	Side	Size	Structure	Structure Type	Approximate Station	Side	Size
ST-1	MES	1061+81.10	L	18"	ST-17	Catch Basin	1074+01.61	R	18"
ST-2	MES	1061+66.78	R	42"	ST-18	MES	1074+47.79	L	18"
ST-3	MES	1063+39.59	R	42"	ST-19	MES	1075+67.25	R	36"
ST-4	Catch Basin	1063+68.16	R	36"	ST-20	MES	1075+70.01	L	Unknown
ST-5	MES	1063+99.19	L	36"	ST-21	MES	1076+53.13	R	36"
ST-6	Endwall	1064+00.75	R	30"	ST-22	MES	1076+55.90	L	Unknown
ST-7	Outfall Structure	1064+00.75	R	30"	ST-23	MES	1079+92.01	R	24"
ST-8	MES	1065+82.58	R	30"	ST-24	MES	1080+77.89	R	24"
ST-9	Manhole	1065+99.37	L	36"	ST-25	MES	1082+13.88	R	24"
ST-10	MES	1066+68.47	R	30"	ST-26	Catch Basin	1082+66.80	R	12"
ST-11	Catch Basin	1067+36.48	R	18"	ST-27	MES	1082+99.77	R	24"
ST-12	MES	1071+17.11	L	18"	ST-28	MES	1085+36.32	L	15"
ST-13	MES	1072+03.00	L	18"	ST-29	MES	1085+98.80	L	18"
ST-14	MES	1073+02.11	R	24"	ST-30	MES	1085+99.45	R	24"
ST-15	MES	1073+61.90	L	18"	ST-31	MES	1086+84.68	L	18"
ST-16	MES	1073+87.99	R	24"	ST-32	MES	1086+85.33	R	24"
NOTE: This	information is p	preliminary and s	ubject to	o chang	e until the fir	nal design is app	proved.		

Figure 5-1 gives a graphical depiction of the approximate location of the on-site existing drainage structures.

6.0 EXISTING PROJECT CORRIDOR LAND USE AND HYDROLOGY

The project corridor and adjacent areas are comprised of the following land use classifications (see *Figure 6-1*):

- Multiple Dwelling Unit, High Rise Three Stories or More Florida Land Use, Cover and Forms Classification System (FLUCFCS 134)
- Commercial and Services (FLUCFCS 140)
- Professional Services (FLUCFCS 143)
- Undeveloped Land with Urban Areas (FLUCFCS 191)
- Upland Forests (FLUCFCS 400)
- Divided Highways Federal-State (FLUCFCS 8142)
- County Maintained (FLUCFCS 8144)

SCS Curve Number (CN) values for the various ground covers within the project corridor include (see *Figures 6-2* and *6-3*):

- Grass (Grass good > 75%): CN = 80.0
- Woods (fair): CN = 79.0
- Woods (poor): CN = 83.0
- Paved Road w/ open ditches: CN = 93.0
- Surface Water: CN = 100.00

The analysis for this project will be in accordance with the SCS Antecedent Moisture Condition II procedure; where "B/D" Soils are evaluated as "D" soils.

ſ •

Table 2-2a

Runoff curve numbers for urban areas 1/

Cover description			Curve numbers for			
-	Average percent) 010 Br	o oon broak		
Cover type and hydrologic condition	impervious area 2/	A	В	С	D	
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.) 9:						
Poor condition (grass cover < 50%)		68	79	86	89	
Fair condition (grass cover 50% to 75%)		49	69	79	84	
Good condition (grass cover > 75%)		39	61	74	80	
Impervious areas:		00	U1		ý	
Paved parking lots, roofs, driveways, etc.						
(excluding right-of-way)		98	98	98	99	
Streets and roads:		20	20	00	30	
Paved; curbs and storm sewers (excluding						
right-of-way)		98	98	ÚR	02	
Paved; open ditches (including right-of-way)		83	80	02	02	
Gravel (including right-of-way)		76	85	80	01	
Dirt (including right-of-way)		72	82	87	90	
Western desert urban areas:		15	04	07	00	
Natural desert landscaping (pervious areas only) 4		63	77	85	88	
Artificial desert landscaping (impervious weed barrier.		00		00	00	
desert shrub with 1- to 2-inch sand or gravel mulch						
and basin borders)	·	96	96	96	96	
Urban districts:			00	00	20	
Commercial and business		89	92	Q.A	05	
Industrial		81	88	G1	02	
Residential districts by average lot size:		01	00	01	20	
1/8 acre or less (town houses)	65	77	85	00	02	
1/4 acre	38	61	75	83	87	
1/3 acre	30	57	79	81	96	
1/2 acre	25	54	70	80	85	
1 acre		51	68	70	Q4	
2 acres	12	46	65	77	82	
Developing urban areas					02	
Vewly graded areas						
(Dervious areas only no vegetation) 5/		77	00	01		
Correction or de out in Acectanon a menual		77	80	91	94	
dle lands (CN's are determined using cover types						
similar to those in table 2-2c).						

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

4 Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

NOTE:

This information is preliminary and subject to change until the final design is approved.

(210-VI-TR-55, Second Ed., June 1986)

Figure 6-2 SCS Curve Number Values - Urban Areas US 301 Falkenburg Road to Causeway Blvd. WPI Seg. No. 421140-6 Hillsborough County, FL 18

Table 2-2c

Runoff curve numbers for other agricultural lands V

Cover description			Curve numbers for				
Cover type	Hydrologic condition	A	B C		D		
Pasture, grassland, or range—continuous forage for grazing.⊉	Poor Fair Good	68 49 39	79 69 61	86 79 74	89 84 80		
Meadow—continuous grass, protected from grazing and generally mowed for hay.	-	30	58	71	78		
Brush—brush-weed-grass mixture with brush the major element. ¥	Poor Fair Good	48 35 30 4 /	67 56 48	77 70 65	83 77 73		
Woods—grass combination (orchard or tree farm). ₺	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79		
Woods. &	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77 -		
Farmsteads—buildings, lanes, driveways, and surrounding lots.	—	59	74	82	86		

¹ Average runoff condition, and $I_a = 0.2S$.

Poor: <50%) ground cover or heavily grazed with no mulch.
Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

³ Poor: <50% ground cover. Fair: 50 to 75% ground cover.

Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

8 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

NOTE: This information is preliminary and subject to change until the final design is approved.

(210-VI-TR-55, Second Ed., June 1986)

Figure 6-3 SCS Curve Number Values - Other Agricultural Land US 301 Falkenburg Road to Causeway Blvd. WPI Seg. No. 421140-6 Hillsborough County, FL

7.0 FLOODPLAINS AND REGULATORY FLOODWAYS

Figure 7-1 depicts the Federal Emergency Management Agency (FEMA) floodplain data that was reviewed for this project; FEMA Flood Insurance Rate Maps (FIRM) for Hillsborough County Community Panel Number; 120112 0386 E (Map Dated August 15, 1989). A FEMA Firmette (FIRM) Map for the project corridor has been included as *Figure 7-1*.

The entire project corridor is within FEMA designated Flood Zone C. Flood Zone C denotes areas of minimal flooding. Therefore, no floodplain compensation will be required for the roadway improvements.

SCALE:		PROJ. NO.:	DATE:	FIGURE:
	As Shown	048805007	October 2006	7-1

Copyright 2006, Kimley-Horn and Associates, Inc.

8.0 LOCAL DRAINAGE ISSUES

There are specific local issues, both physical and regulatory, that require special attention due to their potential impact on this project and more specifically the proposed stormwater management system that will be designed for US Highway 301. These issues are:

8.1 Stormwater Management Facilities

The proposed stormwater management facility will meet the design criteria of the SWFWMD, Hillsborough County and the FDOT. These design criteria will be based on the soil and subsurface hydrogeology adjacent to and along the project corridor.

8.2 Commingled Stormwater Runoff

<u>ERP Stormwater Quality Permitting Requirements:</u> The design will need to address SWFWMD water quality rules governing the commingling of onsite (US Highway 301) and offsite stormwater runoff when sizing the stormwater facility. SWFWMD requires stormwater facilities to be sized to treat both the onsite and offsite stormwater runoff when the runoff cannot be separated. Additionally, where roadside ditches capture onsite and offsite stormwater runoff and provide functional water quality treatment, the project improvements (such as piping) shall not result in a net loss of treatment. Should said loss occur, water quality compensation may be required. (Reference SWFWMD BOR 5.8.b.2)

8.3 Special Basin Requirements

The Delaney Creek Basin no longer requires special Pre/Post-development discharge requirements for stormwater ponds discharging within its limits (see *Appendix B*). Delany Creek has been "delisted" from the 1998 303(d) list for the Tampa Bay Group 1 Basin as defined by the FDEP. Additionally, this segment of road does not fall within a peak or volume sensitive area as defined by Hillsborough County (see *Figure 8-1*).

This information is preliminary and subject to change until the final design is approved.

9.0 SOILS

According to the United States Department of Agriculture (USDA), SCS Hillsborough County Soil survey, the prevalent soils are Malabar fine sand, Myakka fine sand, Ona fine sand, and Smyrna fine sand. *Figure 9-1* shows the Hillsborough County, USDA SCS Soils Map for the US Highway 301 Project.

The following are the definitions of those soils identified within the US Highway 301 project corridor:

Malabar fine sand (27) – This soil is nearly level and poorly drained. It is in low-lying sloughs and shallow depressions on the flatwoods. The slope is 0 to 2 percent. Typically, this soil has a surface layer of dark gray fine sand about 4 inches thick. The subsurface layer, to a depth of about 12 inches, is light brownish gray fine sand. In most years, a seasonal high water table (SHWT) fluctuates from the soil surface to a depth of about 10 inches for 2 to 6 months. Permeability is rapid in the substratum. The available water capacity is very low or low. The depressions are subject to shallow flooding during heavy rains. The hydrologic soil group (HSG) for this soil is B/D.

<u>Myakka fine sand (29)</u> – This soil is nearly level and poorly drained. It is on broad plains on the flatwoods. The slope is 0 to 2 percent. Typically, this soil has a surface layer of very dark gray fine sand about 5 inches thick. The subsurface layer, to a depth of about 20 inches, is gray fine sand. In most years, a seasonal high water table fluctuates from the soil surface to a depth of 10 inches for 1 to 4 months and recedes to a depth of 40 inches during prolonged dry periods. Permeability is rapid in the surface and subsurface layers, moderate or moderately rapid in the subsoil and rapid in the substratum. The available water capacity is low. The HSG for this soil is B/D.

<u>Ona fine sand (33)</u> – This soil is nearly level and poorly drained. It is on broad plains on the flatwoods. The slope is 0 to 2 percent. Typically, this soil has a surface layer of very dark gray fine sand about 4 inches thick. The upper part of the subsoil, to a depth of about 8 inches, is black fine sand. The lower part, to a depth of about 22 inches, is a very dark brown fine sand. In most years, a seasonal high water table fluctuates from the soil surface to a depth of 10 inches for more than 2 months and recedes to a depth of 10 to 40 inches for 6 months or more. Permeability is rapid in the surface layer, moderate or moderately rapid in the subsoil, and rapid in the substratum. The available water capacity is low or moderate. The HSG for this soil is B/D.

Sources: Aerial Express. 2003 AE, LLC. 2003 GDT, Inc. Southwest Florida Water Management District. GIS Data. USDA/SCS Soil Survey of Hillsborough County, Florida. May 1989.

LEGEND

27 = Malabar fine sand, 0 to 2 percent slope

- 29 = Myakka fine sand, 0 to 2 percent slope
- 33 = Ona fine sand, 0 to 2 percent slope
- 52 = Smyrna fine sand, 0 to 2 percent slope

NOTE: This information is preliminary and subject to change until the final design is approved.

Kimley-Horn	USDA/SCS SOILS MAP					
and Associates, Inc. 10117 Princess Palm Avenue, Suite 300 Tampa, Florida 33610 Phone: (813) 620-1460 Fax: (813) 620-1542	US 301 Falke Wi Hil	enburg Road PI Seg. No. 4 lsborough C	to Causewa 421140-6 ounty, FL	y Blvd.		
	SCALE:	PROJ. NO.:	DATE:	FIGURE:		
Copyright 2006, Kimley-Horn and Associates, Inc.	1:8,000	048805007	October 2006	9-1		

Smyrna fine sand (52) – This soil is nearly level and poorly drained. It is on broad, low-lying, convex swells on the flatwoods. The slope is 0 to 2 percent. Typically, the soil has a surface layer of very dark gray fine sand about 4 inches thick. The subsurface layer, to a depth of about 12 inches, is gray fine sand. In most years, a seasonal high water table fluctuates from the soil surface to a depth of 10 inches for more than 2 months and recedes to a depth of 10 to 40 inches for 6 months or more. Permeability is rapid in the surface and subsurface layers, moderate or moderately rapid in the subsoil, and rapid in the substratum. The available water capacity is low. The HSG for this soil is B/D.

A site-specific geotechnical analysis was performed. Groundwater locations and percolation rates were established. A copy of this report is included in *Appendix D*.

10.0 PROPOSED ANALYSIS APPROACH

The following sections describe in detail the approach used in sizing and locating a potential stormwater facility for this project. The sizing analysis is based on the permitting requirements for water quality and water quantity, additional requirements by other jurisdictional agencies, site-specific characteristics, design guidelines specific to FDOT-7, a literature review, and a field review. The analysis included a review of the available documentation:

- Aerial photographs
- USGS Quadrangle Map
- SWFWMD 1-ft aerial contour maps
- USDA SCS Soils Map Hillsborough County, Florida
- State of Florida GIS data
- FEMA FIRM Hillsborough County, Florida
- Compiled field review notes and photos.

The analysis included referencing the following design documentation sources:

- FDOT Drainage Manual, January 2005
- FDOT Stormwater Management Facility Handbook, January 2004
- FDOT Hydrology Handbook, January 2004
- FDOT PD&E Manual, Part 2, Chapter 24 Floodplains, April 1998
- TR-55 Urban Hydrology for Small Watersheds
- SWFWMD Rule 40D, Basis of Review

11.0 STORMWATER MANAGEMENT FACILITIES

For this project, the preferred method for water quality and attenuation will be accomplished within the roadside swales as dry retention.

Based on the geotechnical report, the SHWT table was estimated to range from 0.5 to 4.5 feet below grade. Within the swale areas, the SHWT was close to 4 feet deep. With the swale areas water table at this depth, wet detention in the roadside swales would be too deep to physically create enough storage based on the roadway geometric constraints. Vertical walls were investigated at the front of the sidewalks, but stages were overtopping the sidewalk during the critical analysis. This option was abandoned at this point.

Dry retention within the roadside swales and an offsite pond were further analyzed. The wet pond was sized based on wet detention criteria. The dry detention swales used the 50% water quality volume credit.

12.0 STORMWATER PERMITTING REQUIREMENTS

12.1 SWFWMD Treatment Criteria

SWFWMD specifies water quality treatment of 1-inch of runoff from the directly connected impervious area (DCIA); this includes the new lane additions as well as the existing lanes within this segment of roadway. The pond is designed to accept onsite runoff only.

The total DCIA of US Highway 301 between Causeway Boulevard and Falkenburg Road, including the new lane additions, is 9.38 acres. Therefore, the required wet detention water quality treatment volume would be:

9.38 acres * 1 inch *
$$\frac{1 \text{ foot}}{12 \text{ inch}} = 0.78 \text{ ac} - \text{ft}$$

The dry detention volume would be 50% less or 0.39 acre-foot.

12.2 SWFWMD Attenuation Criteria

SWFWMD specifies that the post-developed discharge for the 25-year / 24-hour storm event will be required to match the pre-developed discharge for the 25-year / 24-hour storm event.

$$\frac{25 \text{-year} / 24 \text{-hour storm}}{(\text{See Figure 12-1})} P = 8.00 \text{ inches}$$

**The proposed Stormwater management system will need to be submitted to Hillsborough County (Contact: Mr. Mark Arnold, 813.276.8339) for review of outfall locations and discharge rates.

12.3 FDOT Attenuation Criteria

F.A.C. 14-86 Critical Duration Analysis for all pond facilities.

12.4 Erosion Control

Use of Best Management Practices (BMP's) as required.

SWFWMD 25 Year/24 Hour Rainfall Map US 301 Falkenburg Road to Causeway Blvd. WPI Seg. No. 421140-6 Hillsborough County, FL

13.0 STORMWATER OUTFALLS

- Utilize an open swale system to convey the controlled discharge from the offsite water detention facility to the Delaney Creek on the west side of US Highway 301.
- The dry detention areas would discharge using the existing outfalls.

14.0 FDOT DISTRICT SEVEN – POND SITING GUIDELINES

The following items apply to identifying pond sites within the project corridor for this project:

- FDOT-7 does not consider potential pond alternatives that are in the 100-year floodplain.
- FDOT-7 requires that a pond site be limited to only the actual property area required to meet permitting rules (i.e. no excess, no complete takes unless warranted).
- FDOT-7 does not consider pond site alternatives that propose the use of underdrain systems.
- All access easements required for each pond site shall be clearly identified so cost estimates could be provided accordingly. Each pond site will be shown on a separate sheet for the submittal to R/W for cost estimates.
- Generally, FDOT-7 does not consider pond site alternatives with liners. However, Ms. Arasteh (FDOT-7 District Drainage Engineer), approved the consideration of lined stormwater management facilities based on the following site specific information:
- Site-specific hydraulic constraints.
- Site-specific high ground water table conditions.
- Limited pond site alternatives.
- Outfall locations.

15.0 POND SITING CRITERIA (IF PONDS ARE UTILIZED)

- The potential pond site was identified based on available properties adjacent to the existing R/W.
- Pond sites will be located away from US Highway 301 frontage where practical.
- Sites where hazardous materials have been documented or where the potential for contamination exists will be avoided where practical. However, proposed pond sites with a high risk for contamination will not be eliminated as a potential alternative based solely on that criterion.
- Piped conveyance to the pond sites from the roadway and from the pond sites to the outfall points will be minimized. Existing offsite storm drain pipe runs will be evaluated for use to avoid temporary construction easements, utility impacts, and to avoid purchasing properties over securing maintenance easements.
16.0 OFFSITE WET DETENTION POND OPTION

Figure 16-1 shows the location of the pond site that would be required if the recommended alternative is to utilize offsite ponds. This site lies on the east side of US Highway 301, just south of Windermere Lake Drive and adjacent to the existing R/W. Centex Homes would be responsible for the acquisition of the property, which would be turned over to the FDOT as R/W at the completion of construction.

It is proposed that stormwater runoff from US Highway 301 between Causeway Boulevard and Falkenburg Road be directed to this pond location via the existing roadside swales. Swales would be re-graded to provide positive conveyance of stormwater to the proposed pond. The pond would provide both water quality treatment and attenuation.

Based upon drainage calculations, shown in *Appendix C*, and the stormwater treatment calculations, shown in Section 12, the proposed stormwater pond would need to provide 0.94 ac-ft of volume (0.16 ac-ft of attenuation and 0.78 ac-ft of treatment).

The above information, the proposed stormwater pond would have approximately 1 foot of volume above SHW. Therefore, the average pond size would need to be approximately one acre.

$$\frac{0.94 \text{ ac} - \text{ft}}{1 \text{ ft}} = 0.94 \text{ acres}$$

Figure 16-2 shows the typical pond cross section. With the added area for maintenance berms and ties to existing grades, the total pond area becomes approximately 1.5 acres. The proposed pond site location, depicted in *Figure 16-1*, is approximately 6.35 acres in size with approximately 4 acres +/- upland area for the proposed pond.

The proposed stormwater pond would then outfall via a closed conduit system to Delaney Creek on the west side of US Highway 301.

The proposed pond is located adjacent to an existing wetland system; however, no permanent wetland impacts are proposed for this project.

17.0 DRY RETENTION SWALE OPTION

The dry retention swale option will entail setting the swale bottom a minimum of one (1) foot above the SHWT, based on site specific water table information. The front slope would be set to 1:4 inside the clear zone and 1:3 outside the clear zone. The slope beyond the swale to the sidewalk will be at 1:2 and 1:2 to tie to existing ground. The west side adjacent to the Pavillion Development, from Falkenburg Road to the first driveway north will have to be raised to match future Pavillion grades. The proposed grade is estimated to be 31.0 feet based on permit plans on file at SWFWMD. Sidewalks will be located at the right-of-way on both sides of the project where there are currently no sidewalks. The raised area along the Pavillion side will be allowed by the property owner. This will allow the fill slope to encroach onto the Pavillion property as the Pavillion property develops. The swales will retain the required volume and overflow to the outfall. Recovery of the required volume will need to be demonstrated either by percolation or through a bleeder device such as an orifice. The bleeder can be set no lower than the SHWT elevation.

All stormwater permitting requirements will be provided within the roadway swales, and will be contained within existing roadway R/W.

Appendix A SWFWD Contour Map

Appendix B FDEP Basin Classification Information

	ALCI 1044						
						Projected Year	
Number	QIBM	Water Segment Name	Farametara wanunag using tne Impairad Watera Rule	Concentrations Causing Imperment	Priority for TMDL Development*	For TMDL Development	COMMENTS
02-1360	1473W	Lake Juentie	Nutrients (Historic TSI)	median TN = 0.60 mgA; median TP = 0.01 mgA	Medium	2008	Ntrogen and phosphorus are limiting nutrients.
02-1361	1473X	Mound Lake	Nutrients (Historic TSI)	median TN = 0.45 mgA; median TP = 0.01 mgA	Medium	2008	Nitrogen and phosphorus are limbing nutrients.
20:1302	1473Y	Calm Lake	Nutritents (Historic T91)	median TN = 0.33 mg/t, median TP = 0.01 mg/t	Medium	2008	Nitrogen and phosphorus are imiting numerus.
102-1303	1473Y	Calm Lake	Nuthents (TSI)	median TN = 0.33 mg/t, median TP = 0.01 mg/t	Medium	2008	Mitrogen and prosphorue are limiting ruthiants.
02-1384	14740	Creacent	Nutrients (TSI)	median TN = 0.65 mg/; median TP = 0.02 mg/	Madium	2008	Nitrogen and phosphorus are Emiting numeras.
02-1365	1474W	Deed Ledy Lake	Nutrients (TSI)	median TN = 0.88 mgA; medien TP = 0.03 mgA	Medium	2008	Nitrogen and phosphorus are limiting nutrients.
02-1306	1478H	Lake Reinheimer - Open	Nutrients (TSI)	median TN = 1.03 ng#; median TP = 0.02 mg/	Medium	2008	Witrogen and phosphorus are ilmiting nutrients.
02-1367	1,86	Leke Terpon	Dissolved Orygen	< 5.0 mg/l	Međium	2006	Linked to nutrients.
02-1368	1486	Lake Tarbon	Nutrinothe (TSI)	andian TN = 4 (3 models - 775 - 5 65 models - 5			Nitrogen and phosphorus are limiting nutrients. Nutrients being
02-1369	1483	Buck Lake	Nutrients (TSI)	maden IN = 110 medi maden IT = V.03 Hend Maden IN = 1 18 medi maden ID = 0.14 med	Linnow	2000	DOCTOSSOOD DY SYMY YMALL DITOLOGIN PLACES.
02-1370	14948	Brani Laka	Nuthents (TSI)	moden $YN = 1.03 \text{ mode}$ moden $TP = 0.04 \text{ mod}$	Modum	anne	Neirogen eine proseptiones are inmung nutrierna.
02-1440	1498	Sunset Lake	Nutrients (TSI)	median TN = 0.72 (mail; median T2 = 0.02 mail	Madium	2008	verogen and prosperate as an annual manageme. Vitronen and strosborts ats Entiting a Mante
02-1371	1502A	Lake Estes	Nutdenta (TSI)	madian TN = 0.82 mg/i; madian TP = 0.03 mg/i	Medium	2008	Vittoon and chosphorus are Initian numerous.
02-1372	15020	Chapmen Lake	Nutritentis (TSI)	median TN = 1.07 mg/l; median TP = 0.04 mg/l	Medium	2009	Vilrogen and phosphorus are limiting numbers.
02-1373	1507A	Rocky Creek	Dissolved Oxygen	4.0 mg/l, and less than 5.0 mg/l as dally average	Hgh	2003	Inked to nutrients and BOD. Flow disrupted by control structures. Mail blooms observed.
02-1374	1507A	Rocky Creek	[Nutritents (Historic Chlorophyll)	median TN = 1.35 mg/l	majpeim	2008	Mirogen is Imiting nutrient. Flow disrupted by control structures. Med blooms cheaved.
02-1375	1513	Double Branch	Coliforms (Total Coliform)	+ 2400 per mi	Low	2006	
02-1376	1513	Double Branch	Dissofted Oxygen	• 4.0 mg/, and jees then 5.0 mg/ as daily evenage	10	2008	Inked to numbers.
02-1377	1516	Sweetwater Creak - Upper	Coliforms (Tetal Coliform)	• 2400 per ml	NO.	2008	
02-1378	1516	Sweetwater Creek - Upper	Dissolved Oxygen	< 5.0 mg/l	Low	2008	Joked to subtents.
02-1370	1518	Sweetwater Creek - Upper	Nutrients (Historic Charaphyli)	median TN = 0.67 mg/	Međum	2008	Vitrogen is Erviting nutrient.
1961-20	Volo	Lake Garrol	Numents (TSI)	nedien TN = 0.44 mg/l; median TP = 0.01 mg/l	Medun	2008	Vitrogen and phosphorus are limiting rubients.
10-130	15100	Late Madelene		nedian TN = 0.67 mg/t median TP = 0.01 mg/t	Medium	2008	Etrogen and phosphorue are limiting nutrients.
02-1383	1529	Cow Branch	Kuurema (134) Unimized America	nedian TN = 0.72 mg/t, median TP = 0.02 mg/	Medium	2006	vitrogen and phosphorus ere Kniting numbers.
02-1364	1530	Moccasin Greek	Nutrients (Chlorothol)	- 0.00 mg/l Dedian TN = 0.94 mm/l	Medium	2005	
02-1345	1536B	Sixmile Creek	Dissolved Oxygen	e 5.0 mod		2002	nuced in a strand and BCD. Flow disrupted by control structures.
		before a set of the se	In the second second	1.4011 AVA	LOW	2002	Agai chooma coserved.
02-1386	15360	Tempa Bypeas Canal	Dissolved Oxygen	c 5.0 mg/l	Low	2008	urwed to numents and BCD). Flow disrupted by control abuctures. Ugel blooms obeerved.
02-1367	1538E	Palm River	Dissolved Oxygen	c 4.0 mg/l, and less then 5.0 mg/l as daby average	Low	2008	Inked to nutrients and BOD. Flow disrupted by control structures. Most blooms observed.
02-1388	1534E	Palm River	Nutrienta (Historio Chlorophyll)	nacter TN + 1.0 mg/i	Шпрам	2008	Atrogen is limiting nultient. Flow disrupted by control structures. Vasi blooms observed.
_							ge of date vertited to be within last 7.5 years. Numeric creation is
						<u> </u>	nedequate because mercury is accumulating in the food drain such
	1558A	Tampa Bay Lower	Mercury-Fish	ass than current criterion (0.025 ug/)	LOW	5011	iau ilas inserus directory develse excered recommunation and the list. Additional discrete and the second recommendation of the second second second second second second second second
02-1389	1558A	Тетра Вву Lower	Colifornis - Shellfich	:rceeds SEAS Thresholds	Medium	2008	sted due to downarade in shellish hervening cleasification.
02-1390	1558B	Tampa Bay Mić	Colfforms - Shalifish	ixceeds SEAS Threeholde	Eugew	2008	isthai due to downanda in shalifish hawaation deeslification
							de of dete verified to be within last 7.5 vers. Numeric offection to
1		:					adequate because mercury is accumulating in the food chain such tet fish tissue mercury levels acceed recommended levels for
6/41-20	13368	I ampa Bay Mid	Mercury-Fish	aas then current orterion (0.025 ug/i)	Low	2011	cnaumption.
474 12	15580	Tampa Bev Liccer	Mercurv-Fish	Alori 200 M. viologijo teamin meti so		<u>, , , , , , , , , , , , , , , , , , , </u>	ge of data verified to be within fast 7.6 years. Numeric criterion is indequate because mercury is accumulating in the food chein such tet fish filsen mercury isvels acceed recommended levels for
				fuño ezonol universito triatito tress est	LONY L		onsumption,

ġ New Job

OGC Case Number	diaw .	Water Segment Name	Parameters identified Using the Impelied ystars Rule	Concentrations Causing impairment	Priority for TMDL Development**	Projected Year For TMDL Development	COMMENTS
02-1475	15580	Hilfeborough Bay Lower	Mercury-Fieh	leese than current cile for (0.025 ugl)		201	Age of data verified to be within hast 7.5 years. Numeric criterion is inactequate secause mercury is accumulating in the food chain auch that fastus mencury levels exceed recommended lavae for consumation.
02-1476	1 GD&E	<u>Hillieborough Bay Upper</u>	Mercury-Fiah	lees than current criterion (0.025 up()	5ª	81 181	Age of data warfield to be within (set 7.5 years. Numeric criterion is Inadequate because mercury is accumulating in the food chain such that the hears mercury levels acceed recommended levels for consumption.
02-1301	1558F	Old Tempe Bay Lower	Codiforms - Sheilitish	Exceeds SEAS Thresholds	Medium	2008	Listed due to downgrade in shellfish harvesting classification.
02-1477	1550F	Old Tampa Bay Lower	Marcury-∓ish	leas than currant colorion (0.025 up))	ţ.	2011	Age of data varified to be writin last 7.5 years. Numeric criterion is Inedequate bocause mercury is accumulating in the food chain such that faint issue mercury levels exceed recommended levels for consumption.
02-1382	15580	Oki Tampe Bey	Coliforms - Shellfish	Exceeds SEAS Thresholds	Međium	2008	Listed due to downgrade in sheiffich havesting disedification.
02-1478	1558G	Old Temps Bey	Marcury-Fish	Hess then current criterion (0.025 u.g.f)	 F	2011	Age of deta verified to be within text 7.5 years. Numeric criterion is insidecute because mercury is accumulating in the food drain such that feat have mercury levels acceed facommended layers for consumption.
02-1383	H8991	Old Tampa Bay	Coliforme - Shellinsh	Exceeds SEAS Thresholds	Medkum	2008	Listad due to downgrede in sheiffsh harvesting classification.
02-1478	1558H	Ott Tampa Bay	Mercury-Fish	iess than currant criterion (C. 125 kg/t)	- Total	2011	Age of data varified to be within last 7.5 years. Murrent offation is inadequeta because mercury is accumulating in the food chain such that fattage mercury lavels exceed recommended levels for consumption.
02-1394	1558	OM Tempa Bay	Collforms - Sheilish	Exceeds SEAS Thresholds	Međum	2008	Listed due to downarede in shellist, hervesina dassification.
02-1480	15581	Old Tampa Bay	Marcury-Fish	keas them current offeetion (0.025 up)		2011	Age of data vertified to be within last 1.5 years. Numeric criterion is Inadoquate bactause mencury is accumulating in the food chein tuch that final fease mencury (evels acceed recommended levels for constrimydon.
02-1395	1563	Channel G	Dissolved Oxygen	c 4.0 mg/i, and leas than 5.0 mg/i as delly everage	Low	2008	Linked to mutriants.
02-1398	1566	Bishop Creek Bishon Creek	Californs (Fecal Coliform)	> 800 par 100 ml	Low	2008	
02-1396	1570A	Bweetwater Creek Tidel - Lower	Coliforms (Fecal Coliform)	> 800 per (00 ml	Han 1	2002	For the 1998 303(d) snalysis the station data ware incorrectly assimuted to WallD 160.5
02-1399	1570A	Sweetweter Creek Tidal - Lower	Coliforms (Total Coliform)	> 2400 per mi	Hậh	2003	For the 1988 303(d) analysis the station data ware incorrectly assigned to MBID 1601.
02-1(400	1570A	Sweetwatar Greak Tidal - Lower	Dtaaolved Oxygen	< 4.0 mg/l, and lass then 5.0 mg/l as daily average	Hgh	2003	For the 1998 303(s) analysis the station data were incorrectly assigned to WBID 1801. Low DO linked to nutrients.
02-1401	1570A	Sweetwater Creek Tidal - Lowar	Nuthents (Chiorophyll)	median TN = 1.21 mga	High	2003	Nirogen is limiting nutrient. For the 1992 303(d) analysis the station data were incorrectly assigned to WBID 1601.
02-1402	1570A	Sweetweter Creek Tidal - Lower	Nutrients (Hetaric Chlorophyll)	median TN = 1.24 mgA	HIgh	2003	Miropan is Anding number). For the 1988 303401 analysis tha starkon. data were incorrectly assigned to MPID: 1901.
02-1403	1574A	Alligator Lake	Dissolved Oxygen	< 4.0 mg/t and lass than 5.0 mg/t as daily average	Low	2008	Unked to witherts.
02-1404	1574A	Alligetor Lake	Nutrienta (Chlorophyll)	median TN = 0.67 mg/t; median TP = 0.14 mg/t	1807 1	2008	Nitrogen and phosphorus are limiting numerits.
02-1405	1575	Mullet Creek	Colforms (Fecal Coliform)	> 400 per 100 ml		2008	
02-1407	15848	Mckay Bay	puomarmis (I otal Comporti)	> 2400 par mi < 5.0 mort		2008	l liked to mitricole
02-1465	15848	Mockey Bay	Mercury-Fish	less then current attaction (0.125 uol).		Į	current of the contraction. Age of data variated to within test 7.5 years. Numeric criterion is indequate boardea metcury is accumulating in the food criterion so that this tests marcury lewes exceed recommended levels for commendance.
					1 11/11		

OGC Case			Deservations (desetitized) latin the			Projected Year	
Number	QIBW	Water Segment Name	frequencing local managements of the finite of the finite of the second se	Concentrations Causing Impairment	Development"	For TMDL. Development	COMMENTS
02-1408	15048	Mckay Bey	Nutrients (Chlorophyll)	imedian TN = 0.80 mg/l	Hat H	2003	Nitrogen is limiting nutrient.
02-1409	15848	Mckey Bey	Nutrients (Historic Chlorophyll)	median TN = 0.50 mg/l	ЧĞН	2003	Nitrogen is limiting nutrient.
02-1410	18030	Beckett Leke - Open Water	Nutrients (TSI)	.median TN = 0.87 mg/t median TP = 0.08 mg/t	Međium	2008	Nittogen and phosphorus are inviting numerus.
7911-70		Auen Creek	Nutrients (Chlorophyll)	median TN = 1.05 mg/l			Mitrogen is Erriting nutrient.
1141-20		Included	Coliforms (Fecal Coliform)	> 800 per 100 ml	Hgh	2003	
2141-20	500		Colliptine (Lotal Coliform)	> 2400 par m	Hgit	2003	
02-1413	1002	Delaney Greek	Dissolved Oxygen	< 5.0 mg/	Hĝh	2003	Linked to withents.
4141-20	1902	Calaney Creek	Leed	> e(1.273[hH_4.705)	High	2003	
01415	16050	Delaney Greek Tidal	Colitorma (Fecal Colitorm)	> 800 per 100 ml	Medium	2008	
01410	Cenal	Letaney Creek Tidal	Colforms (Total Collform)	 2400 per ml 	Međum	2008	
02-1417	1805D	Deleney Creek Tide)	Dissolved Oxygen	< 4,0 mg/l, and less than 5.0 mg/i as daily average	Medium	2009	Linked to nutrients.
	1605D	Delaney Greek Tidel	Lead	> 5.0 ug/	Medium	2008	
02-1418	1005D	Delaney Creek Tidal	Nutrients (Chlorophyll)	median TN = 2,33 mg/	Medium	2008	Ntrogen is fimiting nutrient.
02-1419	1 83	Direct Runoff To Bey	Coliforma (Fecal Coliform)	> 800 per 100 ml	цбн	2003	
02-1420	1824	Direct Runoff To Bey	Coliferms (Total Coliform)	> 2400 per mi	High	2003	
02-1421	1624	Direct Runoff To Bay	Dissolved Oxygen	e 4.0 mm) and less than 5.0 mml as dalo success			
02-1422	1825	Cross Canel (North)	Coliforms (Fecal Coliform)	> 800 ber 100 ml		2005	
					alors .	2002	
02-1423	1825	Crose Canal (Nurth)	Dissolved Oxygan	< 4.0 mg/l, and less then 5.0 mg/l as dally average	hou Mou	2008	Linked to nutrients.
02-1424	1627	Long Branch	Colforms (Fecal Coliform)	> 800 per 100 mi	High	2003	
-14C2	1701		Coliforms (Total Coliform)	> 2400 per mi	Hgh	2003	
0711-20	1701		Dissofted Oxygen	< 5.0 mg/j	- 40 <u>1</u>	2003	Linked to nutrients and BOD.
02-1427	1637	Bleck Point Chantel	Dissofted Oxygen	c 4.0 mp/, and leas that 5.0 mp/ as daily everage		2008	This segment was listed on the 1953 303(d) list; however, it was not measured in the 1966 305(h) record - 1 shoel to not deale
02-1428	1896	Builfrog Creek	Collforms (Fecal Colform)	> 500 per 100 ml	Medium	2008	
02-1429	1608	Bulling Creek	Coliforma (Total Coliform)	> 2400 per mi	Medium	2005	
02-1430	16884	Bulling Creek	Colifarms (Total Caliform)	> 2400 per mi	76	2008	
02-1431	1666A	Bulifrag Creek	Dissolved Oxygan	< 4.0 molt, and less than 5.0 mold as daily averance	3	BUIC	l linkod fa nurkisada
02-1432	1683	Smacks Bayou	Colforms (Fecal Coliform)	> 800 per 100 ml	10	2006	
02-1433	1700	Coffeepot Bayou	Colforms (Fecal Coliform)	> 800 per 100 ml	180	2008	
02-1434	1708D	Little Bayou - Basin G	Coliforns (Fecal Coliform)	> 300 per 100 ml	Medium	2006	
8-1435	1709D	Liftle Bayou - Basin Q	Diesolved Oxygen	< 4.0 mg/k, and less then 5.0 mg/l as daily average	Medium	2005	Linked to nutrients.
02-1436	17080	/Little Beyou - Besin Q	Nutriente (Chlorophyli)	median TN = 1.11 mg/l	Medium	2006	Nirogen is limting nutrient.
02-1483	1778	Cockroach Bey	Coliforns - Shellfish	Exceeds SEAS Thresholds			Listed due to downgrade in shelfaeh hervesting classification.
02-1438	1778	Cockroach Buy	Dissolved Oxygen	< 4.0 mg/l, and less than 5.0 mg/l as daily everage	Low	2008	Linked to nutrients and BOD.
							Nas contarrinated sectments - orgoing restocation actort. Age of data ventiled to be within tast 7.5 years. Numeric othetion is integrate because mercury is accurrulating in the food chain such
32-1437	1778	Cockreach Bay	Mercury-Fish	ees then current exterion (0.025 ug/)	LOW	2011	thet fleh tissue mercany levels exceed recommended levels for consumption.
	1797B	Bishops Harbor	Coliforms - Shellitett	Exceeds SEAS Thresholds			Listed due to downgrade in sheilfish hervesting cleasification.
)2-1439	17978		Mercury-Fish	ees than currant criterion (0.025 tual)	Low	2811	Age of deta verified to be within hast 7.5 years. Numento criterion is Inadequete because mercury is accumulating in the food chein such that this have mercury byek exceed recommended levels for consumption.
12-1444	6968	Florida Gulf Coast	Mercury-Fist	ess than current criterion (0.025 worl)	m	20H4	Confirmed recent data for casatal fish advisory for mackarel.
						241	

For multishts, these are moden concentrations calculated from data generated from 1966 through June, 2002. The specific concentration of nurtients causing the impairment is unknown.
 Priorifies were relating from the 1968 303(d) list (i.g., high or Low), but High, Modium and Low are used for newly febrod water is sufficient under the MPR.

August 28, 2002

Page 3 of 3

Waters to	be Delisted from the 1998	303(d) List for the	Tampa Bay Group 1 B	asin	
		1998 303(d) Parameters of	Parameters Evaluated Using the Impaired	EPA's Integrated Report	
WBID	Water Segment Name	Concern	Waters Rule (IWR)	Category*	COMMENTS
1474	Brooker Creek	Coliforms	Coliforms (Fecal Coliform)	2	Meets Standards.
1474	Brooker Creek	Coliforms	Coliforms (Total Coliform)	2	Meets Standards.
1474	Brooker Creek	Nutrients	Nutrients (Chlorophyll)	2	Meets Standards.
1507A	Rocky Creek	Coliforms	Coliforms (Fecal Coliform)	6	Meets Standards.
1507A	Rocky Creek	Coliforms	Coliforms (Total Coliform)	2	Meets Standards.
1513	Double Branch	Coliforms	Coliforms (Fecal Coliform)	2	Meets Standards.
1516	Sweetwater Creek - Upper	Collforms	Coliforms (Fecal Coliform)	2	Meets Standards.
1530	Moccasin Creek	Coliforms	Coliforms (Total Coliform)	N	Meets Standards.
1530	Moccasin Creek	Nutrients	Nutrients (Chlorophyll)	2	Meets Standards.
1536B	Sixmile Creek	Coliforms	Coliforms (Fecal Coliform)	8	Meets Standards.
1536B	Sixmile Creek	Coliforms	Coliforms (Total Coliform)	~	Meets Standards.
1536B	Sixmile Creek	Turbidity	Turbidity	2	Meets Standards.
1536E	Palm River	Coliforms	Coliforms (Fecal Coliform)	2	Meets Standards.
1536E	Palm River	Coliforms	Coliforms (Total Coliform)	2	Meets Standards.
1558C	Tampa Bay Upper	Coliforms	Collforms (Fecal Coliform)	2	Meets Standards.
1558C	Tampa Bay Upper	Coliforms	Coliforms (Total Coliform)	2	Meets Standards.
1558D	Hillsborough Bay Lower	Dissolved Oxygen	Dissolved Oxygen	2	Meets Standards.
1558D	Hillsborough Bay Lower	Nutrients	Nutrients (Chlorophyll)	40	Nitrogen is limiting nutrient. Have reasonable assurance that nutrient impairment will be addressed by Tampa Bay Estuary Program.
1558E	Hillsborough Bay Upper	Dissolved Oxygen	Dissolved Oxygen	2	Meets Standards.
1558E	Hillsborough Bay Upper	Nutrients	Nutrients (Chlorophyll)	4c	Nitrogen is limiting nutrient. Have reasonable assurance that nutrient impairment will be addressed by Tampa Bay Estuary Program.
1558F	Old Tampa Bay Lower	Coliforms	Coliforms (Fecal Coliform)	~	Meets Standards.
1558F	Old Tampa Bay Lower	Coliforms	Coliforms (Total Collform)	2	Meets Standards.
1558G	Old Tampa Bay	Coliforms	Coliforms (Fecal Coliform)	2	Meets Standards.
1558G	Old Tampa Bay	Collforms	Coliforms (Total Coliform)	2	Meets Standards.

Page 1 of 4

August 28, 2002

Waters to	be Delisted from the 1998	303(d) List for the	Tampa Bay Group 1 Ba	asin	
		1998 303(4)	Daramotore Evaluated	EPA's	
	Water Comment Name	Parameters of	Using the Impaired	Report	
		Concern	Waters Kule (IWK)	Category"	COMMENTS
1558H	Old Tampa Bay	Coliforms	Coliforms (Fecal Coliform)	N	Meets Standards.
1558H	Old Tampa Bay	Califorms	Coliforms (Total Coliform)	2	Meets Standards.
1558H	Old Tampa Bay	Nutrients	Nutrients (Chlorophyll)	4	Nitrogen is fimiting nutrient. Have reasonable assurance that nutrient impairment will be addressed by Tampa Bay Estuary Prooram.
15581	Old Tampa Bay	Colifiorms	Coliforms (Fecal Coliform)	2	Meets Standards.
15581	Old Tampa Bay	Coliforms	Coliforms (Total Coliform)	0	Meets Standards.
, 1558	Oki Tampa Bay	Nutrients	Nutrients (Chlorophyll)	40	Nitrogen is limiting nutrient. Have reasonable assurance that nutrient impairment will be addressed by Tampa Bay Estuary Program.
1559	Direct Runoff To Bay	Califorms		es C	Flaw in original analysis. Data do not represent WBID. Data are from WBID 1558i.
1559	Direct Runoff To Bay	Dissolved Oxygen		3a 3	Flaw in original analysis. Data do not represent WBID. Data are from WBID 1558I.
1559	Direct Runoff To Bay	Nutrients		38	Flaw in original analysis. Data do not represent WBID. Data are from WBID 1558i.
1563	Channel G	Coliforms	Coliforms (Fecal Coliform)	2	Meets Standards.
1563	Channel G	Coliforms	Coliforms (Total Coliform)	7	Meets Standards.
1569	Bishop Creek	Nutrients	Nutrients (Chiorophyll)	2	Meets Standards.
1574A	Alligator Lake	Coliforms	Coliforms (Fecal Coliform)	~	Meets Standards.
1574A	Alligator Lake	Coliforms	Collforms (Total Coliform)	~	Meets Standards.
1575	Mullet Creek	Nutrients	Nutrients (Chlorophyll)	2	Meets Standards.
1583	Direct Runoff To Bay	Dissolved Oxygen		3a (Flaw in original analysis. Data do not represent WBID, Data are from WBID 1558I.
1599	Uceta Yard Drain	Nutrients		<u></u> 8	Flaw in original analysis. Data do not represent WBID. Data are from WBID 1983. Basin located in industrial area which contains Superfund sites
1601	Direct Runoff To Bay	Collforms		ge	-law In original analysis. Data do not represent WBID. Data are from WBID 1570A.
1601	Direct Runoff To Bay	Dissolved Oxygen		99 39	Taw in original analysis. Data do not represent WBID. Data are from WBID 1570A.
1601	Direct Runoff To Bay	Nutrients		3a	-law in original analysis. Data do not represent WBID. Data are from WBID 1570A.
1603	Direct Runoff To Bay	Nutrients	Nutrients (Chlorophyll)	2	-law in originat analysis. Existing data indicate no nutrient mpairment.

August 28, 2002

Page 2 of 4

Waters to	be Delisted from the 1998	303(d) List for the	Tampa Bay Group 1 Ba	asin	
		1998 303(d)	Parameters Evaluated	EPA's Interrated	
		Parameters of	Using the Impaired	Report	
WBID	Water Segment Name	Concern	Waters Rule (IWR)	Category*	COMMENTS
1603	Direct Runoff To Bay	Blochemical Oxygen Demand	Dissolved Oxygen	2	No numeric criteria, but meets standards for DO.
1603	Direct Runoff To Bay	Chemical Oxygen Demand	Dissofved Oxygen	2	No numeric criteria. but meets standarcts for DO.
1603	Direct Runoff To Bay	Total Suspended Solids	Turbidity	2	No numeric criteria. but meets standards for turbididty.
1604	Allen Creek	Coliforms	Coliforms (Fecat Coliform)	2	Meets Standards.
1604	Allen Creek	Coliforms	Coliforms (Total Coliform)	2	Meets Standards.
1604	Allen Creek	Nutrients	Nutrients (Chlorophyll)	2	Meets Standards.
1605	Delaney Creek	Turbidity	Turbidity	8	Meets Standards.
1609	Direct Runoff To Bay	Califorms		3a	Flaw in original analysis. Data do not represent WBID. Data are from WBID 1443.
1609	Direct Runoff To Bay	Dissolved Oxygen		3a	Flaw in original analysis. Data do not represent WBID. Data are from WBID 1443.
1609	Direct Runoff To Bay	Nutrients		38	Flaw In original analysis. Data do not represent WBID. Data are from WBID 1443.
1625	Cross Canal (North)	Collforms	Coliforms (Total Coliform)	0	Meets Standards.
1625	Cross Canal (North)	Nutrients	Nutrients (Chlorophyll)	2	Meets Standards.
1627	Long Branch	Nutrients	Nutrients (Chlorophyll)	2	Meets Standards.
1630	Direct Runoff To Bay			3a	Listing of this water segment in 1998 was based on a NPS survey. No data.
1666A	Builfrog Creek	Califorms	Coliforms (Fecal Coliform)	2	Meets Standards.
1683	Smacks Bayou	Califorms	Coliforms (Total Coliform)	2	Meets Standards.
1683	Smacks Bayou	Nutrients	Nutrients (Chlorophyll)	5	Meets Standards.
1700	Coffeepot Bayou	Coliforms	Coliforms (Total Coliform)	2	Meets Standards.
1700	Coffeepot Bayou	Nutrients	Nutrients (Chlorophyll)	2	Meets Standards.
1709	Big Bayou - Basin W	Califorms	Coliforms (Fecal Coliform)	6	WBID boundaries redelineated to conform to City of St. Petersburg basin delineations. Reanalysis of data indicates the fecal coliform counts meet standards.
1709	Big Bayou - Basin W	Coliforms	Coliforms (Total Coliform)	2	WBID boundaries redelineated to conform to City of St. Petersburg basin delineations. Reanalysis of data indicates the total coliform counts meet standards.
1709	Big Bayou - Basin W	Dissolved Oxygen	Dissolved Oxygen	5	WBID boundaries redelineated to conform to City of St. Petersburg basin delineations. Reanalysis of data indicates the dissofted oxygen values meet standards.

August 28, 2002

Page 3 of 4

			EPA's	
	1998 303(d)	Parameters Evaluated	Integrated	
	Parameters of	Using the Impaired	Report	
	Concern	Waters Rule (IWR)	Category*	COMMENTS
Nutr	ients	Nutrients (Chiorophyll)	40	WBID boundarles redelineated to conform to City of St. Petersburg basin delineations. Nutrients addressed by Tampa Bay Estuary Program.
Colit	oms	Coliforms (Fecal Coliform)	2	Meets Standards.
Solif	orms	Coliforms (Total Coliform)	2	Meets Standarda.

,

.

.

Waters to be Delisted from the 1998 303(d) List for the Tampa Bay Group 1 Basin

APPENDIX C

Drainage Calculations

NOTE:

This information is preliminary and subject to change until the final design is approved.

BClaybrook

US 301 SEIR Pre-Development Calculations Hillsborough County, Florida

Sub-Area Land Use and Curve Number Details

Sub-Area Identifier	Land Use		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
Entire Rd	Open space; grass cover > 75%	(good)	D	6.98	80
	Paved; open ditches (w/right-of-way)		D	7.14	93
	Woods - grass combination	(good)	D	1.6	79
	Total Area / Weighted Curve Number			15.72	86
				=====	==

BClaybrook

US 301 SEIR Post-Development Calculations Hillsborough County, Florida

Sub-Area Land Use and Curve Number Details

Sub-Area Identifier	Land Use		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
Entire Rd	Open space; grass cover > 75%	(good)	D	6.35	80
	Paved parking lots, roofs, driveways	-	D	.5	98
	Paved; open ditches (w/right-of-way)		D	7.77	93
	Woods - grass combination	(good)	D	1.1	79
	Total Area / Weighted Curve Number			15.72	87
				=====	==

Runoff Volume Calculations

(Using SCS TR-55)

Pre-Development Condition

For CN calculation, please see attached print-out from Win TR-55 program.

25-year / 24-hour rainfall depth >>> P₂₅=8.0 inches (Figure B-5, "25-year, 24-hour rainfall", 210-VI-TR-55, Second Edition, June 1986)

$$S = \frac{1000}{CN} - 10 = \frac{1000}{86} - 10 = 1.63$$

$$Q = \frac{(P_{25} - 0.2S)^2}{(P_{25} + 0.8S)} = \frac{(8.0 - 0.2 * 1.63)^2}{(8.0 + 0.8 * 1.63)} = 6.33$$
 inches

$$V_r = Q * A = 6.33$$
 inches $*\frac{1 \text{ foot}}{12 \text{ inches}} * 15.72 \text{ acres} = 8.29 \text{ ac} - \text{ft}$

Post-Development Condition

For CN calculation, please see attached print-out from Win TR-55 program.

25-year / 24-hour rainfall depth >>> P₂₅=8.0 inches (Figure B-5, "25-year, 24-hour rainfall", 210-VI-TR-55, Second Edition, June 1986)

$$S = \frac{1000}{CN} - 10 = \frac{1000}{87} - 10 = 1.49$$

$$Q = \frac{(P_{25} - 0.2S)^2}{(P_{25} + 0.8S)} = \frac{(8.0 - 0.2*1.49)^2}{(8.0 + 0.8*1.49)} = 6.45$$
 inches

 $V_r = Q * A = 6.45$ inches $*\frac{1 \text{ foot}}{12 \text{ inches}} * 15.72 \text{ acres} = 8.45 \text{ ac} - \text{ft}$

Total Attenuation Volume

8.45 ac-ft - 8.29 ac-ft = 0.16 ac-ft

Appendix D Geotechnical Report

REPORT OF GEOTECHNICAL EXPLORATION

CONDUCTED OF

U.S. Hwy 301 – FALKENBURG TO CAUSEWAY Hillsborough County, Florida

PREPARED FOR:

CENTEX HOMES – West Florida 3020 South Falkenburg Road Riverview, FL 33569

FES PROJECT NO. 06-624 (Rev. 1)

MARCH, 2007

PREPARED BY:

12904 Dupont Circle Tampa, Florida 33626

March 9, 2007

Mr. Michael Piendel Centex Homes – West Florida 3020 South Falkenburg Road Riverview, FL 33569

RE: Report of Geotechnical Exploration U.S. Hwy 301 – Falkenburg to Causeway Hillsborough County, Florida FES Project No.: 06-624 (Rev.1)

Dear Mr. Piendel:

Faulkner Engineering Service, Inc. (FES) has completed the geotechnical exploration for the referenced project. We provided our services in general accordance with our proposal No. P06-731, dated December 7, 2006 that was authorized by Centex Homes – West Florida. The purpose of our exploration was to explore the subsurface soil and groundwater conditions along the roadway improvement (widening) to provide information for flexible pavement design and infiltration rates in the proposed swales. In addition pavement cores to evaluate the existing pavement section were performed. This report summarizes our field exploration and presents our findings, conclusions and geotechnical engineering recommendations.

PROJECT INFORMATION

Existing Site

U.S. Hwy. 301 from Falkenburg Road and Causeway Blvd. is and existing 6 lane highway located in Hillsborough County, Florida. The highway is bordered by a mixture of residential, commercial and undeveloped property.

Proposed Construction

Based on our review of a concept plan provided by Kimley-Horn and Associates, Inc., we understand that the project will consist of the improvement (widening) of approximately 4300 +/- linear feet of U.S. Hwy. 301 from Station 1052+66.00 to Station 1095+51.

Soil Survey Review

According to the "Soil Survey of Hillsborough County, Florida", as prepared by the U.S. Department of Agriculture Natural Resource Conservation Service (formerly the Soil Conservation Service) the subject property is primarily underlain by:

- Myakka fine sand The NRCS defines this unit as nearly level, somewhat poorly drained and located on broad plains on the flatwoods. The NRCS indicates this soil unit typically has a surface layer of very dark gray fine sand about 5 inches thick underlain by gray fine sand to about 20 inches. Below, is black, dark reddish brown, brownish yellow, very pale brown and dark grayish brown fine sand to a depth of 6½ feet or more. The NRCS indicates the seasonal high water level is at a depth of 10 inches for 1 to 4 months and recedes to a depth of 40 inches during prolonged dry periods.
- Pomello fine sand, 0 to5 percent slopes— The NRCS describes this soil as nearly level to gently
 sloping and moderately well drained. The NRCS indicates this unit typically has a surface layer
 of very dark gray fine sand about 3 inches thick underlain by light gray fine sand to about 4
 feet. Below is dark brown and grayish brown to a depth about 6½ feet or more. The NRCS
 indicates that the seasonal high water table in most years is between 24 to 40 inches of ground
 surface for 1to 4 months.

- Smyrna fine sand— The NRCS defines this unit as nearly level and poorly drained located on the broad, low lying, convex swells on the flatwoods. The NRCS indicates this soil unit typically has a surface layer of very dark gray fine sand about 4 inches thick, underlain by gray fine sand to a depth of 12 inches. Below, is dark brown, very dark grayish brown, light brownish gray and brown fine sand to a depth of about 6½ feet. The NRCS indicates the seasonal high water level range from the surface to a depth of 10 inches for more than 2 months and recedes to a depth of 10 to 40 inches for 6 months or more.
- Ona fine sand The NRCS defines this unit as nearly level and somewhat poorly drained. The
 NRCS indicates this soil unit typically has a surface layer of very dark gray fine sand about 4
 inches thick underlain by black fine sand to about 8 inches. Below is very dark brown fine sand
 to about 22 inches, that transition to light gray fine sand to 7½. The NRCS indicates that
 seasonal high water level is at a depth of 10 inches for more than 2 and recedes to a depth of
 10 to 40 inches for 6 months or more.

SUBSURFACE EXPLORATION

Field Exploration

During our field exploration a total of eighty-one (81) auger borings were drilled to a depth of 5 feet below ground surface (bgs) spaced at approximately 100 foot intervals along both sides of U.S. Hwy 301. In addition, four (4) pavement cores to identify existing asphalt and base thickness were performed at approximately 1000 foot intervals, four (4) DRI's were performed in the swales on both sides of U.S. Hwy 301 and a total of six (6) limerock bearing ratio (LBR) samples were collected (3 samples per mile of improvement on both sides of U.S. Hwy 301). The procedures used by FES for field sampling and testing were in general accordance with ASTM procedures, industry standards of care and established geotechnical engineering practice.

The auger borings were advanced by mechanically rotating an approximate 4-inch diameter continuous flight auger into the subsurface soils. The cuttings brought to the surface were logged in the field and representative samples were obtained at each change in the soil stratum. The borings were performed within 20 feet of the edge of the existing pavement on both sides of the road. A few borings were drilled within the existing swale and as a result the boring elevations may vary significantly.

The samples recovered from our roadway auger borings were placed in sealed containers and transported to the FES laboratory for further evaluation. Detailed descriptions of the soils encountered during the field exploration are presented on the boring records included in Appendix A and Report of Core Borings (Plan 2).

Our staff was onsite during the fieldwork to supervise and monitor the drilling and also perform a site reconnaissance, noting pertinent site and topographic features as well as surface indicators of soil conditions. FES located the borings based on a concept plan provided by Kimley-Horn. Because of the methods used, the boring locations shown on the attached Boring Location Plan (Plan 1) should be considered approximate.

Soil Sample Handling and Classification

The soil samples obtained during our drilling operations were placed in sealed containers to retain moisture and returned to our laboratory. The samples were visually classified by a staff geotechnical engineer according to the "Unified Soil Classification System" (ASTM D2487) and reviewed by a Professional Engineer. Two (2) limerock bearing ratio (LBR) samples were tested in accordance with FDOT Method FM5-515 (LBR Test).

Double Ring Infiltration Test (DRI)

Four (4) double ring infiltration tests (DRI) were performed within the swales. The approximate locations are shown on the attached Boring Location Plan (Plan 1) and Report of Core Borings (Plan 2).

The infiltration testing was performed in accordance with procedures outlined in ASTM Test Method D-3385. This test method generally consists of driving two concentric rings, 12 and 24 inches in diameter, into the ground. The smaller ring is placed within the larger and both partially filled with water. The water is maintained at a constant level during the test and the volume of water infiltrated during timed intervals is converted to an incremental infiltration velocity. The result of our DRI testing is as follows:

TEST No	Depth of Test Below Ground Surface (Feet)	Stabilized Infiltration Rate (In/hr.)
DRI-1	2	3
DRI-2	2	0.5
DRI-3	2	4
DRI-4	2	0.5

FINDINGS

Subsurface Conditions

General Soil Profile

The conditions presented below highlight the major subsurface stratifications encountered during our field exploration of the site. More detailed descriptions of the materials encountered are provided on the attached soil profile. It should be understood that subsurface conditions will vary across this site and between boring locations. Changes in subsurface strata may be more gradual than indicated.

Our roadway auger borings generally encountered varying colored fine sand (SP) and fine sands with trace of silt and clay fines (SP-SM/SP-SC) from the ground surface to the termination of the borings at 5 feet (bgs).

Groundwater

Groundwater was encountered in our auger borings at depths ranging from 3.3 feet to not encountered with the depths explored at the time of drilling. Groundwater levels will fluctuate with time due to seasonal rainfall and locally heavy precipitation events; therefore, future groundwater levels may be encountered at depths different from those indicated by our borings. Please refer to the attached Table 1 for groundwater data at the time of drilling and estimated seasonal high groundwater level.

The seasonal high water table is typically encountered during late summer following the rainy season. Several factors can affect the seasonal high groundwater level such as drainage characteristics of the soils; land surface elevation; and relief points such as lakes, rivers and swamps. A majority of the borings did not expose soil indicators which aid in determining the seasonal high groundwater. In addition the areas explored have been reworked and swales added. Without the aid of soils indicators and existing ground elevations we were not able to in a majority of the borings estimate the seasonal high groundwater. In the borings that soil indicators were present the seasonal high groundwater is estimated at depths ranging from 0.5 feet to 4.5 feet below current ground surface at the areas explored. It is our opinion that US Hwy. 301 was constructed to an elevation based on seasonal high indicators at the time and that the groundwater table should not have an adverse effect on the improvements (widening) constructed to match the existing highway.

Limerock Bearing Ratio (LBR) Test

The results of the LBR testing are presented in the following table. A more detailed description of the LBR results is presented in the attached Moisture-Density Relationship & Limerock Bearing Ratio reports.

STATION/LBR Sample	LBR Value (%)
STA-1	20
STA-2	20
STA-3	30
STA-4	28
STA-5	30
STA-6	20

Pavement Cores

Four (4) pavement cores were performed along existing U.S. Hwy 301 at approximately 1000 foot intervals to identity pavement section composition and thickness. The pavement section appeared in good condition. The pavement core results are presented in the attached Report of Thickness Checks. The approximate locations of the cores are shown on the attached Boring Location Plan (Plan 1) and Report of Core Borings (Plan 2).

CONCLUSIONS

Our geotechnical engineering evaluation of this site with respect to the proposed construction and our recommendations are based entirely on our site observations and the field exploratory data obtained from our borings.

The roadway auger borings generally encountered fine sands (SP) and fine sand with silt and clay fines (SP-SM/SP-SC) from the ground surface to the termination of the borings at 5 feet (bgs). It appears that the shallow subsurface soil will provide a suitable subgrade for roadway construction after proper site preparation and in-place densification.

It should be noted that subsurface conditions can vary across this site and between boring locations. Conditions can also vary in areas not explored by our borings. Contractors bidding earthwork requirements are urged to conduct their own borings, test pits or other investigations to determine those conditions that may affect their specific work requirements. Faulkner Engineering Services, Inc. can not be responsible for interpretations made by others based on the information contained in this report and the attachments.

RECOMMENDATIONS

Site Preparation

Site Stripping

Before earthwork and construction activities begin all existing topsoil, muck, debris, vegetation, and large roots down to finger-size should be removed within the construction limits. Site stripping should extend at least ten feet beyond the construction area. All pockets of organics, organic laden soils and/or deleterious material should be undercut to competent soil. The resulting excavations should be backfilled with structural fill placed in maximum one-foot thick lifts. Backfill soils should be of the same composition and be compacted to the same criteria as structural fill soils. This process should be observed by a representative of FES to ensure that all organics, organic laden soils and/or deleterious material has been removed.

Proof-Rolling / In-Place Densification

Following site stripping and prior to any fill placement or beginning construction, proof-rolling / in-place densification of the ground surface with a heavy vibratory roller should be performed within the construction area. A vibratory roller having a rated centrifugal force of at least 50,000 pounds is recommended. Compaction within the construction area should continue until the soils appear relatively firm and unyielding and the soils have achieved a relative compaction of at least 98 percent of modified proctor maximum dry density (ASTM D-1557) to a depth of at least 1-foot below new pavement.

Proof-rolling and densification efforts should be closely monitored by a FES engineering technician to observe any unusual or excessive deflection of the soils beneath the compacting equipment used. If unusual or excessive deflection is observed, then the areas should be undercut to firm soil and backfilled with compacted structural fill placed in maximum one-foot thick lifts.

Flexible Pavement Considerations

Roadway traffic distribution or frequency for the planned roadway widening has not been provided at this time. The LBR test results and existing pavement sections revealed in the cores should be utilized for designing the pavement section. Based on the LBR test results a Resilient Modulus estimated at 7500 psi should be used in the design.

The pavement section should be designed in accordance with the latest edition of the FDOT Flexible Pavement Design Manual. Methods and materials used for pavement construction should also conform to applicable sections of the most recent edition of the Florida Department of Transportation Standard Specifications for Road and Bridge Construction.

TESTING AND MONITORING

Construction testing and monitoring are essential to proper site construction and performance. Observation and testing of site preparation and earthwork activities is an integral part of the engineering recommendations contained in this report. Having FES provide the construction materials testing and inspection services provides continuity and increases the potential that our recommendations will be properly implemented.

LIMITATIONS

This report has been prepared for the exclusive use of **Centex Homes – West Florida** and their designers for the specific application to the project previously discussed. Our conclusions and recommendations have been rendered using generally accepted standards of geotechnical engineering geology practice in the state of Florida. No other warranty is expressed or implied.

Our conclusions and recommendations are based on the design information furnished to us, the data obtained from the previously described subsurface exploration, and our experience. They do not reflect variations in the subsurface conditions that are likely to exist in the region of our borings and in unexplored areas of the site. These variations are due to the inherent variability of the subsurface conditions in this geologic region. Should variations become apparent during construction, it will be necessary to re-evaluate our conclusions and recommendations based upon our on-site observations of the conditions.

Report of Geotechnical Exploration U.S. Hwy 301 – Falkenburg to Causeway Hillsborough County, Florida FES Project No.: 06-624 (Rev.1) March 9, 2007 Page 6

This area of Florida is underlain by limestone bedrock that is susceptible to dissolution and the subsequent development of karst features such as voids and sinkholes in the natural soil overburden. Construction in a sinkhole prone area is therefore accompanied by some risk that internal soil erosion and ground subsidence could affect new structures in the future. It is not possible to investigate or design to completely eliminate the possibility of future sinkhole related problems. In any event, the Owner must understand and accept this risk.

The scope of our services does not include any environmental assessments or investigations for the possible presence of hazardous or toxic materials in the soil, groundwater or surface water within or in the general vicinity of the site studied.

If changes are made in the overall design or the location of the proposed roadway, the recommendations presented in this report must not be considered valid unless the changes are reviewed by our firm and recommendations modified or verified in writing. We should be given the opportunity to review the grading plan and the applicable portions of the project specifications when the design is finalized. This review will allow us to check whether these documents are consistent with the intent of our recommendations.

CLOSING

Faulkner Engineering Services Inc. appreciates the opportunity to be of service to **Centex Homes** – **West Florida** by providing these geotechnical consulting services and we look forward to assisting you through project completion. If you have any questions concerning this report, please do not hesitate to contact the undersigned.

Sincerely,

Faulkner Engineering Services, Inc.

Joser E. Barcelo R. Staff Geotechnical Engineer

Davla W. Faulkner, P.E. President Fla. Registration No. 50740

cc: Richard Claybrooke (Kimley-Horn Tampa)

Attachments: Boring & Test Location Plan (Plan 1) Report of Core Borings (Plan 2) Groundwater Data (Table 1) Report of Thickness Checks Moisture-Density Relationship & Limerock Bearing Ratio Test Results ASFE Information

- Appendix A: Logs of Soil Borings
- Appendix B: Key to Soil Classification

·															~			node		d surface.	mate.				06-624	
	AB-70 STA-1094+00						-							******	sting ground		ocedures.	of the toring was r	ocations.	sting groun	are approxi				.22.07	PLAN 2
	AB-69 STA-1083+60												ES	*****	e below exi		T.M. test pr	resentative where the b	adjacent I	et below exi	d locations				DATE 02	ЖĻ
	AB-68 STA-1083400												GENERAL NOT		ven in Distanc	otions.	done per A.S.	fication is rep the location	s may vary at	nated at 5 fee	not survey and				SCALE N.T.S.	DRAWN: JE CHKD: D
	AB-67 STA- 1092+60		AASHTO GROUP	Sand A-3	A-3	A-2-6	2-2-2-	A-3							ll Depths giv	t boring loc	orings were	te soil strati onditions at	ut condition	orings termir	orings were i				01 eway	ORINGS
	AB-66 STA-1092+00			Orangish brown, Fine	ce clay	4	suang								A I	D	ΩŌi I	51.00	۵	й I	ы I				S. HWY 31 enburg/Cause	r of core B
	AB-65 STA- 1091+85	A		, Light gray/brown,	/ fine Sand with tra	tayey Sand	e dang wiki pock ne	and with trace slit	at time of drilling									A: 1095 +							Falk C	REPOR
NGS	AB-64 STA-1081-10	LEGEN	SCRIPTION	k brown to light Brown	t brown to brown, Graj	wn or Grayish Brown C	I DIOWA IO DIOWA FINE	k Brown, Brown Fine S	dmate Groundwater Level I						ŧ	0	ng, inc.	orings End ST	y, Florida						chricel Engineers clion Moterial Testing 34 DuPont Circle	oa, Florida 33626 NE: 813,818,8307 K: 813,818,8381 faulknereng.com
LE BORI	AB-63 STA- 1060+85		ä	Dart			1611 4.4.4		1.8 V Approx							01 - 12.22.1	ecision Drilli	. 66.00 B	ough Count						LER Lastru	CES, INC. Tomp PHON VWWW
OF COR	AB-62 STA-1090+60		STRATUM	0	(•	€	3								17.20.U	y: U.S. Pr	STA: 1052 +	Hillsbor						AULKN	UCINEERING SERVI
REPORT	AB-61 STA-1089+80		AB-81 STA-1052+65		e FTT) 2023 										Jate of Boring	hilling Made b	larings begin (tounty:							
sewAY)	AB-60 STA-1088+00		AB-80 STA- 1053+45		Э ПТ										Ľ	_		ш	U				.0			
RG/CAUS	AB-59 STA- 1087+80		AB-79 STA- 1952-95		E TTT) <u>777</u>	<u>is</u> T																, AB-53, AB-5	. AB-71, AB-74		
KENBUI	AB-58 STA-1086+90		AB-78 sta-1054+45		⊙ TTT																		. A8-72, A8-51	AB67, AB69		
301 (FAI	AB-57 STA- 1087+00		AB-77 sta-1054+10) <u>343333</u> 				•	<u> </u>]							 	<u>ل</u> ظ	2	<u></u>	AB-68, AB-70,	AB-63, AB-65,		
.S. HWY	AB-56 STA-1088+00		AB76 sta-1055+45		18489 	• • •)	1			set						***	1 1		e of roadwa	e of roadws	e <u>or roadwey</u> of roadwey	AB-64, AB-66,	AB-59, AB-61,		
	AB-55 STA-1085+80		AB-75 STA-1055-00) <u>S</u> X T) Locations	0 U	•	3		E.	1	3	1 1		l"from edgi	1" from edg	from edge	, AB-60, AB-62,	2, AB-54,AB-57,		
	AB-54 STA-1085+00		AB-74 STA- 1075+80	3) جونان 1) <u>1997</u> 			DRI/LBR/Core	کم الح	0			0		រាម		0	10 24	0 24		\B~56, AB~58,	AB-50, AB-51		
,	AB-53 57A-1084+80		AB-73 514- 1061+80) المراجع) <u>1</u>				LS	1072+6	1085+4	1093-45	1052+6	1057 +6	1+5/01 3. 0301	1091+1	1084-45	1064+0	1084+0	1053+0	3-75, AB-73, A	B-78, AB-76,		
	AB-52 STA- feet-to		AB-72 STA- 1085+00		ک ۱۱۱۱							DRI-1	081-2 DRI-3	DRI-4	LBR-1	LBR'2		LBR-5	LBR-6	Core-1	Core-2	Core-4	48-79, A8-77, A£	AB81, AB80, A		

Borings on North Bound Line: Borings on South Bound Line:

Table 1 Groundwater Data									
Project Name: U.S. Hwy 301 (Falkenburg to Causeway) FES Project No.: 06-624									
Boring No.	Ground Elevation ¹ (ft)	Groundwater Data at Time of Drilling		Estimated Seasonal High Watertable					
		Elevation (ft)	Depth (ft)	Elevation (ft)	Depth (ft)				
Auger Borings									
AB-1	Unknown	Unknown	N.E.	Unknown	3.5				
AB-2	Unknown	Unknown	N.E.	Unknown	3.5				
AB-3	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-4	Unknown	Unknown	N.E.	Unknown	4.0				
AB-5	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-6	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-7	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-8	Unknown	Unknown	N.E.	Unknown	3.0				
AB-9	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-10	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-11	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-12	Unknown	Unknown	N.E.	Unknown	3.0				
AB-13	Unknown	Unknown	N.E.	Unknown	4.5				
AB-14	Unknown	Unknown	N.E.	Unknown	4.0				
AB-15	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-16	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-17	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-18	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-19	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-20	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-21	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-22	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-23	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-24	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-25	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-26	Unknown	Unknown	N.E.	Unknown	N.D.				

Note:

Boring Elevations were not provided at the time of drilling.
 N.D. = Not Determined

Table 1 Groundwater Data									
Project Name: U.S. Hwy 301 (Falkenburg to Causeway) FES Project No.: 06-624									
Boring No.	Ground Elevation ¹ (ft)	Groundwater Data at Time of Drilling		Estimated Seasonal High Watertable					
		Elevation (ft)	Depth (ft)	Elevation (ft)	Depth (ft)				
Auger Borings									
AB-27	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-28	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-29	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-30	Unknown	Unknown	N.E.	Unknown	4.5				
AB-31	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-32	Unknown	Unknown	4.0	Unknown	1.5				
AB-33	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-34	Unknown	Unknown	4.0	Unknown	1.5				
AB-35	Unknown	Unknown	N.E.	Unknown	4.0				
AB-36	Unknown	Unknown	3.3	Unknown	0.5				
AB-37	Unknown	Unknown	N.E.	Unknown	4.0				
AB-38	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-39	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-40	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-41	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-42	Unknown	Unknown	4.0	Unknown	1.5				
AB-43	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-44	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-45	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-46	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-47	Unknown	Unknown	N.E.	Unknown	4.0				
AB-48	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-49	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-50	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-51	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-52	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-53	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-54	Unknown	Unknown	4.5	Unknown	1.5				
AB-55	Unknown	Unknown	N.E.	Unknown	N.D.				
AB-56	Unknown	Unknown	N.E.	Unknown	N.D.				

Note:

Boring Elevations were not provided at the time of drilling.
 N.D. = Not Determined

U.S. Hwy 301 - Falkenburg to Causeway Hillsborough County, Florida FES Project No.: 06-624 December 29, 2006

Table 1 Groundwater Data										
Project Name: U.S. Hwy 301 (Falkenburg to Causeway) FES Project No.: 06-624										
Boring No.	Ground Elevation ¹ (ft)	Groundwater Data at Time of Drilling		Estimated Seasonal High Watertable						
		Elevation (ft)	Depth (ft)	Elevation (ft)	Depth (ft)					
	Auger Borings									
AB-57	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-58	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-59	Unknown	Unknown	N.E.	Unknown	4.5					
AB-60	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-61	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-62	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-63	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-64	Unknown	Unknown	N.E.	Unknown	4.5					
AB-65	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-66	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-67	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-68	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-69	Unknown	Unknown	N.E.	Unknown	4.5					
AB-70	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-71	Unknown	Unknown	N.E.	Unknown	4.0					
AB-72	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-73	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-74	Unknown	Unknown	4.0	Unknown	2.0					
AB-75	Unknown	Unknown	N.E.	Unknown	3.0					
AB-76	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-77	Unknown	Unknown	5.0	Unknown	3.0					
AB-78	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-79	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-80	Unknown	Unknown	N.E.	Unknown	N.D.					
AB-81	Unknown	Unknown	N.E.	Unknown	3.0					

Note:

٠

Boring Elevations were not provided at the time of drilling.
 N.D. = Not Determined
Faulkn	er Engineering Services, Inc.		12904 Dupont Circ 813-818-8307 Offic 813-818-8381 Fax	ile, Tampa, Florida 33626 ce	
	U.S. Hwy 301 - Falker Hillsborough Co	nburg to Caus	ieway		
Client: Mr. Michael Pi	endel		Report Date:	Decme	eber 29, 2006
Centex Home 3020 S. Falkel Riverview, Flo	s - West Florida Division nburg Road rida 33569		Project Number:		06-624
	REPORT OF THICKNESS CHECKS - U.S	3. Hwy 301 - Falk	enburg to Caus	eway	
		Existing	Asphalt	Existing E	lase
Thickness Check Number	Thickness Check Location	Composition	Measured Average Thickness (in)	Composition	Measured Average Thickness (in)
	North Bound East Lane / U.S. Hwy 301				
-	Approx. Cor-1 (Sta 1064+00) (24" from Edge of Roadway)	Total Aspahlt	3 3/4	Limerock	13 1/4
	North Bound East Lane / U.S. Hwy 301		-		
7	Approx. Cor-2 (Sta 1084+00) (24" from Edge of Roadway)	Total Aspahlt	3 3/4	Shell intermixed with light brown, fine SAND (SP)	14 1/2
	South Bound West Lane / U.S. Hwy 301				
ო	Approx. Cor-3 (Sta 1074) (90" from Edge of Roadway)	Total Aspahlt	5 3/4	Shell intermixed with light brown, fine SAND (SP)	16 1/4
	South Bound West Lane / U.S. Hwy 301				
4	Approx. Cor-4 (Sta 1053) (60" from Edge of Roadway)	Total Aspahlt	4 1/4	Shell intermixed with light brown, fine SAND (SP)	13 1/4
		Respectfully Subm Faulkner Engineer	litted, ing Services, Inc.		
			Asphalt Layer		

JB - Thickness Check Report - U.S Hwy 301 - Falkenburg-Causeway.xls (Base and Asphalt T1)

Page 1 of 1

Base Layer (Limerock and/or Shell intermixed with (SP)

Faulkn	er Engir	neering	Services, In	C.	12904 [813-818 813-818 www.fa	12904 Dupont Circle, Tampa, Florida 33626 813-818-8307 Office 813-818-8381 Fax www.faulknereng.com			
			US Highway	/ 301 (Falk	enburg to Ca ounty, Florida	useway)			
Client:	Mr. Michae Centex Hor	l Piendel nes - Wes	st Florida	<u>_</u>	Report	Date:	January	2, 2007	
:	3020 South Riverview, I	n Falkenbu FL 33569	irg Road		Project	Number:	06~(624	
		MOIS	STURE-DENSITY Repo	RELATIONSH	IIP & LIMEROCK BR1 (Preliminary)	BEARING RA ⁻	ΓΙΟ		
1	00				Shi Baana ay Ing i				
			rentro de tras de la case A feision de la case de la case A feision de la case d						
alue									
ar v				ter en					
Ξ									
	10	3944					and a construct		
	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	
				Moistur	e Content (%)	۵		A	
<u>م</u>									
ଳ 107 ଜୁନ	.0					X			
J 106	.0								
lisu 105	.0				Shekesa ta en 1988. Artenen in an etc.				
					st webster is - Als Miller Grie de State				
Q 104	.0 6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	
		r		Moistur	e Content (%)				
		≭ <i>R</i> o	unded Maximum	Dry Density Va	lue at Rounded O	ptimum Moistu	re Value		
laximum [Dry Density	"	107.0	LBS/FT ³	per Method:	FSTM 5-51	5		
Optimum Moisture Content:		intent:	11.0	%		[LBR - Soal	ked 48 +/- 4 Ho	urs]	
LBR Value:			20	%		Surcharge \	Weight: 15 lbs		
Sample Description:			Brown Fine Sand						
ample Lo	cation:		LBR 1						
ampled B	y:		Miguel Marceles		Respec	tfully Submitte	d,		
ample Da	ite:		December 23, 20	06	Faulkne	er Engineering	Services		

John R. Gregos, Jr., P.E. Florida Registration No. 58628

Faulkn	er Engine	eering Se	rvices, Inc	÷.	12904 E 813-818 813-818 www.fa	12904 Dupont Circle, Tampa, Florida 33626 813-818-8307 Office 813-818-8381 Fax www.faulknereng.com			
		US	5 Highway Hi	301 (Falke	enburg to Ca ounty, Florida	useway)			
Client:	Mr. Michae	l Piendel			Report I	Date:	January	3, 2007	
	Centex Hor 3020 South Riverview, I	nes - West I Falkenburg FL 33569	Road		Project	Number:	06-6	524	
		MOISTUI	RE-DENSITY Repo	RELATIONSH rt Number: LE	IP & LIMEROCK 3R2 (Preliminary)	BEARING RAT	` 10		
1	00	Including of the second second							
					Zan yezhen an en even even even even even even e				
alue									
BR V									
ا ب						24 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -			
	10	19 2. C. C. F. S					· · · · · · · · · · · · · · · · · · ·		
	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	
94.00km.hm/s				moistaie					
F 110	0.0								
L 109	9.0 3.0								
린 107 호 107	7.0				2014 10 10 10 10 10 10 10 10 49 168 19 10 10 10 10 10 10 10 10 10				
ensii 10	5.0	n ja os el se					er filmen som er so Som er som er		
Q 10-	4.0 3.0			AF Sources					
1 100	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	
		[Moistur	e Content (%)	ntimum Maiatu			
		* Round	ed Maximum L	Dry Density Va	lue at Rounded O	pumum woistui	e value	۵ <i></i>	
Aaximum	Dry Density:		109.0	LBS/FT ³	per Method:	FSTM 5-515	5		
Optimum Moisture Content:		itent:	11.0	%		[LBR - Soak	ed 48 +/- 4 Ho	urs]	
LBR Value:			20	%		Surcharge V	Veight: 15 lbs		
Sample De	escription:	Brov	vn Silty Sand						
Sample Lo	ocation:	LBR	2						
Sampled E	By:	Migu	uel Marceles		Respec	tfully Submitted	i ,		
Sample Da	ate:	Dec	ember 23, 20(06	Faulkne	er Engineering : U. Im/n	Services		

John R. Gregos, Jr., P.E. Florida Registration No. 58628

John R. Gregos, Jr., P.E. Florida Registration No. 58628

er Engineeri	ng Services, Ir	813-818 813-818 www.fa	12904 Dupont Circle, Tampa, Florida 33626 813-818-8307 Office 813-818-8381 Fax www.faulknereng.com			
	US Highwa	y 301 (Falke Hillsborough Co	enburg to Ca ounty, Florida	useway)		
Ar. Michael Pienc Centex Homes - V	lel Vest Florida		Report I	Date:	January	2, 2007
020 South Falke liverview, FL 33	nburg Road 569		Project	Number:	06-624	
N	OISTURE-DENSIT Rep	Y RELATIONSH port Number: LE	IP & LIMEROCK 3R4 (Preliminary)	BEARING RAT	r10	
				8. Kon		
					에 관객 (이 문 국) 1) 은 1) 전 대 전 (
0				sider Mar Program de		
7.0	8.0 9.0	10.0 Moisture	11.0 Content (%)	12.0	13.0	14.0
	nn air a fan ban Anna ann an an ann an ann an ann ann	moisture		terendentari		
	e un tesse state de se Netenore e per priv				nan in die der die die Reference die die die die die die die die die di	
0		and the second s				
0						
o Aleman Ander					120	
7.0	8.0 9.0	10.0 Moisture	e Content (%)	12.0	13.0	14.0
*	Rounded Maximum	n Dry Density Val	ue at Rounded O	ptimum Moistul	re Value	
ry Density:	110.0	LBS/FT ³	per Method:	FSTM 5-515	5	*****
oisture Content:	11.0	%		[LBR - Soak	ed 48 +/- 4 Ho	urs]
	28	%		Surcharge V	Veight: 15 lbs	
scription:	Brown Silty San	d				
ation:	LBR 4					
<i>r</i> :	Miguel Marceles	;	Respec	tfully Submitted	d,	
e:	December 23, 2	006	Faulkne	er Engineering :	Services	
	Ir. Michael Pience internation internation ir. Michael Pience internation inter	IT Engineering Services, in US Highwa Ir. Michael Piendel entex Homes - West Florida 020 South Falkenburg Road liverview, FL 33569 MOISTURE-DENSIT Rep 0 0 7.0 8.0 9.0 0 0 7.0 8.0 9.0 0 0 1.0 8.0 9.0 1.0 8.0 9.	US Highway 301 (Falke Hillsborough Cd INCLEMENT Report Number: Le MOISTURE-DENSITY RELATIONSH Report Number: LE O Internet Services, Inc. MOISTURE-DENSITY RELATIONSH Report Number: LE O Internet Services, Inc. O Internet Services, Inc. MOISTURE-DENSITY RELATIONSH Report Number: LE O Internet Services, Inc. O Internet Services, Inc. O Internet Services, Inc. Internet Services, Inc. Internet Services, Inc. Internet Services, Inc. O Internet Services, Inc. Internet Service, I	T Engineering Services, Inc. B13-818 Www.fe US Highway 301 (Falkenburg to Ca Hillsborough County, Florida Ir. Michael Piendel entex Homes - West Florida 202 South Falkenburg Road Iverview, FL 33569 MOISTURE-DENSITY RELATIONSHIP & LIMEROCK Report Number: LBR4 (Preliminary) MOISTURE-DENSITY RELATIONSHIP & LIMEROCK Report Number: LBR4 Report Numb	Image: Project Project Services, Inc. 813-818-8381 Fax www.faulknereng.co US Highway 301 (Falkenburg to Causeway) Hillsborough County, Florida Ir. Michael Piendel Report Date: entex Homes - West Florida Project Number: 202 South Falkenburg Road Project Number: iverview, FL 33569 MOISTURE-DENSITY RELATIONSHIP & LIMEROCK BEARING RAT Report Number: LBR4 (Preliminary) 0 6 7.0 8.0 9.0 10.0 11.0 12.0 Moisture Content (%) Moisture Content (%) Image: Content (%) Image: Content (%) 7.0 8.0 9.0 10.0 11.0 12.0 0 Moisture Content (%) Image: Content (%) Image: Content (%) Image: Content (%) 7.0 8.0 9.0 10.0 11.0 12.0 0 Moisture Content (%) Image: Content (%) Image: Content (%) Image: Content (%) 7.0 8.0 9.0 10.0 11.0 12.0 10.0 LBS/FT ³ Per Method: FSTM 5-518 0 Image: Content: 11.0 % Image: Content: <td>Bill-B381 Fax www.faulknereng.com US Highway 301 (Falkenburg to Causeway) Hillsborough County, Florida Ir. Michael Piendel Report Date: January January OC South Falkenburg Road Project Number: 064 MOISTURE-DENSITY RELATIONSHIP & LIMEROCK BEARING RATIO Report Number: LBR4 (Preliminary) O O</td>	Bill-B381 Fax www.faulknereng.com US Highway 301 (Falkenburg to Causeway) Hillsborough County, Florida Ir. Michael Piendel Report Date: January January OC South Falkenburg Road Project Number: 064 MOISTURE-DENSITY RELATIONSHIP & LIMEROCK BEARING RATIO Report Number: LBR4 (Preliminary) O O

John R. Gregos, Jr., P.E. Florida Registration No. 58628

Faulkn	er Engi	neering	Services, Ir	1C <i>.</i>		12904 Du 813-818-8 813-818-8 www.fau	pont Circle, Ta 3307 Office 3381 Fax Iknereng.com	mpa, Florida	33626
			US Highwa	y 301 (Fa Hillsborough	Ikenburg County, Fl	l to Cau orida	seway)		
Client:	Mr. Michae Centex Ho 3020 South Riverview	el Piendel mes - We h Falkenbi FL 33569	st Florida urg Road			Report Da Project N	ite: umber:	January 2 06-6	2, 2007 24
		MOI	STURE-DENSIT	Y RELATION	SHIP & LIM LBR5 (Prel	EROCK BI	EARING RATIO)	
	00					<u></u>			······································
, en									
LBR Va					Line () (a				
	10 6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
				Moisi	ure Conten	: (%)	1999 - 199	An	
110 105 105 105	9.0 9.0				×				
)ensity (L	8.0								
1 Aug 100	5.0							Parling (Alasia) Arita da Alasia Arita da Alasia	2. A-58012 13. 127482
	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
		≭ Ra	ounded Maximum	Dry Density	Value at Ro	t (%) unded Opti	mum Moisture	Value	
<i>l</i> aximum	Dry Density	<i>/</i> :	109.0	LBS/FT	³ per M	ethod:	FSTM 5-515		
Optimum Moisture Content:		10.0	%			[LBR - Soaked	i 48 +/- 4 Ηοι	ırs]	
LBR Value:		30	%			Surcharge We	eight: 15 lbs		
Sample Description:			Brown Silty Sand	t					
Sample Lo	ocation:		LBR 5						
Sampled E	By:		Miguel Marceles			Respectfu	Illy Submitted,		
Sample Da	ate:		December 23, 20	006		raukner l	ngineering Se	9/07	

John R. Gregos, Jr., P.E. Florida Registration No. 58628

Faulkner Enginee	ering Services, In	IC.	12904 [813-818 813-818 <u>www.fa</u>	12904 Dupont Circle, Tampa, Florida 33626 813-818-8307 Office 813-818-8381 Fax www.faulknereng.com			
	US Highwa	y 301 (Falke Hillsborough Co	nburg to Ca unty, Florida	useway)			
Client: Mr. Michael P Centex Home	Piendel es - West Florida		Report	Date:	Januar	y 3, 2007	
3020 South F Riverview, FL	alkenburg Road . 33569		Project	Number:	Ub	-624	
	MOISTURE-DENSITY Rep	RELATIONSHI	& LIMEROCK R6 (Preliminary)	BEARING RA	TIO		
100							
			t fri in de las sevenas Services (Sevenas)				
an							
X X X	<u>i ensis di 1000 di situa i</u> Meseri di mana kaominin						
		a Holomoja vo 1946 1956 - Balti Shupiya 1956 - Balti Shupiya			in 1997 en Plais E Plais Plais		
10							
7.0	8.0 9	9.0 1	0.0	11.0	12.0	13.0	
		Moisture	Content (%)			enna en fem sa a está achdre comment, com muser comme	
F 113.0							
8 111.0				(s trajectional)			
년 110.0 후 109.0							
5 108.0 108.0			n norden en de la seconda de la seconda En la seconda de la seconda d				
E 106.0							
7.0	8.0 \$	9.0 1	0.0	11.0	12.0	13.0	
	* Rounded Maximum	Moisture Dry Density Valu	Content (%) e at Rounded O	otimum Moisti	ure Value		
Aaximum Dry Density:	112.0	LBS/FT ³	per Method:	FSTM 5-51	15	-	
Optimum Moisture Conter	חנ: 9.0	%		[LBK - Soa	IKea 48 +/- 4 H	oursj	
BK Value:	20	70		Surcharge	vveignt: 15 lbs	5	
ample Description:	Brown Silty Sand						
ample Location:	LBR 6						
ampled By:	Miguel Marceles		Respec	tfully Submitte	èd,		
Sample Date:	December 23, 20	006	Faulkne	r Engineering	Services <i> 19 </i> 07		

John R. Gregos, Jr., P.E. Florida Registration No. 58628

Important Information About Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

The following information is provided to help you manage your risks.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. *No one except you* should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one—not even you*—should apply the report for any purpose or project except the one originally contemplated.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, *do not rely on a geotechnical engineering report* that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions *only* at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an *opinion* about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are *Not* Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual subsurface conditions revealed during construction. *The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.*

A Geotechnical Engineering Report Is Subject To Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Renort and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce such risks, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations", many of these provisions indicate where geotechnical engineers responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenvironmental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures*. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else*.

Rely on Your Geotechnical Engineer for Additional Assistance

Membership in ASFE exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road Suite G106 Silver Spring, MD 20910 Telephone: 301-565-2733 Facsimile: 301-589-2017 email: info@asfe.org www.asfe.org

Copyright 1998 by ASFE, Inc. Unless ASFE grants written permission to do so, duplication of this document by any means whatsoever is expressly prohibited. Re-use of the wording in this document, in whole or in part, also is expressly prohibited, and may be done only with the express permission of ASFE or for purposes of review or scholarly research.

Report of Geotechnical Exploration U.S. Hwy 301 – Falkenburg to Causeway Hillsborough County, Florida FES Project No.: 06-624 (Rev. 1) March 9, 2007

APPENDIX A

Logs of Soil Borings

<u>AB-1</u>

Depth	
(feet BGS)	Soil Description
0 - 2.5	Brown, fine SAND (SP)
2.5 - 5	Light gray, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-2</u>

Depth	
(feet BGS)	Soil Description
0 - 2.5	Dark brown, fine SAND (SP)
2.5 - 5	Light gray, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-3</u>

D	ep	th	
(fee	t B	<u>GS)</u>	Soil Description
0		2.5	Brown, fine SAND (SP)
2.5	-	5	Light brown, fine SAND (SP) with trace rock fragments
	5		Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-4</u>

Donth	·······
(feet BGS)	Soil Description
0 - 3	Brown, fine SAND (SP)
3 - 5	Light gray, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-5</u>

Depth	
(feet BGS)	Soil Description
0 - 2.5	Brown, fine SAND (SP) with trace rock fragments
2.5 - 5	Brown, fine SAND (SP)
5	Boring terminated

FES Project No.: 06-624 Auger Boring Performed 12.20.06 to 12.22.06

<u>AB-6</u>

)	
<u>SS)</u>	Soil Description
5	Brown, fine SAND (SP) with trace rock fragments
	Boring terminated
0	Brown, the SAND (SP) with trace rock fragments Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-7</u>

Depth	_
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-8</u>

Depth	
(feet BGS)	Soil Description
0 - 2	Dark brown, fine SAND (SP)
2 - 5	Light gray, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-9

Depth		
(feet BGS)	Soil Description	
0 - 5	Brown, fine SAND (SP)	
5	Boring terminated	

Groundwater was not encountered at completion of boring.

<u>AB-10</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP)
5	Boring terminated

Auger Boring Performed 12.20.06 to 12.22.06

<u>AB-11</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-12</u>

Depth	
(feet BGS)	Soil Description
0 - 2	Dark brown, fine SAND (SP)
2 - 5	Light gray, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-13</u>

Depth	
(feet BGS)	Soil Description
0 - 3.5	Dark brown, fine SAND (SP)
3.5 - 5	Light brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-14

Depth	
(feet BGS)	Soil Description
0 - 3	Dark brown, fine SAND (SP)
3 - 5	Light gray, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-15</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

<u>AB-16</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-17</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-18</u>

Deptil	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-19</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated
	Groundwater was not encountered at completion of boring.

<u>AB-20</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Auger Boring Performed 12.20.06 to 12.22.06

<u>AB-21</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-22</u>

Description
brown, fine SAND (SP) with trace rock fragments
ig terminated

Groundwater was not encountered at completion of boring.

<u>AB-23</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-24</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-25</u>

Depth		
(feet	B	<u>GS)</u>
0	-	5
	5	

..

<u>Soil Description</u> Brown, fine SAND (SP) Boring terminated

<u>AB-26</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-27

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-28</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-29</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-30</u>

Depth	
(feet BGS)	Soil Description
0 - 4	Dark brown, fine SAND (SP)
4 - 5	Light brown, fine SAND (SP)
5	Boring terminated

<u>AB-31</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-32

Depth	
(feet BGS)	Soil Description
0 - 2	Dark brown, fine SAND (SP)
2 - 4	Orangish brown, fine SAND (SP)
4 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was encountered at 4 feet at completion of boring.

<u>AB-33</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-34</u>

Depth	
<u>(feet BGS)</u>	Soil Description
0 - 5	Dark brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-35</u>

4 feet minor orange staining

<u>AB-36</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP)
5	Boring terminated

Groundwater was encountered at 3.25 feet at completion of boring.

<u>AB-37</u>

Depth	
(feet BGS)	Soil Description
0 - 3	Dark brown, fine SAND (SP)
3 - 5	Light brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-38</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-39</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-40

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Donth

...

FES Project No.: 06-624

Auger Boring Performed 12.20.06 to 12.22.06

<u>AB-41</u>

Depin			
(feet BGS)	Soil Description		
0 - 5	Brown, fine SAND (SP)		
5	Boring terminated		

Groundwater was not encountered at completion of boring.

<u>AB-42</u>

~	~~	CI #		
(fee	t B	GS)		Soil Description
0	-	2		Light brown, fine SAND (SP)
2	-	4		Light gray/brown, fine SAND (SP)
4		5	•	Dark brown, fine SAND (SP-SM) with trace silt
	5			Boring terminated

Groundwater was encountered at 4 feet at completion of boring.

<u>AB-43</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-44

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-45</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

...

FES Project No.: 06-624

Auger Boring Performed 12.20.06 to 12.22.06

<u>AB-46</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-47</u>

Depth	
(feet BGS)	Soil Description
0 - 3	Dark brown, fine SAND (SP)
3 - 5	Light brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-48

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-49</u>

Depth		
(feet BGS)	Soil Description	
0 - 5	Brown, fine SAND (SP)	
5	Boring terminated	

Groundwater was not encountered at completion of boring.

AB-50

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Auger Boring Performed 12.20.06 to 12.22.06

<u>AB-51</u>

D	ер	th	
(fee	tΒ	GS)	
0	-	5	
	5		

<u>Soil Description</u> Gray/brown, fine SAND (SP) Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-52</u>

Depth	· · · · · · · · · · · · · · · · · · ·
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-53</u>

D	ер	th	
(fee	t B	GS)	1
0	-	5	I
	5		

Donth

<u>Soil Description</u> Brown, fine SAND (SP) Boring terminated

Groundwater was not encountered at completion of boring.

AB-54

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP-SC) with trace clay to clayey fine SAND (SC)
5	Boring terminated

Groundwater was encountered at 4.5 feet at completion of boring.

<u>AB-55</u>

ts

<u>AB-56</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Gray/brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-57

Depth	
(feet BGS)	S
0 - 5	E
5	E

Soil Description Brown, fine SAND (SP) Boring terminated

Groundwater was not encountered at completion of boring.

AB-58

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-59

Depth	
(feet BGS)	Soil Description
0 - 4	Dark brown, fine SAND (SP)
4 - 5	Light brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

AB-60

Depth				
(feet	t B	<u>GS)</u>		
0	-	5		
	5			

Soil Description Brown, fine SAND (SP) Boring terminated

<u>AB-61</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-62</u>

Depth (feet BGS) 0 - 5 5

Soil Description Brown, fine SAND (SP) Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-63</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP) with trace rock fragments
5	Boring terminated
0 - 5 5	Dark brown, fine SAND (SP) with trace rock fragmen Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-64</u>

D	ер	th	
(fee	t B	GS)	Soil Description
0	-	4	Brown, fine SAND (SP)
4	-	5	Dark brown, fine SAND (SP-SM) with trace silt
	5		Boring terminated

Groundwater was not encountered at completion of boring.

AB-65

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

<u>AB-66</u>

Depth (<u>feet BGS)</u> 0 - 5 5

Soil Description Brown, fine SAND (SP) Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-67</u>

Depth (feet BGS) 0 - 5 5

Soil Description Brown, fine SAND (SP) Boring terminated

Groundwater was not encountered at completion of boring.

AB-68

Depth (feet BGS) 0 - 5 5

Soil Description Brown, fine SAND (SP) Boring terminated

Groundwater was not encountered at completion of boring.

AB-69

Depth	
(feet BGS)	Soil Description
0 - 4	Dark brown, fine SAND (SP)
4 - 5	Light brown, fine SAND (SP)
5	Boring terminated

Soil Description

Brown, fine SAND (SP) Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-70</u>

D					
(fee	tΒ	GS	5)		
0	-	5			
	5				

..

<u>AB-71</u>

Depth	
(feet BGS)	Soil Description
0 - 3	Dark brown, fine SAND (SP)
3 - 5	Light brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-72</u>

E)ep	th 🕤		•	
(fee	et B	GS))		
0	-	5	_		
	5				

Soil Description Brown, fine SAND (SP) Boring terminated

Groundwater was not encountered at completion of boring.

AB-73

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-74</u>

Depth	
(feet BGS)	Soil Description
0 - 2	Brown, fine SAND (SP)
2 - 5	Orange/brown, fine SAND (SP) with minor orange staining
5	Boring terminated

Groundwater was encountered at 4 feet at completion of boring.

<u>AB-75</u>

Depth	
(feet BGS)	Soil Description
0 - 2	Dark brown, fine SAND (SP)
2 - 5	Light brown/gray, fine SAND (SP)
5	Boring terminated

<u>AB-76</u>

Depth	
(feet BGS)	Soil Description
0 - 5	Brown, fine SAND (SP) with trace rock fragments
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-77</u>

Depth	
(feet BGS)	Soil Description
0 - 2	Very dark brown, fine SAND (SP)
2 - 5	Light brown/gray, fine SAND (SP)
5	Boring terminated

Groundwater was encountered at 5 feet at completion of boring.

<u>AB-78</u>

Soil Description
Brown, fine SAND (SP)
Boring terminated

Groundwater was not encountered at completion of boring.

AB-79

Depth	
(feet BGS)	Soil Description
0 - 5	Dark brown, fine SAND (SP)
5	Boring terminated

Groundwater was not encountered at completion of boring.

<u>AB-80</u>

De	эp	th
(feet	В	GS)
0	-	5
	5	

Soil Description Brown, fine SAND (SP) Boring terminated

AB-81

D (fee	ep t B	th GS	5)		
0	-	2			
2	-	5			
	5				

Soil Description Dark brown, fine SAND (SP) Light brown, fine SAND (SP)

Boring terminated

Report of Geotechnical Exploration U.S. Hwy 301 – Falkenburg to Causeway Hillsborough County, Florida FES Project No.: 06-624 (Rev. 1) March 9, 2007

APPENDIX B

Key to Soil Classification

UNIFIED SOIL CLASSIFICATION (After U.S. Waterways Experiment Station and ASTM D 2487-66T)

-			La	boratory Classification Criteria	
Major Divisio	c	Group Symbol	Finer than 200 Sieve %	Supplementary Requirements	Soil Description
Coarse-grained (over 50% by	Gravelly soils (over	GW	0-5*	D ₆₀ /D ₁₀ greater than 4, D ₃₀ ² /D ₆₀ x D ₁₀ between 1 & 3	Well-graded gravels, sandy gravels
weight coarser than No. 200	half of coarse	GP	0-5* 17 cr moro *	Not meeting above gradation for GW	Gap-graded or uniform gravels, sandy gravels Sitty cravels
SIEVE)	traction larger than No. 4)	S S S S	12 or more * 12 or more *	PL less than 4 or below A-line PL over 7 and above A-line	əlity graveis, siliy sarioy-graveis, Clayey gravels, clayey sandy gravels
	Sandy soils soils (over	SW	0-5*	D ₆₀ /D ₁₀ greater than 4, D ₃₀ ² /D ₆₀ x D ₁₀ between 1 & 3	Well-graded sands, gravelly sands
	half of coarse	ср	0-5*	Not meeting above gradation for requirements	Gap-graded or uniform sands, gravelly sands
	fraction finer than No. 4)	SC	12 or more * 12 or more *	PL less than 4 or below A-line PL over 7 and above A-line	Silty sands, silty gravelly sands, Clayey sands, clayey gravelly sands
Fine-grained (over 50% by weight finer than No. 200 sieve)	Low-com pressibility (liquid limit less than 50)	or M	Plasticity chart Plasticity chart Plasticity chart	, organic odor or color	Silts, very fine sands, silty or clayey fine sands, micaceous silts Low plasticity clays, sandy or silty clays Organic silts and clays of low plasticity
	High com- pressibility (liquid limit greater than 50)	CH MH OH	Plasticity chart Plasticity chart Plasticity chart	, organic odor or color	Micaceous silts, diatomaceous silts, volcanic ash Highly plastic clays and sandy clays Organic silts and clays of high plasticity
Soils with fibrous organic matter		Та	Fibrous organi	c matter, will char, burn, or glow	Peat, sandy peats, and clayey peat

*For soils having 5 to 12 percent passing the No. 200 sieve, use a dual symbol such as GW-GC.