

US 41 (SR 45)

Project Development and Environment (PD&E) Study

From 12th Street to Kracker Avenue

Final Pond Sizing Analysis Memorandum

WPI Segment No: 421140 8; ETDM # 9511
Hillsborough County

Prepared for the
Florida Department of Transportation
District Seven

September 2009

US 41 (SR 45)

Project Development and Environment (PD&E) Study

From 12th Street to Kracker Avenue

Final Pond Sizing Analysis Memorandum

WPI Segment No: 421140 8; ETDM # 9511
Hillsborough County

Prepared for the
Florida Department of Transportation
District Seven

Prepared by
American Consulting Engineers of Florida, LLC

September 2009

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
Section 1 – EXECUTIVE SUMMARY	1
Section 2 – INTRODUCTION	2
2.1 Project Description	2
2.2 Purpose of Report	5
2.3 Existing Facility and Proposed Improvements	5
Section 3.0 – POND SIZING ANALYSIS	8
Appendix A: Drainage Maps	
Appendix B: Drainage Calculations	

LIST OF FIGURES

<u>Figure</u>	<u>Page</u>
Figure 2-1 – Project Location Map	3
Figure 2-2 – Existing & Proposed Build Alternative Typical Sections	6

LIST OF TABLES

<u>Table</u>	<u>Page</u>
Table 3-1: Stormwater Management Facility Summary	9
Table 3-2: Floodplain Encroachment and Compensation Summary	10

Section 1 – EXECUTIVE SUMMARY

The Florida Department of Transportation (FDOT) conducted a Project Development and Environment (PD&E) Study to evaluate alternative improvements for US 41/SR 45 from 12th Street North to Kracker Avenue in southern Hillsborough County (**Figure 2-1**). The total project length is approximately 6.2 miles. Study objectives included the following: determine proposed typical sections and develop preliminary conceptual design plans for proposed improvements, while minimizing impacts to the environment; consider agency and public comments; and ensure project compliance with all applicable federal and state laws. Improvement alternatives were identified which will improve safety and meet future transportation demand.

In accordance with the FDOT's PD&E Manual, a Pond Sizing Analysis Memorandum was prepared for this PD&E Study. The information presented in this document is subject to change until the final Phase of the project. This Pond Sizing Analysis Memorandum is preliminary and used as an engineering tool to identify potential stormwater management and floodplain compensation site requirements to serve the conceptual improvements. The calculations presented in this report are preliminary and help in estimating the preliminary size of the pond site facilities for each basin. The size requirements are preliminary based upon many assumptions and judgments. Conceptual calculations are attached in **Appendix A**.

The stormwater management facilities are estimated based on the difference between the existing condition and the conceptual improvements estimated runoff volumes (non-routing method). Water quality requirements are also estimated based on both standard water quality and TMDL requirements. Facilities can be combined, where possible, to reduce the number of pond sites and realize efficiencies in maintenance and access areas. The results are summarized in **Table 3-1**.

Floodplain compensation site requirements are identified separately and are estimated based on the area of encroachment, estimated volume of encroachment, and estimated depth of compensation per area of compensation site. These are summarized in **Table 3-2**.

Section 2 – INTRODUCTION

2.1 Project Description

The Florida Department of Transportation (FDOT) conducted a Project Development and Environment (PD&E) Study to evaluate alternative improvements to US 41 (SR 45). This project involves a 6.2 mile segment of US 41 from 12th Street extending north to Kracker Avenue in Hillsborough County (**Figure 2-1**). The highway is to be improved from an existing, four-lane rural facility to an urban and suburban six-lane divided facility. There are no bridge structures located within this segment of US 41; however, bridge culvert widening or replacement is anticipated over Wildcat Creek and Newmans Branch. The proposed improvements will include construction of stormwater management facilities and various intersection improvements, in addition to bicycle and pedestrian facilities. The study area is located in Township 31, Range 19, and Sections 2, 3, 10, 11, 14, 15, 22, 27, 28, 32 and 33.

US 41 (SR 45) PD&E Study

from 12th Street to Kracker Avenue
Hillsborough County, FL
WPI Segment No. 421140-8

Source: FGDL

Project Location Map

Figure X-X

Purpose and Need

The purpose of the proposed project is to provide a higher capacity and safer facility to better meet future transportation demand in this rapidly developing area of Hillsborough County. US 41 runs parallel to and west of I-75. US 41 is a major north-south urban principal arterial that connects numerous communities along the west coast of Florida, including Ruskin, Apollo Beach and Gibsonton. This anticipated traffic growth and existing high levels of congestion create a need to analyze the corridor for necessary improvements to ensure this facility does not continue to deteriorate resulting in unacceptable levels of service. The PD&E Study also included the consideration of a No-Build Alternative.

US 41 is functionally classified as an “urban principal arterial – other”. While US 41 is not on the Strategic Intermodal System (SIS), a short (0.92 miles) segment of US 41 between Pembroke Road and Big Bend Road (CR 672) is part of a SIS connector, which connects the Port of Tampa to I-75, both of which are SIS facilities. The Strategic Intermodal System (SIS) is a statewide network of highways, railways, waterways and transportation hubs that handle the bulk of Florida’s passenger and freight traffic. This project is included in the Hillsborough County Metropolitan Planning Organization’s (MPO) Year 2025 Long-Range Transportation Plan (LRTP) as an unfunded need. The West Central Florida MPO Chair’s Coordinating Committee (CCC) has classified US 41 as a “regional road” and as an “unfunded need” on the “regionally significant road network” in west central Florida. This corridor is also designated as an emergency evacuation route.

A longer segment of US 41 was evaluated in the Programming Screen of the Efficient Transportation Decision Making (ETDM) process (project #5180) in 2008, for a larger area along US 41 from 19th Avenue NE to Gibsonton Drive. This process established the Class of Action as a State Environmental Impact Report (SEIR).

2.2 Purpose of Report

The purpose of this Pond Sizing Analysis Memorandum is preliminary and used as an engineering tool to identify potential stormwater management and floodplain compensation site requirements to serve the conceptual improvements. The calculations presented in this report are preliminary and help in estimating the preliminary size of the pond site facilities for each basin. The size requirements are preliminary based upon many assumptions and judgments. Conceptual calculations are attached in **Appendix A**.

2.3 Existing Facility and Proposed Improvements

US 41 currently has a 4-lane divided rural typical section (**Figure 2-2**). The existing roadway has 11.5 to 12.0 ft travel lanes, 4-ft paved inside and outside shoulders, and a 40-ft grassed median. The posted speed limit is 55 miles per hour (mph) except for a short segment on either side of Big Bend Road, which is posted at 45 mph. The existing right-of-way typically varies from 182 ft to 227 ft.

Expected improvements include widening to six lanes as well as intersection improvements and construction of stormwater management facilities and bicycle and pedestrian facilities. In addition to six basic lanes, auxiliary lanes are also proposed in the vicinity of Apollo Beach Boulevard and Big Bend Road (CR 672). Preliminary recommended roadway typical sections are shown in **Figure 2-2**. A “No-Build” Alternative will also be considered. The proposed project is not funded in FDOT’s current 5-year work program.

US 41 Existing Typical Section

(Existing 5-ft sidewalks are intermittent)

US 41 Proposed Suburban Typical Section

6-Lane Suburban

Design Speed = 50 MPH

Rev. 7/30/09

US 41 (SR 45) PD&E Study
From 12th Street to Kracker Avenue
Hillsborough County, Florida
WPI Segment No. 421140-8

US 41 Existing and Proposed Build Alternative Typical Sections

Figure 2-2
Sheet 1 of 2

6-Lane Urban with Auxiliary Lanes*

Design Speed = 45 MPH

*This typical section applies to two segments:

1. From Flamingo Drive to approximately 1000 ft north of Apollo Beach Blvd
2. Approximately 1000 ft south of Big Bend Road to Big Bend Road

6-Lane High-Speed Urban with Auxiliary Lanes**

Design Speed = 50 MPH

**This typical section applies to US 41 from Big Bend Road to Pembroke Road, which is part of a Strategic Intermodal System (SIS) connector route which connects the Port of Tampa to I-75.

Rev. 2/27/09

US 41 (SR 45) PD&E Study

From 12th Street to Kracker Avenue
Hillsborough County, Florida
WPI Segment No. 421140-8

US 41 Proposed Build Alternative Typical Sections

Figure 2-2
Sheet 2 of 2

Section 3.0 – POND SIZING ANALYSIS

The information presented in this document is subject to change until the final Phase of the project. This Pond Sizing Analysis Memorandum is preliminary and used as an engineering tool to identify potential stormwater management and floodplain compensation site requirements to serve the conceptual improvements. The calculations presented in this report are preliminary and help in estimating the preliminary size of the pond site facilities for each basin. The size requirements are preliminary based upon many assumptions and judgments. Conceptual calculations are attached in **Appendix A**.

The stormwater management facilities are estimated based on the difference between the existing condition and the conceptual improvements estimated runoff volumes (non-routing method). Water quality requirements are also estimated based on both standard water quality and TMDL requirements. Facilities can be combined, where possible, to reduce the number of pond sites and realize efficiencies in maintenance and access areas. The results are summarized in **Table 3-1**.

Floodplain compensation site requirements are identified separately and are estimated based on the area of encroachment, estimated volume of encroachment, and estimated depth of compensation per area of compensation site. These are summarized in **Table 3-2**.

Table 3-1: Stormwater Management Facility Summary

Project Basin/Pond No.	Project Basin Boundaries	Wet Detention Area (ac)	Dry Retention Area (ac)	SWF Total Area (ac)
1A	Sta 162+50 to Sta 173+72	1.34	0.45	1.79
1	Sta 173+72 to Sta 188+85	1.73	0.54	2.27
2	Sta 188+85 to Sta 229+90	4.70	1.45	6.15
3	Sta 229+90 to Sta 253+02	2.65	0.82	3.47
4	Sta 253+02 to Sta 275+35	2.56	0.79	3.35
5	Sta 275+35 to Sta 321+94	5.34	1.65	6.99
6	Sta 321+94 to Sta 340+35	2.11	0.65	2.76
7	Sta 340+35 to Sta 375+35	4.01	1.25	5.26
8	Sta 375+35 to Sta 391+52	1.85	0.57	2.42
9	Sta 391+52 to Sta 402+35	1.24	0.38	1.62
10	Sta 402+35 to Sta 412+17	1.13	0.35	1.48
11	Sta 412+17 to Sta 439+95	3.18	0.98	4.16
12	Sta 439+95 to Sta 444+46	0.52	0.16	0.68
13	Sta 444+46 to Sta 458+35 (west of centerline)	0.80	0.25	1.05
14	Sta 444+46 to Sta 471+44 (east of centerline)	1.55	0.48	2.03
15	Sta 458+35 to Sta 471+44 (west of centerline)	0.75	0.23	0.98

Table 3-2: Floodplain Encroachment and Compensation Summary

Project Basin/FPC site No.	Project Basin Boundaries	Zone AE 1% annual chance flood EL (ft –NAVD 88) ①	Estimated Floodplain Encroachment Area (ac)	Estimated Floodplain Compensation (FPC) site Volume (ac-ft) ②
1A	Sta 162+50 to Sta 173+72	9.0	4.63	4.63
1	Sta 173+72 to Sta 188+85	9.0	6.32	6.32
2	Sta 188+85 to Sta 229+90	9.0	17.15	17.15
3	Sta 229+90 to Sta 253+02	9.0	6.99	6.99
4	Sta 253+02 to Sta 275+35	9.0	1.80	1.80
5	Sta 275+35 to Sta 321+94	9.0	2.43	2.43
6	Sta 321+94 to Sta 340+35	9.0	0.83	0.83
7	Sta 340+35 to Sta 375+35	10.0	0.04	0.04
8	Sta 375+35 to Sta 391+52	10.0	1.61	1.61
9	Sta 391+52 to Sta 402+35	10.0	3.09	3.09
10	Sta 402+35 to Sta 412+17	10.0	4.10	4.10
11	Sta 412+17 to Sta 439+95	10.0-11.0	11.61	11.61
12	Sta 439+95 to Sta 444+46	10.0-11.0	1.88	1.88
13	Sta 444+46 to Sta 458+35 (west of centerline)	10.0-11.0	2.90	2.90
14	Sta 444+46 to Sta 471+44 (east of centerline)	10.0-11.0	5.64	5.64
15	Sta 458+35 to Sta 471+44 (west of centerline)	10.0-11.0	2.73	2.73

① The estimated 100-year floodplain elevations are taken from the Revised Preliminary FIRMs for Hillsborough County, panel numbers 0656H, 0493H, 0494H, 0492H and 0484H. It is anticipated that the Revised Preliminary FIRMs will supersede the Current Effective FIRMs on August 28, 2008.

② An estimated fill depth of 1-ft was used to determine the estimated FPC site volume

Appendix A

Drainage Maps

LEGEND

- PUBLIC MANAGED LANDS
- PROPOSED ROADWAY
- FEMA 100 YEAR FLOOD PLAIN
- WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)
- DRAINAGE BASIN DIVIDE
- EXISTING & PROPOSED ROW
- PROPERTY LINES (HILLSBOROUGH COUNTY GIS)
- RCP CULVERT
- RUNOFF FLOW DIRECTION

American
Consulting Engineers of Florida, LLC
18250 North US Highway 41
Lutz, Florida 33549
Phone: (813) 496-7400 Fax: (813) 496-7401
Certificate of Authorization No. 9302
Jeffrey S. Novotny, P.E. No. 51083

US 41 (SR 45) PD&E STUDY DRAINAGE MAP

FPID 421140-8-22-01

SHEET NO.

1

USER: 5ryanm

1/27/2009

F:\Project\5079041\42114082201\roadway\PLANRD03.dgn

LEGEND

- PUBLIC MANAGED LANDS
- PROPOSED ROADWAY
- FEMA 100 YEAR FLOOD PLAIN
- WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)

- DRAINAGE BASIN DIVIDE
- EXISTING & PROPOSED ROW
- PROPERTY LINES (HILLSBOROUGH COUNTY GIS)
- RCP CULVERT
- RUNOFF FLOW DIRECTION

- POTENTIALLY CONTAMINATED SITE
- POTENTIAL POND SITE

0 50 200 Feet

American
Consulting Engineers of Florida, LLC
18250 North US Highway 41
Lutz, Florida 33549
Phone: (813) 496-7400 Fax: (813) 496-7401
Certificate of Authorization No. 9302
Jeffrey S. Novotny, P.E. No. 51083

US 41 (SR 45) PD&E STUDY DRAINAGE MAP

FPID 421140-8-22-01

SHEET NO.
2

LEGEND

- PUBLIC MANAGED LANDS
- PROPOSED ROADWAY
- FEMA 100 YEAR FLOOD PLAIN
- WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)

- DRAINAGE BASIN DIVIDE
- EXISTING & PROPOSED ROW
- PROPERTY LINES (HILLSBOROUGH COUNTY GIS)
- RCP CULVERT
- RUNOFF FLOW DIRECTION

American
Consulting Engineers of Florida, LLC
18250 North US Highway 41
Lutz, Florida 33549
Phone: (813) 496-7400 Fax: (813) 496-7401
Certificate of Authorization No. 9302
Jeffrey S. Novotny, P.E. No. 51083

US 41 (SR 45) PD&E STUDY
DRAINAGE MAP

FPID 421140-8-22-01

SHEET NO.
3

LEGEND

- PUBLIC MANAGED LANDS
- PROPOSED ROADWAY
- FEMA 100 YEAR FLOOD PLAIN
- WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)

- DRAINAGE BASIN DIVIDE
- EXISTING & PROPOSED ROW
- PROPERTY LINES (HILLSBOROUGH COUNTY GIS)
- RCP CULVERT
- RUNOFF FLOW DIRECTION

- POTENTIALLY CONTAMINATED SITE
- POTENTIAL POND SITE

0 50 200 Feet

American
Consulting Engineers of Florida, LLC
18250 North US Highway 41
Lutz, Florida 33549
Phone: (813) 496-7400 Fax: (813) 496-7401
Certificate of Authorization No. 9302
Jeffrey S. Novotny, P.E. No. 51083

US 41 (SR 45) PD&E STUDY DRAINAGE MAP

SHEET NO.
4

LEGEND

- PUBLIC MANAGED LANDS
- PROPOSED ROADWAY
- FEMA 100 YEAR FLOOD PLAIN
- WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)

- DRAINAGE BASIN DIVIDE
- EXISTING & PROPOSED ROW
- PROPERTY LINES (HILLSBOROUGH COUNTY GIS)
- RCP CULVERT
- RUNOFF FLOW DIRECTION

American
Consulting Engineers of Florida, LLC
18250 North US Highway 41
Lutz, Florida 33549
Phone: (813) 496-7400 Fax: (813) 496-7401
Certificate of Authorization No. 9302
Jeffrey S. Novotny, P.E. No. 51083

US 41 (SR 45) PD&E STUDY DRAINAGE MAP

FPID 421140-8-22-01

SHEET NO.
5

LEGEND

Legend

	PUBLIC MANAGED LANDS		DRAINAGE BASIN DIVIDE
	PROPOSED ROADWAY		EXISTING & PROPOSED ROW
	FEMA 100 YEAR FLOOD PLAIN		PROPERTY LINES (HILLSBOROUGH COUNTY GI)
	WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)		RCP CULVERT
			RUNOFF FLOW DIRECTION

The logo for American Consulting Engineers of Florida, LLC. It features a stylized 'A' icon composed of a triangle and a circle, followed by the company name in a serif font.

**US 41 (SR 45) PD&E STUDY
DRAINAGE MAP**

SHEET
NO.

LEGEND

- PUBLIC MANAGED LANDS
- PROPOSED ROADWAY
- FEMA 100 YEAR FLOOD PLAIN
- WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)

- DRAINAGE BASIN DIVIDE
- EXISTING & PROPOSED ROW
- PROPERTY LINES (HILLSBOROUGH COUNTY GIS)
- RCP CULVERT
- RUNOFF FLOW DIRECTION

- POTENTIALLY CONTAMINATED SITE
- POTENTIAL POND SITE

0 50 200 Feet

American
Consulting Engineers of Florida, LLC
18250 North US Highway 41
Lutz, Florida 33549
Phone: (813) 496-7400 Fax: (813) 496-7401
Certificate of Authorization No. 9302
Jeffrey S. Novotny, P.E. No. 51083

US 41 (SR 45) PD&E STUDY
DRAINAGE MAP

FPID 421140-8-22-01

SHEET NO.
7

LEGEND

- PUBLIC MANAGED LANDS**
- PROPOSED ROADWAY**
- FEMA 100 YEAR FLOOD PLAIN**
- WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)**

- DRAINAGE BaSiN DiViDe**
- EXISTING & PROPOSED ROW**
- PROPERTY LINES (HILLSBOROUGH COUNTY GIS)**
- RCP CULVERT**
- RUNOFF FLOW DIRECTION**

American
Consulting Engineers of Florida, LLC
18250 North US Highway 41
Lutz, Florida 33549
Phone: (813) 496-7400 Fax: (813) 496-7401
Certificate of Authorization No. 9302
Jeffrey S. Novotny, P.E. No. 51083

US 41 (SR 45) PD&E STUDY
DRAINAGE MAP

FPID 421140-8-22-01

SHEET NO.
8

LEGEND

- █ PUBLIC MANAGED LANDS
- PROPOSED ROADWAY
- █ FEMA 100 YEAR FLOOD PLAIN
- ◆◆◆◆ WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)
- DRAINAGE BASIN DIVIDE EXISTING & PROPOSED ROW
- PROPERTY LINES (HILLSBOROUGH COUNTY GIS)
- RCP CULVERT
- ~ RUNOFF FLOW DIRECTION

C POTENTIALLY CONTAMINATED SITE
P POTENTIAL POND SITE

0 50 200 Feet

American
 Consulting Engineers of Florida, LLC
 18250 North US Highway 41
 Lutz, Florida 33549
 Phone: (813) 496-7400 Fax: (813) 496-7401
 Certificate of Authorization No. 9302
 Jeffrey S. Novotny, P.E. No. 51083

US 41 (SR 41) PD&E STUDY
DRAINAGE MAP

FPID 421140-8-22-01

SHEET NO.
 9

American
Consulting Engineers of Florida, LLC
18250 North US Highway 41
Lutz, Florida 33549
Phone: (813) 496-7400 Fax: (813) 496-7401
Certificate of Authorization No. 9302
Jeffrey S. Novotny, P.E. No. 51083

**US 41 (SR 45) PD&E STUDY
DRAINAGE MAP**

FPID 421140-8-22-01

SHEET NO.

11

LEGEND

- PUBLIC MANAGED LANDS
- PROPOSED ROADWAY
- FEMA 100 YEAR FLOOD PLAIN
- WETLAND OR OTHER SURFACE WATERS BOUNDARY (NWI GIS)
- DRAINAGE BASIN DIVIDE
- EXISTING & PROPOSED ROW
- PROPERTY LINES (HILLSBOROUGH COUNTY GIS)
- RCP CULVERT
- RUNOFF FLOW DIRECTION

American
Consulting Engineers of Florida, LLC
18250 North US Highway 41
Lutz, Florida 33549
Phone: (813) 496-7400 Fax: (813) 496-7401
Certificate of Authorization No. 9302
Jeffrey S. Novotny, P.E. No. 51083

US 41 (SR 41) PD&E STUDY DRAINAGE MAP

FPID 421140-8-22-01

SHEET NO.
12

Appendix B

Drainage Calculations

(This page intentionally left blank)

Project Basin 1A

Begin Station Sta1 := 16250ft End Station Sta2 := 17372ft
 Length := Sta2 - Sta1 Length = 1122 ft Row_width := 182ft
 Additional_Area := 0.38acre Additional_Area = 0.38·acre
 Row_area := Length·Row_width + Additional_Area Row_area = 5.07·acre

Land use break down

Increase impervious areas by percentage for intersections, etc. Exist_inc := 10% Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 1.59 acre
 Exist_per := Row_area - Exist_imp Exist_per = 3.48 acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 3.67 acre
 Prop_per := Row_area - Prop_imp Prop_per = 1.39 acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 2.09 acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:

Roads Elev_pvmt := 8·ft
 Pervious Areas: Elev_prv := 5·ft

Water table data based on soil data and topographic information, approximate only

Depth := 1ft

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 85.6

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 93.05

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage

$$S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in}$$

$$S_e = 1.68 \cdot \text{in}$$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf)

$$Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$$

$$Q_{e100} = 10.2 \cdot \text{in}$$

Runoff Volume (100-Year, Vf)

$$V_{e100} := Q_{e100} \cdot \text{Row_area}$$

$$V_{e100} = 4.31 \cdot \text{acre} \cdot \text{ft}$$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf)

$$Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$$

$$Q_{e25} = 7.26 \cdot \text{in}$$

Runoff Volume (25-Year, Vf)

$$V_{e25} := Q_{e25} \cdot \text{Row_area}$$

$$V_{e25} = 3.07 \cdot \text{acre} \cdot \text{ft}$$

Proposed runoff volume calculation

Soil Storage

$$S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in}$$

$$S_p = 0.75 \cdot \text{in}$$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf)

$$Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$$

$$Q_{p100} = 11.15 \cdot \text{in}$$

Runoff Volume (100-Year, Vf)

$$V_{p100} := Q_{p100} \cdot \text{Row_area}$$

$$V_{p100} = 4.71 \cdot \text{acre} \cdot \text{ft}$$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf)

$$Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$$

$$Q_{p25} = 8.16 \cdot \text{in}$$

Runoff Volume (25-Year, Vf)

$$V_{p25} := Q_{p25} \cdot \text{Row_area}$$

$$V_{p25} = 3.45 \cdot \text{acre} \cdot \text{ft}$$

Required attenuation storage volume calculation

$$Att_{req100} := V_{p100} - V_{e100}$$

$$Att_{req100} = 0.40 \cdot \text{acre} \cdot \text{ft}$$

$$Att_{req25} := V_{p25} - V_{e25}$$

$$Att_{req25} = 0.38 \cdot \text{acre} \cdot \text{ft}$$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.42 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft}$$

$$\text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW}$$

$$\text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 1.00 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + \text{Vwq}}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 1.34 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 1.34 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 85.64$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_e := 0.266 - \frac{(266 - 182)}{(90 - 85)} \cdot (90 - CN_e) \quad CA_e = 0.19$$

$$\text{Existing annual runoff} \quad QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 4.19 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

$$\begin{aligned} \text{Existing annual loading} \\ \text{Nitrogen loading} \quad NA_e := TNhwy \cdot QA_e \quad NA_e = 8.48 \cdot \frac{\text{kg}}{\text{yr}} \\ \text{Phosphorus loading} \quad PA_e := TPhwy \cdot QA_e \quad PA_e = 1.14 \cdot \frac{\text{kg}}{\text{yr}} \end{aligned}$$

Proposed loading calculation

Proposed roadway DCIA = 100% $CN_p = 93.05$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_p := 0.823$$

$$\text{Existing annual runoff} \quad QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 17.90 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

$$\begin{aligned} \text{Existing annual loading} \\ \text{Nitrogen loading} \quad NA_p := TNhwy \cdot QA_p \quad NA_p = 36.21 \cdot \frac{\text{kg}}{\text{yr}} \\ \text{Phosphorus loading} \quad PA_p := TPhwy \cdot QA_p \quad PA_p = 4.86 \cdot \frac{\text{kg}}{\text{yr}} \end{aligned}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency} \quad NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 76.6\%$$

$$\text{Required P removal efficiency} \quad PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 76.6\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 4.42 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} & = 17.90 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} & = 90.15 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} & := \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} & = 41.7\% \text{ NG} \\ \text{PRP} & := \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} & = 73.1\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\text{Eff1} := 59.83\% \quad \text{Eff2}_N := \text{PRN} \quad \text{Eff2}_P := \text{PRP}$$

$$\text{NRe} = 76.59\% \quad \text{PRe} = 76.59\%$$

$$\begin{aligned} \text{Treatment train efficiency} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N & = 76.59\% \\ & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P & = 89.21\% \end{aligned}$$

From FDEP Stormwater Quality handbook, appendix D

$$\text{Eff1}_{\text{depth}} := 1.00 \text{ in} - \frac{1.00 \text{ in} - 0.75 \text{ in}}{65.6\% - 55.7\%} \cdot (65.6\% - \text{Eff1}) \quad \text{Eff1}_{\text{depth}} = 0.85 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.36 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1 \text{ ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2 \text{ ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.45 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 1.79 \cdot \text{acre}$$

Project Basin 1

Begin Station Sta1 := 17372ft End Station Sta2 := 18885ft
 Length := Sta2 - Sta1 Length = 1513 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 6.32·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 2.14·acre
 Exist_per := Row_area - Exist_imp Exist_per = 4.18·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 4.95·acre
 Prop_per := Row_area - Prop_imp Prop_per = 1.37·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 2.81·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80

CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in}$ $S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area}$ $V_{e100} = 5.4 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area}$ $V_{e25} = 3.85 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in}$ $S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area}$ $V_{p100} = 5.94 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area}$ $V_{p25} = 4.37 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$ $Att_{req100} = 0.54 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25}$ $Att_{req25} = 0.51 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.53 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 1.35 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 1.73 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 1.73 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 86.09$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff} \quad QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 5.44 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_e := TNhwy \cdot QA_e \quad NA_e = 11.00 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_e := TPhwy \cdot QA_e \quad PA_e = 1.48 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% $CN_p = 94.10$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_p := 0.823$$

$$\text{Existing annual runoff} \quad QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 22.33 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_p := TNhwy \cdot QA_p \quad NA_p = 45.17 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_p := TPhwy \cdot QA_p \quad PA_p = 6.06 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency} \quad NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency} \quad PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 5.72 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} & = 22.33 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} & = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} & := \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} & = 41.8\% \text{ NG} \\ \text{PRP} & := \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} & = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} & := 58.2\% & \text{Eff2}_N & := \text{PRN} \quad \text{Eff2}_P := \text{PRP} \\ & & \text{NRe} & = 75.66\% \quad \text{PRe} = 75.66\% \end{aligned}$$

$$\begin{aligned} \text{Treatment train efficiency} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N & = 75.67\% \\ & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P & = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbood, appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.43 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.54 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 2.27 \cdot \text{acre}$$

Project: US 41 (SR 45) PD&E
FPID No. 421140-8-22-01
Hillsborough County
Project No.: 5079041

Project Basin 2

Begin Station Sta1 := 18885ft End Station Sta2 := 22990ft
 Length := Sta2 - Sta1 Length = 4105 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 17.15·acre

Land use break down

Increase impervious areas by percentage for intersections, etc. Exist_inc := 10% Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 5.81·acre
 Exist_per := Row_area - Exist_imp Exist_per = 11.35·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 13.44·acre
 Prop_per := Row_area - Prop_imp Prop_per = 3.71·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 7.63·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:		Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in}$ $S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area}$ $V_{e100} = 14.66 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area}$ $V_{e25} = 10.46 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in}$ $S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area}$ $V_{p100} = 16.12 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area}$ $V_{p25} = 11.85 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$ $Att_{req100} = 1.46 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25}$ $Att_{req25} = 1.39 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 1.43 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 3.65 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + \text{Vwq}}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 4.70 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 4.70 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 86.09$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_e := 0.182 - \frac{(.182 - .266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff} \quad QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 14.75 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_e := TNhwy \cdot QA_e \quad NA_e = 29.83 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_e := TPhwy \cdot QA_e \quad PA_e = 4.00 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% $CN_p = 94.10$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_p := 0.823$$

$$\text{Existing annual runoff} \quad QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 60.58 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_p := TNhwy \cdot QA_p \quad NA_p = 122.55 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_p := TPhwy \cdot QA_p \quad PA_p = 16.44 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency} \quad NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency} \quad PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 15.52 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} = 60.58 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} &:= \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} = 41.8\% \text{ NG} \\ \text{PRP} &:= \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} &:= 58.2\% & \text{Eff2}_N &:= \text{PRN} & \text{Eff2}_P &:= \text{PRP} \\ & & & & & \\ & & \text{NRe} = 75.66\% & \text{PRe} = 75.66\% & & \end{aligned}$$

$$\begin{aligned} \text{Treatment train} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N = 75.67\% \\ \text{efficiency} & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbood, appendix D

$$\text{Eff1}_{\text{depth}} := 0.75 \text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75 \text{in} - 1.0 \text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 1.16 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1 \text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2 \text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 1.45 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 6.16 \cdot \text{acre}$$

Project Basin 3

Begin Station Sta1 := 22990ft End Station Sta2 := 25302ft
 Length := Sta2 - Sta1 Length = 2312 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 9.66·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 3.27·acre
 Exist_per := Row_area - Exist_imp Exist_per = 6.39·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 7.57·acre
 Prop_per := Row_area - Prop_imp Prop_per = 2.09·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 4.30·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in}$ $S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area}$ $V_{e100} = 8.26 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area}$ $V_{e25} = 5.89 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in}$ $S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area}$ $V_{p100} = 9.08 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area}$ $V_{p25} = 6.67 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$ $Att_{req100} = 0.82 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25}$ $Att_{req25} = 0.78 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.80 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 2.06 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 2.65 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 2.65 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 86.09$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff} \quad QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 8.31 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_e := TNhwy \cdot QA_e \quad NA_e = 16.80 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_e := TPhwy \cdot QA_e \quad PA_e = 2.25 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% $CN_p = 94.10$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_p := 0.823$$

$$\text{Existing annual runoff} \quad QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 34.12 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_p := TNhwy \cdot QA_p \quad NA_p = 69.02 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_p := TPhwy \cdot QA_p \quad PA_p = 9.26 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency} \quad NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency} \quad PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 8.74 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} = 34.12 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} &:= \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} = 41.8\% \text{ NG} \\ \text{PRP} &:= \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} &:= 58.2\% & \text{Eff2}_N &:= \text{PRN} & \text{Eff2}_P &:= \text{PRP} \\ & & & & & \\ & & \text{NRe} = 75.66\% & \text{PRe} = 75.66\% & & \end{aligned}$$

$$\begin{aligned} \text{Treatment train} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N = 75.67\% \\ \text{efficiency} & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook, appendix D

$$\text{Eff1}_{\text{depth}} := 0.75 \text{ in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75 \text{ in} - 1.0 \text{ in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.65 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1 \text{ ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2 \text{ ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.82 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 3.47 \cdot \text{acre}$$

Project Basin 4

Begin Station Sta1 := 25302ft End Station Sta2 := 27535ft
 Length := Sta2 - Sta1 Length = 2233 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 9.33·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 3.16·acre
 Exist_per := Row_area - Exist_imp Exist_per = 6.17·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 7.31·acre
 Prop_per := Row_area - Prop_imp Prop_per = 2.02·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 4.15·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:		Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in}$ $S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area}$ $V_{e100} = 7.98 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area}$ $V_{e25} = 5.69 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in}$ $S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area}$ $V_{p100} = 8.77 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area}$ $V_{p25} = 6.44 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$ $Att_{req100} = 0.79 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25}$ $Att_{req25} = 0.76 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.78 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 1.99 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 2.56 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 2.56 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 86.09$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff } QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 8.02 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_e := TNhwy \cdot QA_e \quad NA_e = 16.23 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_e := TPhwy \cdot QA_e \quad PA_e = 2.18 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% $CN_p = 94.10$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_p := 0.823$$

$$\text{Existing annual runoff } QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 32.95 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_p := TNhwy \cdot QA_p \quad NA_p = 66.66 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_p := TPhwy \cdot QA_p \quad PA_p = 8.94 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency } NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency } PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 8.44 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} = 32.95 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} &:= \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} = 41.8\% \text{ NG} \\ \text{PRP} &:= \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} &:= 58.2\% & \text{Eff2}_N &:= \text{PRN} & \text{Eff2}_P &:= \text{PRP} \\ & & & & & \\ & & \text{NRe} = 75.66\% & \text{PRe} = 75.66\% & & \end{aligned}$$

$$\begin{aligned} \text{Treatment train efficiency} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N &= 75.67\% \\ & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P &= 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook, appendix D

$$\text{Eff1}_{\text{depth}} := 0.75 \text{ in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75 \text{ in} - 1.0 \text{ in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.63 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1 \text{ ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2 \text{ ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.79 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 3.35 \cdot \text{acre}$$

Project Basin 5

Begin Station Sta1 := 27535ft End Station Sta2 := 32194ft
 Length := Sta2 - Sta1 Length = 4659 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 19.47·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc. Exist_inc := 10% Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 6.59·acre
 Exist_per := Row_area - Exist_imp Exist_per = 12.88·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 15.25·acre
 Prop_per := Row_area - Prop_imp Prop_per = 4.21·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 8.66·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:		Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in}$ $S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area}$ $V_{e100} = 16.64 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area}$ $V_{e25} = 11.87 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in}$ $S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area}$ $V_{p100} = 18.3 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area}$ $V_{p25} = 13.45 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$ $Att_{req100} = 1.66 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25}$ $Att_{req25} = 1.58 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 1.62 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 4.14 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 5.34 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 5.34 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff } QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 16.74 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_e := TNhwy \cdot QA_e \quad NA_e = 33.86 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_e := TPhwy \cdot QA_e \quad PA_e = 4.54 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% CN_p = 94.10

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_p := 0.823$$

$$\text{Existing annual runoff } QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 68.75 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_p := TNhwy \cdot QA_p \quad NA_p = 139.08 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_p := TPhwy \cdot QA_p \quad PA_p = 18.66 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency } NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency } PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 17.62 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} = 68.75 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} &:= \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} = 41.8\% \text{ NG} \\ \text{PRP} &:= \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} &:= 58.2\% & \text{Eff2}_N &:= \text{PRN} & \text{Eff2}_P &:= \text{PRP} \\ & & & & & \\ & & \text{NRe} = 75.66\% & \text{PRe} = 75.66\% & & \end{aligned}$$

$$\begin{aligned} \text{Treatment train efficiency} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N &= 75.67\% \\ & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P &= 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbood, appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 1.32 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 1.65 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 6.99 \cdot \text{acre}$$

Project Basin 6

Begin Station Sta1 := 32194ft End Station Sta2 := 34035ft
 Length := Sta2 - Sta1 Length = 1841 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 7.69·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc. Exist_inc := 10% Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 2.60·acre
 Exist_per := Row_area - Exist_imp Exist_per = 5.09·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 6.03·acre
 Prop_per := Row_area - Prop_imp Prop_per = 1.67·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 3.42·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:		Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in}$ $S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area}$ $V_{e100} = 6.58 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area}$ $V_{e25} = 4.69 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in}$ $S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area}$ $V_{p100} = 7.23 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area}$ $V_{p25} = 5.31 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$ $Att_{req100} = 0.65 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25}$ $Att_{req25} = 0.62 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.64 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 1.64 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 2.11 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 2.11 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 86.09$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff } QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 6.61 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_e := TNhwy \cdot QA_e \quad NA_e = 13.38 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_e := TPhwy \cdot QA_e \quad PA_e = 1.79 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% $CN_p = 94.10$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_p := 0.823$$

$$\text{Existing annual runoff } QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 27.17 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_p := TNhwy \cdot QA_p \quad NA_p = 54.96 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_p := TPhwy \cdot QA_p \quad PA_p = 7.37 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency } NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency } PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 6.96 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} = 27.17 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} &:= \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} = 41.8\% \text{ NG} \\ \text{PRP} &:= \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\text{Eff1} := 58.2\% \quad \text{Eff2}_N := \text{PRN} \quad \text{Eff2}_P := \text{PRP}$$

$$\text{NRe} = 75.66\% \quad \text{PRe} = 75.66\%$$

$$\begin{aligned} \text{Treatment train efficiency} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N = 75.67\% \\ & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook, appendix D

$$\text{Eff1}_{\text{depth}} := 0.75 \text{ in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75 \text{ in} - 1.0 \text{ in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.52 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1 \text{ ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2 \text{ ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.65 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 2.76 \cdot \text{acre}$$

Project: US 41 (SR 45) PD&E
FPID No. 421140-8-22-01
Hillsborough County
Project No.: 5079041

Project Basin 7

Begin Station Sta1 := 34035ft End Station Sta2 := 37535ft
Length := Sta2 - Sta1 Length = 3500 ft Row_width := 182ft
Row_area := Length·Row_width Row_area = 14.62·acre

Land use break down

Increase impervious areas by percentage for intersections, etc. Exist_inc := 10% Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 4.95·acre
Exist_per := Row_area - Exist_imp Exist_per = 9.67·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 11.46·acre
Prop_per := Row_area - Prop_imp Prop_per = 3.17·acre

Additional_imp := Prop_imp - Exist_imp Additional_imp = 6.51·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:		Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only
Depth := 1ft

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in} \quad S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area}$ $V_{e100} = 12.5 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area}$ $V_{e25} = 8.91 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in} \quad S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area}$ $V_{p100} = 13.75 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area}$ $V_{p25} = 10.1 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$ $Att_{req100} = 1.25 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25}$ $Att_{req25} = 1.19 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 1.22 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 3.11 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 4.01 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 4.01 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 86.09$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff } QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 12.57 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_e := TNhwy \cdot QA_e \quad NA_e = 25.44 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_e := TPhwy \cdot QA_e \quad PA_e = 3.41 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% $CN_p = 94.10$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_p := 0.823$$

$$\text{Existing annual runoff } QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 51.65 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_p := TNhwy \cdot QA_p \quad NA_p = 104.49 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_p := TPhwy \cdot QA_p \quad PA_p = 14.02 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency } NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency } PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 13.23 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} = 51.65 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} &:= \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} = 41.8\% \text{ NG} \\ \text{PRP} &:= \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} &:= 58.4\% & \text{Eff2}_N &:= \text{PRN} & \text{Eff2}_P &:= \text{PRP} \\ & & & & & \\ & & \text{NRe} = 75.66\% & \text{PRe} = 75.66\% & & \end{aligned}$$

$$\begin{aligned} \text{Treatment train} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N = 75.79\% \\ \text{efficiency} & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P = 88.95\% \end{aligned}$$

From FDEP Stormwater Quality handbook, appendix D

$$\text{Eff1}_{\text{depth}} := 0.75 \text{ in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75 \text{ in} - 1.0 \text{ in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.82 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 1.00 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1 \text{ ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2 \text{ ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 1.25 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 5.26 \cdot \text{acre}$$

Project Basin 8

Begin Station Sta1 := 37535ft End Station Sta2 := 39152ft
 Length := Sta2 - Sta1 Length = 1617 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 6.76·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 2.29·acre
 Exist_per := Row_area - Exist_imp Exist_per = 4.47·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 5.29·acre
 Prop_per := Row_area - Prop_imp Prop_per = 1.46·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 3.01·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:		Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in}$ $S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area}$ $V_{e100} = 5.78 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area}$ $V_{e25} = 4.12 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in}$ $S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area}$ $V_{p100} = 6.35 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area}$ $V_{p25} = 4.67 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$ $Att_{req100} = 0.58 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25}$ $Att_{req25} = 0.55 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.56 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 1.44 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 1.85 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 1.85 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 86.09$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff } QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 5.81 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_e := TNhwy \cdot QA_e \quad NA_e = 11.75 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_e := TPhwy \cdot QA_e \quad PA_e = 1.58 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% $CN_p = 94.10$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_p := 0.823$$

$$\text{Existing annual runoff } QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 23.86 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_p := TNhwy \cdot QA_p \quad NA_p = 48.27 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_p := TPhwy \cdot QA_p \quad PA_p = 6.48 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency } NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency } PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 6.11 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} & = 23.86 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} & = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} & := \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} & = 41.8\% \text{ NG} \\ \text{PRP} & := \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} & = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} & := 58.2\% & \text{Eff2}_N & := \text{PRN} \quad \text{Eff2}_P := \text{PRP} \\ & & \text{NRe} & = 75.66\% \quad \text{PRe} = 75.66\% \end{aligned}$$

$$\begin{aligned} \text{Treatment train efficiency} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N & = 75.67\% \\ & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P & = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook,
appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.46 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.57 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 2.42 \cdot \text{acre}$$

Project Basin 9

Begin Station Sta1 := 39152ft End Station Sta2 := 40235ft
 Length := Sta2 - Sta1 Length = 1083 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 4.52·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 1.53·acre
 Exist_per := Row_area - Exist_imp Exist_per = 2.99·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 3.55·acre
 Prop_per := Row_area - Prop_imp Prop_per = 0.98·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 2.01·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:		Maximum Elevations:	
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft	
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft	

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr

storm event

SWFWMD design rainfall depth is the 25 yr 24 hr storm

event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in} \quad S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)} \quad Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area} \quad V_{e100} = 3.87 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)} \quad Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area} \quad V_{e25} = 2.76 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in} \quad S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)} \quad Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area} \quad V_{p100} = 4.25 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)} \quad Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area} \quad V_{p25} = 3.13 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$$Att_{req100} := V_{p100} - V_{e100} \quad Att_{req100} = 0.39 \cdot \text{acre} \cdot \text{ft}$$

$$Att_{req25} := V_{p25} - V_{e25} \quad Att_{req25} = 0.37 \cdot \text{acre} \cdot \text{ft}$$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.38 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 0.96 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + \text{Vwq}}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 1.24 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 1.24 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = $CN_e = 86.09$

0%

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff} \quad QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 3.89 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_e := TNhwy \cdot QA_e \quad NA_e = 7.87 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_e := TPhwy \cdot QA_e \quad PA_e = 1.06 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = $CN_p = 94.10$

100%

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_p := 0.823$$

$$\text{Existing annual runoff} \quad QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 15.98 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_p := TNhwy \cdot QA_p \quad NA_p = 32.33 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_p := TPhwy \cdot QA_p \quad PA_p = 4.34 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency} \quad NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency} \quad PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 4.09 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} & = 15.98 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} & = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} & := \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} & = 41.8\% \text{ NG} \\ \text{PRP} & := \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} & = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} & := 58.2\% & \text{Eff2}_N & := \text{PRN} \quad \text{Eff2}_P := \text{PRP} \\ & & & \text{NRe} = 75.66\% \quad \text{PRe} = 75.66\% \end{aligned}$$

$$\begin{aligned} \text{Treatment train efficiency} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N & = 75.67\% \\ & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P & = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook,
appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.31 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.38 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 1.62 \cdot \text{acre}$$

Project Basin 10

Begin Station Sta1 := 40235ft End Station Sta2 := 41217ft
 Length := Sta2 - Sta1 Length = 982 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 4.10·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 1.39·acre
 Exist_per := Row_area - Exist_imp Exist_per = 2.71·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 3.21·acre
 Prop_per := Row_area - Prop_imp Prop_per = 0.89·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 1.83·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:

Roads Elev_pvmt := 8·ft

Pervious Areas: Elev_prv := 5·ft

Maximum Elevations:

Elev_pvmt2 := 9·ft

Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Depth := 1ft

Wet Season Water Table: SHW := Elev_prv - Depth

SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80

CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm e $P_{100\text{yr}} := 12\text{in}$
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event $P_{25\text{yr}} := 9\text{in}$

Existing runoff volume calculation

$$\text{Soil Storage} \quad S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in} \quad S_e = 1.62 \cdot \text{in}$$

100 year 24 hour runoff volume

$$\text{Runoff in Inches (100-Year, Qf)} \quad Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)} \quad Q_{e100} = 10.26 \cdot \text{in}$$

$$\text{Runoff Volume (100-Year, Vf)} \quad V_{e100} := Q_{e100} \cdot \text{Row_area} \quad V_{e100} = 3.51 \cdot \text{acre} \cdot \text{ft}$$

25 year 24 hour runoff volume

$$\text{Runoff in Inches (25-Year, Qf)} \quad Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)} \quad Q_{e25} = 7.32 \cdot \text{in}$$

$$\text{Runoff Volume (25-Year, Vf)} \quad V_{e25} := Q_{e25} \cdot \text{Row_area} \quad V_{e25} = 2.5 \cdot \text{acre} \cdot \text{ft}$$

Proposed runoff volume calculation

$$\text{Soil Storage} \quad S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in} \quad S_p = 0.63 \cdot \text{in}$$

100 year 24 hour runoff volume

$$\text{Runoff in Inches (100-Year, Qf)} \quad Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)} \quad Q_{p100} = 11.28 \cdot \text{in}$$

$$\text{Runoff Volume (100-Year, Vf)} \quad V_{p100} := Q_{p100} \cdot \text{Row_area} \quad V_{p100} = 3.86 \cdot \text{acre} \cdot \text{ft}$$

25 year 24 hour runoff volume

$$\text{Runoff in Inches (25-Year, Qf)} \quad Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)} \quad Q_{p25} = 8.29 \cdot \text{in}$$

$$\text{Runoff Volume (25-Year, Vf)} \quad V_{p25} := Q_{p25} \cdot \text{Row_area} \quad V_{p25} = 2.83 \cdot \text{acre} \cdot \text{ft}$$

Required attenuation storage volume calculation

$$\text{Att}_{\text{req}100} := V_{p100} - V_{e100} \quad \text{Att}_{\text{req}100} = 0.35 \cdot \text{acre} \cdot \text{ft}$$

$$\text{Att}_{\text{req}25} := V_{p25} - V_{e25} \quad \text{Att}_{\text{req}25} = 0.33 \cdot \text{acre} \cdot \text{ft}$$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.34 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 0.87 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 1.13 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 1.13 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff } QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 3.53 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_e := TNhwy \cdot QA_e \quad NA_e = 7.14 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_e := TPhwy \cdot QA_e \quad PA_e = 0.96 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% CN_p = 94.10

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_p := 0.823$$

$$\text{Existing annual runoff } QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 14.49 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_p := TNhwy \cdot QA_p \quad NA_p = 29.32 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_p := TPhwy \cdot QA_p \quad PA_p = 3.93 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency } NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency } PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 3.71 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} & = 14.49 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} & = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} & := \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} & = 41.8\% \text{ NG} \\ \text{PRP} & := \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} & = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} & := 58.2\% & \text{Eff2}_N & := \text{PRN} \quad \text{Eff2}_P := \text{PRP} \\ & & \text{NRe} & = 75.66\% \quad \text{PRe} = 75.66\% \end{aligned}$$

$$\begin{aligned} \text{Treatment train} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N & = 75.67\% \\ \text{efficiency} & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P & = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook,
appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.28 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.35 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 1.47 \cdot \text{acre}$$

Project Basin 11

Begin Station Sta1 := 41217ft End Station Sta2 := 43995ft
 Length := Sta2 - Sta1 Length = 2778 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 11.61·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 3.93·acre
 Exist_per := Row_area - Exist_imp Exist_per = 7.68·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 9.09·acre
 Prop_per := Row_area - Prop_imp Prop_per = 2.51·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 5.17·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm e $P_{100\text{yr}} := 12\text{in}$
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event $P_{25\text{yr}} := 9\text{in}$

Existing runoff volume calculation

$$\text{Soil Storage} \quad S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in} \quad S_e = 1.62 \cdot \text{in}$$

100 year 24 hour runoff volume

$$\text{Runoff in Inches (100-Year, Qf)} \quad Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)} \quad Q_{e100} = 10.26 \cdot \text{in}$$

$$\text{Runoff Volume (100-Year, Vf)} \quad V_{e100} := Q_{e100} \cdot \text{Row_area} \quad V_{e100} = 9.92 \cdot \text{acre} \cdot \text{ft}$$

25 year 24 hour runoff volume

$$\text{Runoff in Inches (25-Year, Qf)} \quad Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)} \quad Q_{e25} = 7.32 \cdot \text{in}$$

$$\text{Runoff Volume (25-Year, Vf)} \quad V_{e25} := Q_{e25} \cdot \text{Row_area} \quad V_{e25} = 7.08 \cdot \text{acre} \cdot \text{ft}$$

Proposed runoff volume calculation

$$\text{Soil Storage} \quad S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in} \quad S_p = 0.63 \cdot \text{in}$$

100 year 24 hour runoff volume

$$\text{Runoff in Inches (100-Year, Qf)} \quad Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)} \quad Q_{p100} = 11.28 \cdot \text{in}$$

$$\text{Runoff Volume (100-Year, Vf)} \quad V_{p100} := Q_{p100} \cdot \text{Row_area} \quad V_{p100} = 10.91 \cdot \text{acre} \cdot \text{ft}$$

25 year 24 hour runoff volume

$$\text{Runoff in Inches (25-Year, Qf)} \quad Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)} \quad Q_{p25} = 8.29 \cdot \text{in}$$

$$\text{Runoff Volume (25-Year, Vf)} \quad V_{p25} := Q_{p25} \cdot \text{Row_area} \quad V_{p25} = 8.02 \cdot \text{acre} \cdot \text{ft}$$

Required attenuation storage volume calculation

$$\text{Att}_{\text{req}100} := V_{p100} - V_{e100} \quad \text{Att}_{\text{req}100} = 0.99 \cdot \text{acre} \cdot \text{ft}$$

$$\text{Att}_{\text{req}25} := V_{p25} - V_{e25} \quad \text{Att}_{\text{req}25} = 0.94 \cdot \text{acre} \cdot \text{ft}$$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.97 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 2.47 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 3.18 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 3.18 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 86.09$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff } QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 9.98 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_e := TNhwy \cdot QA_e \quad NA_e = 20.19 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_e := TPhwy \cdot QA_e \quad PA_e = 2.71 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = $CN_p = 94.10$

100%
From Appendix C, FDEP Stormwater Quality
Handbook

$$\text{Annual curve number } CA_p := 0.823$$

$$\text{Existing annual runoff } QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 41.00 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_p := TNhwy \cdot QA_p \quad NA_p = 82.93 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_p := TPhwy \cdot QA_p \quad PA_p = 11.12 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency } NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency } PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool

SWEPMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 10.50 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} = 41.00 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} &:= \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} = 41.8\% \text{ NG} \\ \text{PRP} &:= \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} &:= 58.2\% & \text{Eff2}_N &:= \text{PRN} & \text{Eff2}_P &:= \text{PRP} \\ & & & & & \\ & & \text{NRe} = 75.66\% & \text{PRe} = 75.66\% & & \end{aligned}$$

$$\begin{aligned} \text{Treatment train} & & \text{Train}_N &:= \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N &= 75.67\% \\ \text{efficiency} & & \text{Train}_P &:= \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P &= 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook,
appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.79 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.98 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 4.17 \cdot \text{acre}$$

Project Basin 12

Begin Station Sta1 := 43995ft End Station Sta2 := 44446ft
 Length := Sta2 - Sta1 Length = 451 ft Row_width := 182ft
 Row_area := Length·Row_width Row_area = 1.88·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·56ft·(1 + Exist_inc) Exist_imp = 0.64·acre
 Exist_per := Row_area - Exist_imp Exist_per = 1.25·acre

Proposed areas

Prop_imp := Length·124ft·(1 + Prop_inc) Prop_imp = 1.48·acre
 Prop_per := Row_area - Prop_imp Prop_per = 0.41·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 0.84·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

Minimum Elevations:

Roads Elev_pvmt := 8·ft

Elev_pvmt2 := 9·ft

Pervious Areas: Elev_prv := 5·ft

Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Depth := 1ft

Wet Season Water Table: SHW := Elev_prv - Depth

SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80

CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in}$ $S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area}$ $V_{e100} = 1.61 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area}$ $V_{e25} = 1.15 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in}$ $S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area}$ $V_{p100} = 1.77 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area}$ $V_{p25} = 1.3 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$ $Att_{req100} = 0.16 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25}$ $Att_{req25} = 0.15 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.16 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 0.40 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + \text{Vwq}}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 0.52 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 0.52 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = $CN_e = 86.09$

0%

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff} \quad QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 1.62 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_e := TNhwy \cdot QA_e \quad NA_e = 3.28 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_e := TPhwy \cdot QA_e \quad PA_e = 0.44 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = $CN_p = 94.10$

100%

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_p := 0.823$$

$$\text{Existing annual runoff} \quad QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 6.66 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_p := TNhwy \cdot QA_p \quad NA_p = 13.46 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_p := TPhwy \cdot QA_p \quad PA_p = 1.81 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency} \quad NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency} \quad PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 1.71 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} & = 6.66 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} & = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} & := \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} & = 41.8\% \text{ NG} \\ \text{PRP} & := \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} & = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\text{Eff1} := 58.2\% \quad \text{Eff2}_N := \text{PRN} \quad \text{Eff2}_P := \text{PRP}$$

$$\text{NRe} = 75.66\% \quad \text{PRe} = 75.66\%$$

$$\begin{aligned} \text{Treatment train efficiency} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N & = 75.67\% \\ & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P & = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook,
appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.13 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.16 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 0.68 \cdot \text{acre}$$

Project Basin 13

Begin Station Sta1 := 44446ft End Station Sta2 := 45835ft
 Length := Sta2 - Sta1 Length = 1389 ft Row_width := 91ft
 Row_area := Length·Row_width Row_area = 2.90·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·28ft·(1 + Exist_inc) Exist_imp = 0.98·acre
 Exist_per := Row_area - Exist_imp Exist_per = 1.92·acre

Proposed areas

Prop_imp := Length·62ft·(1 + Prop_inc) Prop_imp = 2.27·acre
 Prop_per := Row_area - Prop_imp Prop_per = 0.63·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 1.29·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr

storm event

SWFWMD design rainfall depth is the 25 yr 24 hr storm

event

$$P_{100\text{yr}} := 12\text{in}$$

$$P_{25\text{yr}} := 9\text{in}$$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in} \quad S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)} \quad Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area} \quad V_{e100} = 2.48 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)} \quad Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area} \quad V_{e25} = 1.77 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in} \quad S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)} \quad Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area} \quad V_{p100} = 2.73 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)} \quad Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area} \quad V_{p25} = 2 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$$Att_{req100} := V_{p100} - V_{e100} \quad Att_{req100} = 0.25 \cdot \text{acre} \cdot \text{ft}$$

$$Att_{req25} := V_{p25} - V_{e25} \quad Att_{req25} = 0.24 \cdot \text{acre} \cdot \text{ft}$$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.24 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 0.62 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + \text{Vwq}}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 0.80 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 0.80 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = $CN_e = 86.09$

0%

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff} \quad QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 2.50 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_e := TNhwy \cdot QA_e \quad NA_e = 5.05 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_e := TPhwy \cdot QA_e \quad PA_e = 0.68 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = $CN_p = 94.10$

100%

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_p := 0.823$$

$$\text{Existing annual runoff} \quad QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 10.25 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_p := TNhwy \cdot QA_p \quad NA_p = 20.73 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_p := TPhwy \cdot QA_p \quad PA_p = 2.78 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency} \quad NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency} \quad PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool

SWEPWD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 2.63 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} & = 10.25 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} & = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} & := \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} & = 41.8\% \text{ NG} \\ \text{PRP} & := \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} & = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} & := 58.2\% & \text{Eff2}_N & := \text{PRN} \quad \text{Eff2}_P := \text{PRP} \\ & & \text{NRe} & = 75.66\% \quad \text{PRe} = 75.66\% \end{aligned}$$

$$\begin{aligned} \text{Treatment train efficiency} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N & = 75.67\% \\ & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P & = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook,
appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.20 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.25 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 1.04 \cdot \text{acre}$$

Project Basin 14

Begin Station Sta1 := 44446ft End Station Sta2 := 47144ft
 Length := Sta2 - Sta1 Length = 2698 ft Row_width := 91ft
 Row_area := Length·Row_width Row_area = 5.64·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·28ft·(1 + Exist_inc) Exist_imp = 1.91·acre
 Exist_per := Row_area - Exist_imp Exist_per = 3.73·acre

Proposed areas

Prop_imp := Length·62ft·(1 + Prop_inc) Prop_imp = 4.42·acre
 Prop_per := Row_area - Prop_imp Prop_per = 1.22·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 2.51·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm e $P_{100\text{yr}} := 12\text{in}$
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event $P_{25\text{yr}} := 9\text{in}$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in} \quad S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area} \quad V_{e100} = 4.82 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area} \quad V_{e25} = 3.44 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in} \quad S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area} \quad V_{p100} = 5.3 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area} \quad V_{p25} = 3.89 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100} \quad Att_{req100} = 0.48 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25} \quad Att_{req25} = 0.46 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.47 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 1.20 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + \text{Vwq}}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 1.55 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 1.55 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = $CN_e = 86.09$

0%

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff} \quad QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 4.85 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_e := TNhwy \cdot QA_e \quad NA_e = 9.80 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_e := TPhwy \cdot QA_e \quad PA_e = 1.32 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = $CN_p = 94.10$

100%

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number} \quad CA_p := 0.823$$

$$\text{Existing annual runoff} \quad QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 19.91 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading} \quad NA_p := TNhwy \cdot QA_p \quad NA_p = 40.27 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading} \quad PA_p := TPhwy \cdot QA_p \quad PA_p = 5.40 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency} \quad NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency} \quad PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool

SWEPMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 5.10 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} & = 19.91 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} & = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} & := \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} & = 41.8\% \text{ NG} \\ \text{PRP} & := \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} & = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} & := 58.2\% & \text{Eff2}_N & := \text{PRN} \quad \text{Eff2}_P := \text{PRP} \\ & & \text{NRe} & = 75.66\% \quad \text{PRe} = 75.66\% \end{aligned}$$

$$\begin{aligned} \text{Treatment train} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N & = 75.67\% \\ \text{efficiency} & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P & = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook,
appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.38 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.48 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 2.02 \cdot \text{acre}$$

Project Basin 15

Begin Station Sta1 := 45835ft End Station Sta2 := 47144ft
 Length := Sta2 - Sta1 Length = 1309 ft Row_width := 91ft
 Row_area := Length·Row_width Row_area = 2.73·acre

Project: US 41 (SR 45) PD&E
 FPID No. 421140-8-22-01
 Hillsborough County
 Project No.: 5079041

Land use break down

Increase impervious areas by percentage for intersections, etc.

Exist_inc := 10%

Prop_inc := 15%

Existing areas

Exist_imp := Length·28ft·(1 + Exist_inc) Exist_imp = 0.93·acre
 Exist_per := Row_area - Exist_imp Exist_per = 1.81·acre

Proposed areas

Prop_imp := Length·62ft·(1 + Prop_inc) Prop_imp = 2.14·acre
 Prop_per := Row_area - Prop_imp Prop_per = 0.59·acre
 Additional_imp := Prop_imp - Exist_imp Additional_imp = 1.22·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	Elev_pvmt := 8·ft	Elev_pvmt2 := 9·ft
Pervious Areas:	Elev_prv := 5·ft	Elev_prv2 := 9·ft

Water table data based on soil data and topographic information, approximate only

Wet Season Water Table: SHW := Elev_prv - Depth SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

CN_{BD} := 80
 CN_{pavt} := 98

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$
 CN_e = 86.1

Proposed curve number calculation

$$CN_p := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$
 CN_p = 94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm e $P_{100\text{yr}} := 12\text{in}$
 SWFWMD design rainfall depth is the 25 yr 24 hr storm event $P_{25\text{yr}} := 9\text{in}$

Existing runoff volume calculation

Soil Storage $S_e := \left(\frac{1000}{CN_e} - 10 \right) \cdot \text{in} \quad S_e = 1.62 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{e100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_e)]^2}{P_{100\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot \text{Row_area} \quad V_{e100} = 2.34 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_e)]^2}{P_{25\text{yr}} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.32 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot \text{Row_area} \quad V_{e25} = 1.67 \cdot \text{acre} \cdot \text{ft}$

Proposed runoff volume calculation

Soil Storage $S_p := \left(\frac{1000}{CN_p} - 10 \right) \cdot \text{in} \quad S_p = 0.63 \cdot \text{in}$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf) $Q_{p100} := \frac{[P_{100\text{yr}} - (0.2 \cdot S_p)]^2}{P_{100\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p100} = 11.28 \cdot \text{in}$

Runoff Volume (100-Year, Vf) $V_{p100} := Q_{p100} \cdot \text{Row_area} \quad V_{p100} = 2.57 \cdot \text{acre} \cdot \text{ft}$

25 year 24 hour runoff volume

Runoff in Inches (25-Year, Qf) $Q_{p25} := \frac{[P_{25\text{yr}} - (0.2 \cdot S_p)]^2}{P_{25\text{yr}} + (0.8 \cdot S_p)}$ $Q_{p25} = 8.29 \cdot \text{in}$

Runoff Volume (25-Year, Vf) $V_{p25} := Q_{p25} \cdot \text{Row_area} \quad V_{p25} = 1.89 \cdot \text{acre} \cdot \text{ft}$

Required attenuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100} \quad Att_{req100} = 0.23 \cdot \text{acre} \cdot \text{ft}$

$Att_{req25} := V_{p25} - V_{e25} \quad Att_{req25} = 0.22 \cdot \text{acre} \cdot \text{ft}$

Water Quality Volume Calculations

Required Treatment Volume depth

$$TV_{\text{depth}} := 1 \text{ in}$$

Required Treatment Volume for system, (Vwq) $Vwq := TV_{\text{depth}} \cdot \text{Row_area}$

$$Vwq = 0.23 \cdot \text{acre} \cdot \text{ft}$$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\text{Weir}_{\text{inv}} := \text{Elev}_{\text{pvmt}} - 2.5 \text{ ft} \quad \text{Weir}_{\text{inv}} = 5.50 \text{ ft}$$

$$\text{Depth}_{\text{available}} := \text{Weir}_{\text{inv}} - \text{SHW} \quad \text{Depth}_{\text{available}} = 1.50 \text{ ft}$$

Pond surface area for 100 year required attenuation

$$\text{Pond}_{\text{area}100} := \frac{\text{Att}_{\text{req}100}}{\text{Depth}_{\text{available}} - \text{P}_{100\text{yr}}} \cdot 1.25 \quad \text{Pond}_{\text{area}100} = 0.58 \cdot \text{acre}$$

Pond surface area for 25 year required attenuation

$$\text{Pond}_{\text{area}25} := \frac{\text{Att}_{\text{req}25} + Vwq}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25 \quad \text{Pond}_{\text{area}25} = 0.75 \cdot \text{acre}$$

$$\text{Pond}_{\text{area}} := \begin{cases} \text{val} \leftarrow \text{Pond}_{\text{area}100} \\ \text{Pond}_{\text{area}25} \text{ if } \text{val} < \text{Pond}_{\text{area}25} \\ \text{val} \text{ otherwise} \end{cases}$$

$$\text{Pond}_{\text{area}} = 0.75 \cdot \text{acre}$$

Nutrient loading analysis

Annual Precipitation Depth

$$AP := 51.50 \frac{\text{in}}{\text{yr}}$$

Annual Mass Loading for Highway Areas

$$TN_{\text{hwy}} := 1.64 \cdot \frac{\text{mg}}{1}$$

$$TP_{\text{hwy}} := 0.220 \cdot \frac{\text{mg}}{1}$$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% $CN_e = 86.09$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_e := 0.182 - \frac{(0.182 - 0.266)}{(85 - 90)} \cdot (85 - CN_e) \quad CA_e = 0.20$$

$$\text{Existing annual runoff } QA_e := CA_e \cdot AP \cdot \text{Row_area} \quad QA_e = 2.35 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_e := TNhwy \cdot QA_e \quad NA_e = 4.76 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_e := TPhwy \cdot QA_e \quad PA_e = 0.64 \cdot \frac{\text{kg}}{\text{yr}}$$

Proposed loading calculation

Proposed roadway DCIA = 100% $CN_p = 94.10$

From Appendix C, FDEP Stormwater Quality Handbook

$$\text{Annual curve number } CA_p := 0.823$$

$$\text{Existing annual runoff } QA_p := CA_p \cdot AP \cdot \text{Row_area} \quad QA_p = 9.66 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$$

Existing annual loading

$$\text{Nitrogen loading } NA_p := TNhwy \cdot QA_p \quad NA_p = 19.54 \cdot \frac{\text{kg}}{\text{yr}}$$

$$\text{Phosphorus loading } PA_p := TPhwy \cdot QA_p \quad PA_p = 2.62 \cdot \frac{\text{kg}}{\text{yr}}$$

Required removal efficiency calculations

$$\text{Required N removal efficiency } NRe := 1 - \frac{NA_e}{NA_p} \quad NRe = 75.7\%$$

$$\text{Required P removal efficiency } PRe := 1 - \frac{PA_e}{PA_p} \quad PRe = 75.7\%$$

Estimated wet pond properties (based on previous sizing calculations)

Wet pond permanent pool properties

SWFWMD requirement is 35% littoral zone at 2 ft depth

Permanent pool depth is 65% of pond area

$$Pool_{depth} := 4 \text{ ft}$$

$$Ave_depth := Pool_{depth} \cdot 65\% + 2 \text{ ft} \cdot 35\% \quad Ave_depth = 3.30 \text{ ft}$$

$$Pool := Pond_{area} \cdot Ave_depth \quad Pool = 2.47 \cdot \text{acre} \cdot \text{ft}$$

Proposed Residence Time

$$\begin{aligned} \text{Annual input to pond} & \quad \text{Input} := Q A_p & \text{Input} & = 9.66 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}} \\ & \quad \text{Rt} := \frac{\text{Pool}}{\text{Input}} & \text{Rt} & = 93.58 \cdot \text{day} \end{aligned}$$

Proposed Removal Efficiency

$$\begin{aligned} \text{PRN} & := \frac{43.75 \cdot \frac{\text{Rt}}{\text{day}}}{\left(4.38 + \frac{\text{Rt}}{\text{day}}\right)} \cdot \frac{1}{100} & \text{PRN} & = 41.8\% \text{ NG} \\ \text{PRP} & := \frac{1}{100} \left[40.13 + 6.372 \cdot \ln\left(\frac{\text{Rt}}{\text{day}}\right) + 0.213 \cdot \left(\ln\left(\frac{\text{Rt}}{\text{day}}\right)\right)^2 \right] & \text{PRP} & = 73.4\% \text{ NG} \end{aligned}$$

Required additional TMDL treatment

$$\begin{aligned} \text{Eff1} & := 58.2\% & \text{Eff2}_N & := \text{PRN} \quad \text{Eff2}_P := \text{PRP} \\ & & \text{NRe} & = 75.66\% \quad \text{PRe} = 75.66\% \end{aligned}$$

$$\begin{aligned} \text{Treatment train} & \quad \text{Train}_N := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_N & \text{Train}_N & = 75.67\% \\ \text{efficiency} & \quad \text{Train}_P := \text{Eff1} + (1 - \text{Eff1})\text{Eff2}_P & \text{Train}_P & = 88.90\% \end{aligned}$$

From FDEP Stormwater Quality handbook,
appendix D

$$\text{Eff1}_{\text{depth}} := 0.75\text{in} - (55.7\% - \text{Eff1}) \cdot \frac{(0.75\text{in} - 1.0\text{in})}{(55.7\% - 65.6\%)} \quad \text{Eff1}_{\text{depth}} = 0.81 \cdot \text{in}$$

Required dry retention volume

$$\text{Dry}_{\text{vol}} := \text{Row_area} \cdot \text{Eff1}_{\text{depth}} \quad \text{Dry}_{\text{vol}} = 0.19 \cdot \text{acre} \cdot \text{ft}$$

Required dry retention pond area

$$\text{Bottom}_{\text{dry}} := \text{SHW} + 1\text{ft} \quad \text{Weir}_{\text{dry}} := \text{Elev}_{\text{pvmt}} - 2\text{ft}$$

$$\text{Area}_{\text{dry}} := \frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25 \quad \text{Area}_{\text{dry}} = 0.23 \cdot \text{acre}$$

Total estimated stormwater management facility area requirements

$$\text{SWMF} := \text{Pond}_{\text{area}} + \text{Area}_{\text{dry}} \quad \text{SWMF} = 0.98 \cdot \text{acre}$$