
US 41 (SR 45) Project Development and Environment (PD&E) Study From 12th Street to Kracker Avenue

Final Pond Sizing Analysis Memorandum

WPI Segment No: 421140 8; ETDM # 9511 Hillsborough County

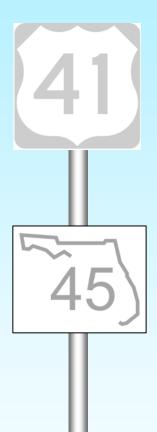
Prepared for the Florida Department of Transportation District Seven

September 2009

US 41 (SR 45) Project Development and Environment (PD&E) Study From 12th Street to Kracker Avenue

Final Pond Sizing Analysis Memorandum

WPI Segment No: 421140 8; ETDM # 9511 Hillsborough County


Prepared for the Florida Department of Transportation District Seven

Prepared by American Consulting Engineers of Florida, LLC

September 2009

TABLE OF CONTENTS

<u>Section</u>	<u>Pa</u>	ge
Section 1	- EXECUTIVE SUMMARY	1
Section 2	– INTRODUCTION	2
2.1	Project Description	2
2.2	Purpose of Report	5
	Existing Facility and Proposed Improvements	
Section 3	.0 – POND SIZING ANALYSIS	8

Appendix A:	Drainage Maps
Appendix B:	Drainage Calculations

LIST OF FIGURES

Figure	<u>Page</u>
Figure 2-1 – Project Location Map	3
Figure 2-2 – Existing & Proposed Build Alternative Typical Sections	6

LIST OF TABLES

<u>Table</u>		<u>Page</u>
Table 3-1:	Stormwater Management Facility Summary	9
Table 3-2:	Floodplain Encroachment and Compensation Summary	

i

Section 1 – EXECUTIVE SUMMARY

The Florida Department of Transportation (FDOT) conducted a Project Development and Environment (PD&E) Study to evaluate alternative improvements for US 41/SR 45 from 12th Street North to Kracker Avenue in southern Hillsborough County (**Figure 2-1**). The total project length is approximately 6.2 miles. Study objectives included the following: determine proposed typical sections and develop preliminary conceptual design plans for proposed improvements, while minimizing impacts to the environment; consider agency and public comments; and ensure project compliance with all applicable federal and state laws. Improvement alternatives were identified which will improve safety and meet future transportation demand.

In accordance with the FDOT's PD&E Manual, a Pond Sizing Analysis Memorandum was prepared for this PD&E Study. The information presented in this document is subject to change until the final Phase of the project. This Pond Sizing Analysis Memorandum is preliminary and used as an engineering tool to identify potential stormwater management and floodplain compensation site requirements to serve the conceptual improvements. The calculations presented in this report are preliminary and help in estimating the preliminary size of the pond site facilities for each basin. The size requirements are preliminary based upon many assumptions and judgments. Conceptual calculations are attached in **Appendix A**.

The stormwater management facilities are estimated based on the difference between the existing condition and the conceptual improvements estimated runoff volumes (non-routing method). Water quality requirements are also estimated based on both standard water quality and TMDL requirements. Facilities can be combined, where possible, to reduce the number of pond sites and realize efficiencies in maintenance and access areas. The results are summarized in **Table 3-1**.


Floodplain compensation site requirements are identified separately and are estimated based on the area of encroachment, estimated volume of encroachment, and estimated depth of compensation per area of compensation site. These are summarized in **Table 3-2**.

1

Section 2 – INTRODUCTION

2.1 **Project Description**

The Florida Department of Transportation (FDOT) conducted a Project Development and Environment (PD&E) Study to evaluate alternative improvements to US 41 (SR 45). This project involves a 6.2 mile segment of US 41 from 12th Street extending north to Kracker Avenue in Hillsborough County (**Figure 2-1**). The highway is to be improved from an existing, four-lane rural facility to an urban and suburban six-lane divided facility. There are no bridge structures located within this segment of US 41; however, bridge culvert widening or replacement is anticipated over Wildcat Creek and Newmans Branch. The proposed improvements will include construction of stormwater management facilities and various intersection improvements, in addition to bicycle and pedestrian facilities. The study area is located in Township 31, Range 19, and Sections 2, 3, 10, 11, 14, 15, 22, 27, 28, 32 and 33.

Purpose and Need

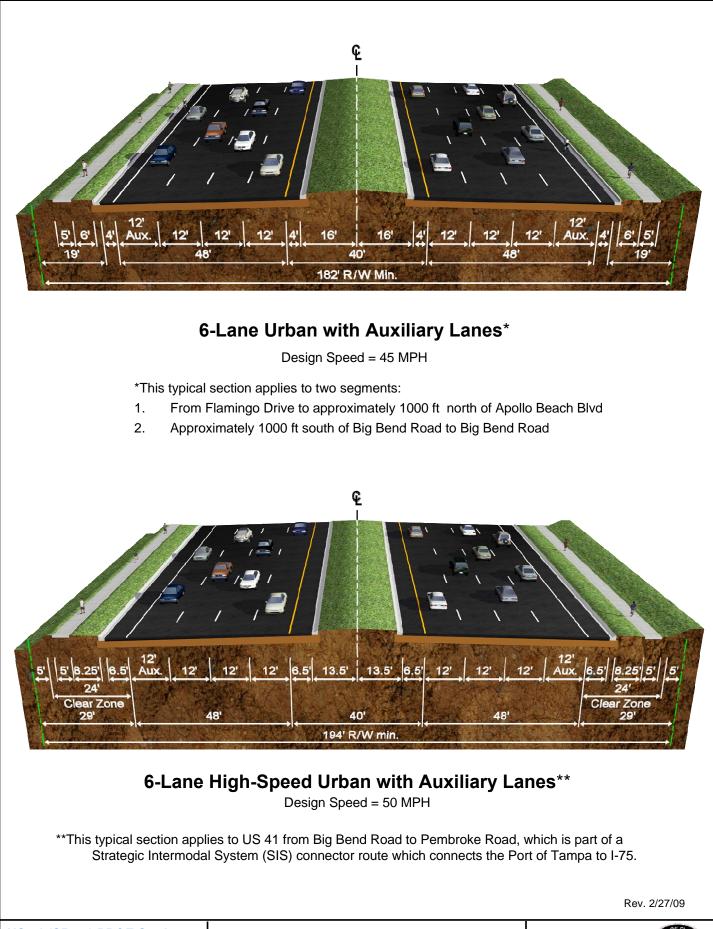
The purpose of the proposed project is to provide a higher capacity and safer facility to better meet future transportation demand in this rapidly developing area of Hillsborough County. US 41 runs parallel to and west of I-75. US 41 is a major north-south urban principal arterial that connects numerous communities along the west coast of Florida, including Ruskin, Apollo Beach and Gibsonton. This anticipated traffic growth and existing high levels of congestion create a need to analyze the corridor for necessary improvements to ensure this facility does not continue to deteriorate resulting in unacceptable levels of service. The PD&E Study also included the consideration of a No-Build Alternative.

US 41 is functionally classified as an "urban principal arterial – other". While US 41 is not on the Strategic Intermodal System (SIS), a short (0.92 miles) segment of US 41 between Pembroke Road and Big Bend Road (CR 672) is part of a SIS connector, which connects the Port of Tampa to I-75, both of which are SIS facilities. The Strategic Intermodal System (SIS) is a statewide network of highways, railways, waterways and transportation hubs that handle the bulk of Florida's passenger and freight traffic. This project is included in the Hillsborough County Metropolitan Planning Organization's (MPO) Year 2025 Long-Range Transportation Plan (LRTP) as an unfunded need. The West Central Florida MPO Chair's Coordinating Committee (CCC) has classified US 41 as a "regional road" and as an "unfunded need" on the "regionally significant road network" in west central Florida. This corridor is also designated as an emergency evacuation route.

A longer segment of US 41 was evaluated in the Programming Screen of the Efficient Transportation Decision Making (ETDM) process (project #5180) in 2008, for a larger area along US 41 from 19th Avenue NE to Gibsonton Drive. This process established the Class of Action as a State Environmental Impact Report (SEIR).

4

2.2 Purpose of Report


The purpose of this Pond Sizing Analysis Memorandum is preliminary and used as an engineering tool to identify potential stormwater management and floodplain compensation site requirements to serve the conceptual improvements. The calculations presented in this report are preliminary and help in estimating the preliminary size of the pond site facilities for each basin. The size requirements are preliminary based upon many assumptions and judgments. Conceptual calculations are attached in **Appendix A**.

2.3 Existing Facility and Proposed Improvements

US 41 currently has a 4-lane divided rural typical section (**Figure 2-2**). The existing roadway has 11.5 to 12.0 ft travel lanes, 4-ft paved inside and outside shoulders, and a 40-ft grassed median. The posted speed limit is 55 miles per hour (mph) except for a short segment on either side of Big Bend Road, which is posted at 45 mph. The existing right-of-way typically varies from 182 ft to 227 ft.

Expected improvements include widening to six lanes as well as intersection improvements and construction of stormwater management facilities and bicycle and pedestrian facilities. In addition to six basic lanes, auxiliary lanes are also proposed in the vicinity of Apollo Beach Boulevard and Big Bend Road (CR 672). Preliminary recommended roadway typical sections are shown in **Figure 2-2**. A "No-Build" Alternative will also be considered. The proposed project is not funded in FDOT's current 5-year work program.

US 41 (SR 45) PD&E Study From 12th Street to Kracker Avenue Hillsborough County, Florida WPI Segment No. 421140-8

US 41 Proposed Build Alternative Typical Sections Figure 2-2 Sheet 2 of 2

Section 3.0 – POND SIZING ANALYSIS

The information presented in this document is subject to change until the final Phase of the project. This Pond Sizing Analysis Memorandum is preliminary and used as an engineering tool to identify potential stormwater management and floodplain compensation site requirements to serve the conceptual improvements. The calculations presented in this report are preliminary and help in estimating the preliminary size of the pond site facilities for each basin. The size requirements are preliminary based upon many assumptions and judgments. Conceptual calculations are attached in **Appendix A**.

The stormwater management facilities are estimated based on the difference between the existing condition and the conceptual improvements estimated runoff volumes (nonrouting method). Water quality requirements are also estimated based on both standard water quality and TMDL requirements. Facilities can be combined, where possible, to reduce the number of pond sites and realize efficiencies in maintenance and access areas. The results are summarized in **Table 3-1**.

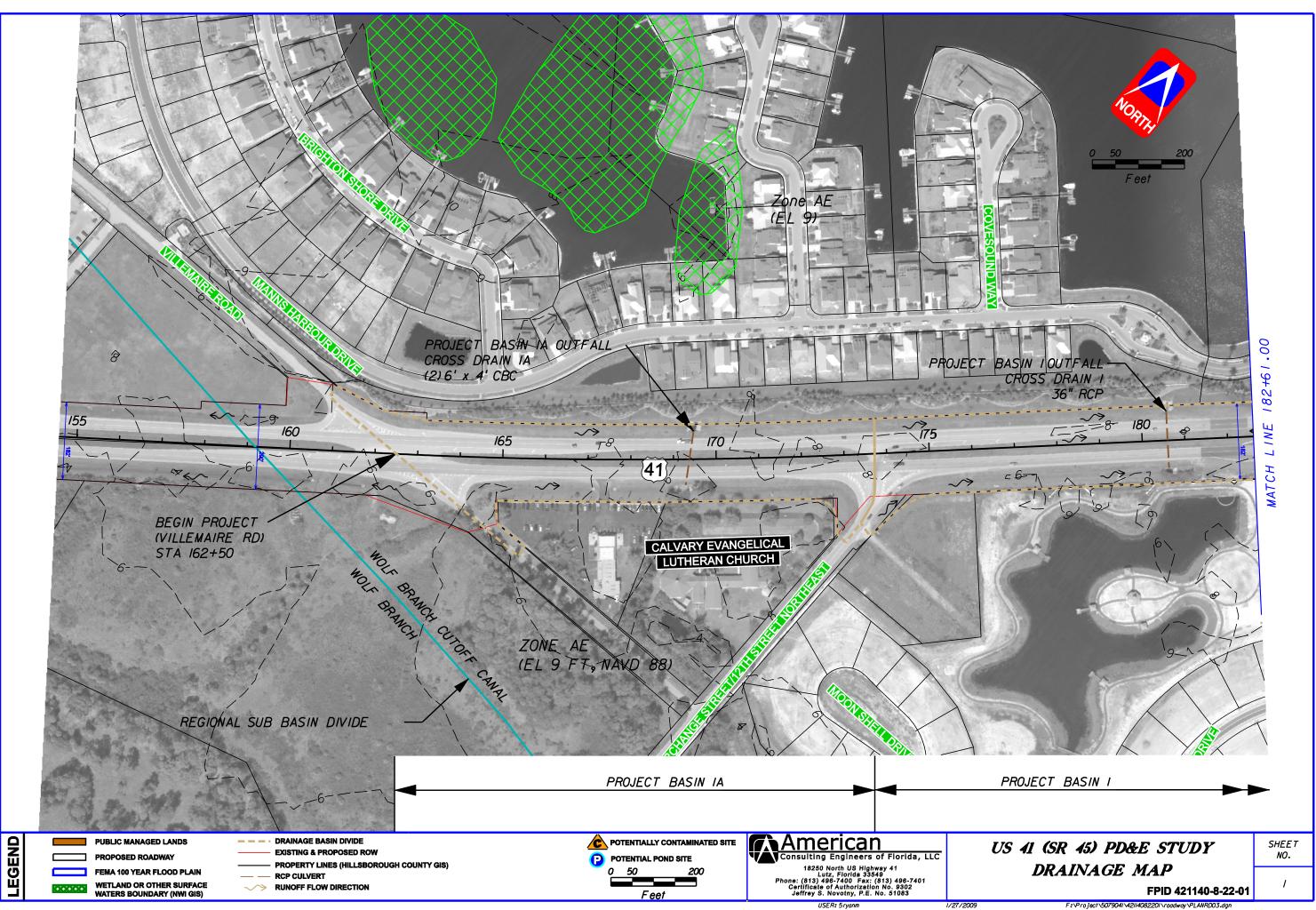
Floodplain compensation site requirements are identified separately and are estimated based on the area of encroachment, estimated volume of encroachment, and estimated depth of compensation per area of compensation site. These are summarized in **Table 3-2**.

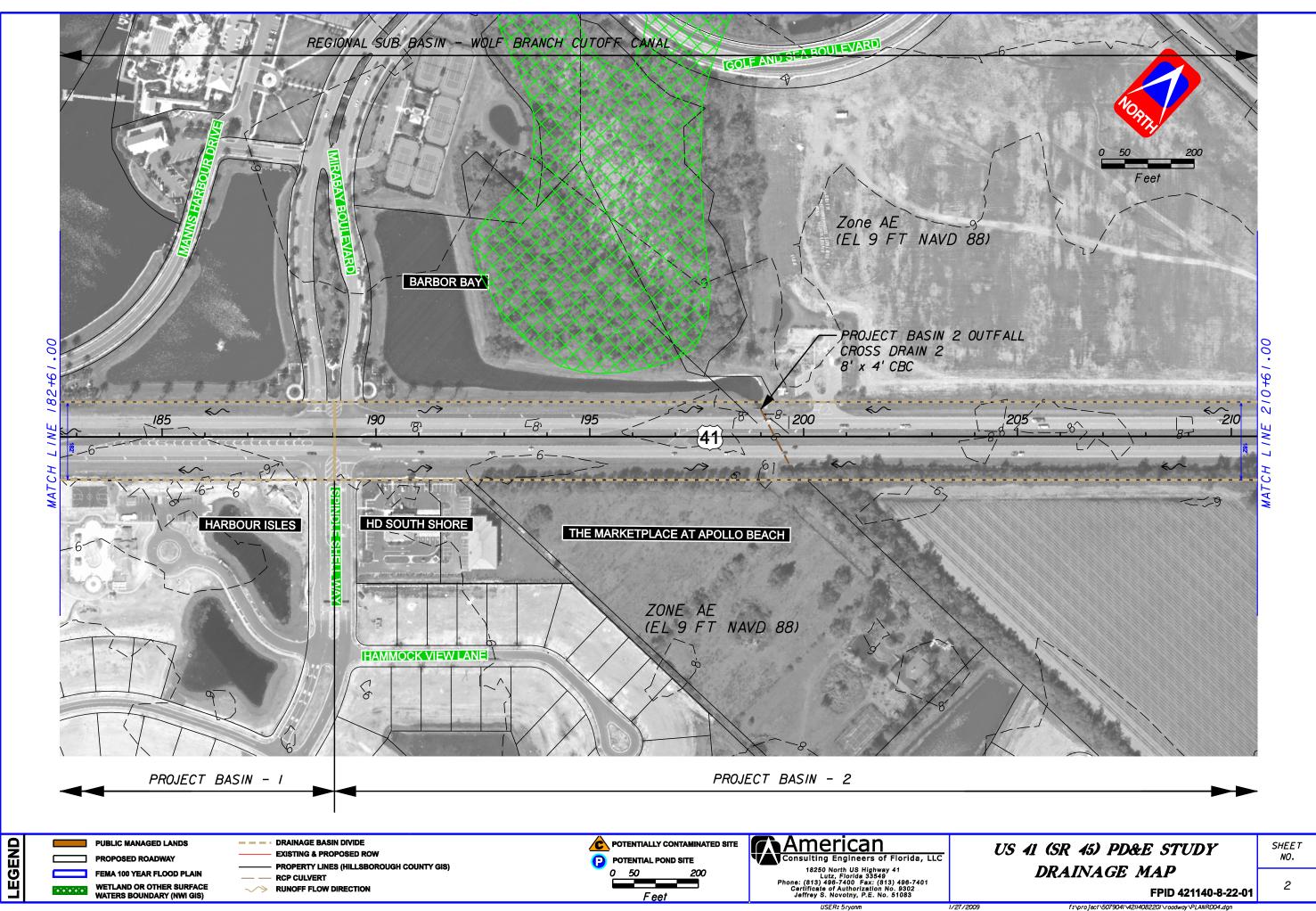
8

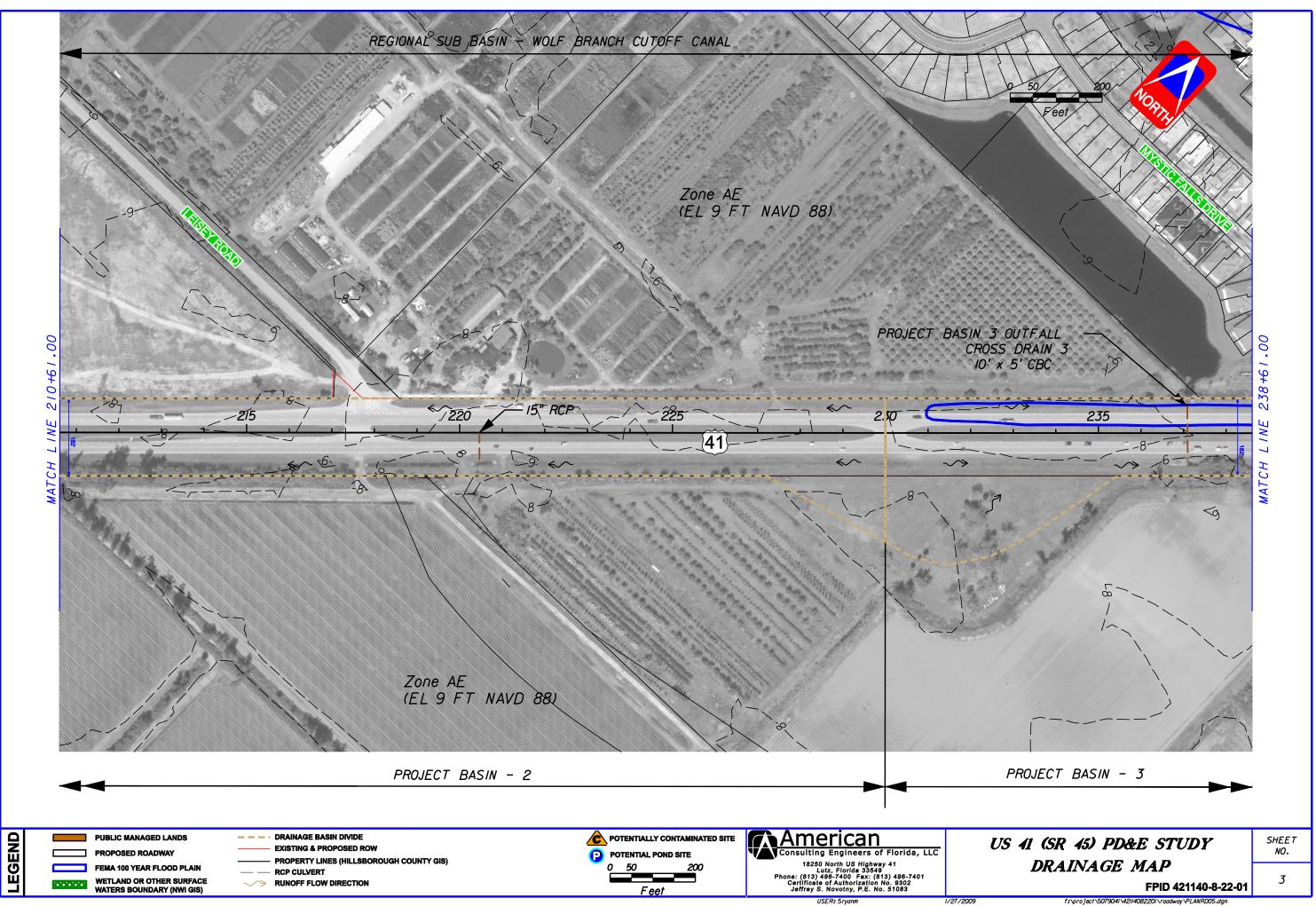
Project Basin/Pond No.	Project Basin Boundaries	Wet Detention Area (ac)	Dry Retention Area (ac)	SWF Total Area (ac)
1A	Sta 162+50 to Sta 173+72	1.34	0.45	1.79
1	Sta 173+72 to Sta 188+85	1.73	0.54	2.27
2	Sta 188+85 to Sta 229+90	4.70	1.45	6.15
3	Sta 229+90 to Sta 253+02	2.65	0.82	3.47
4	Sta 253+02 to Sta 275+35	2.56	0.79	3.35
5	Sta 275+35 to Sta 321+94	5.34	1.65	6.99
6	Sta 321+94 to Sta 340+35	2.11	0.65	2.76
7	Sta 340+35 to Sta 375+35	4.01	1.25	5.26
8	Sta 375+35 to Sta 391+52	1.85	0.57	2.42
9	Sta 391+52 to Sta 402+35	1.24	0.38	1.62
10	Sta 402+35 to Sta 412+17	1.13	0.35	1.48
11	Sta 412+17 to Sta 439+95	3.18	0.98	4.16
12	Sta 439+95 to Sta 444+46	0.52	0.16	0.68
13	Sta 444+46 to Sta 458+35 (west of centerline)	0.80	0.25	1.05
14	Sta 444+46 to Sta 471+44 (east of centerline)	1.55	0.48	2.03
15	Sta 458+35 to Sta 471+44 (west of centerline)	0.75	0.23	0.98

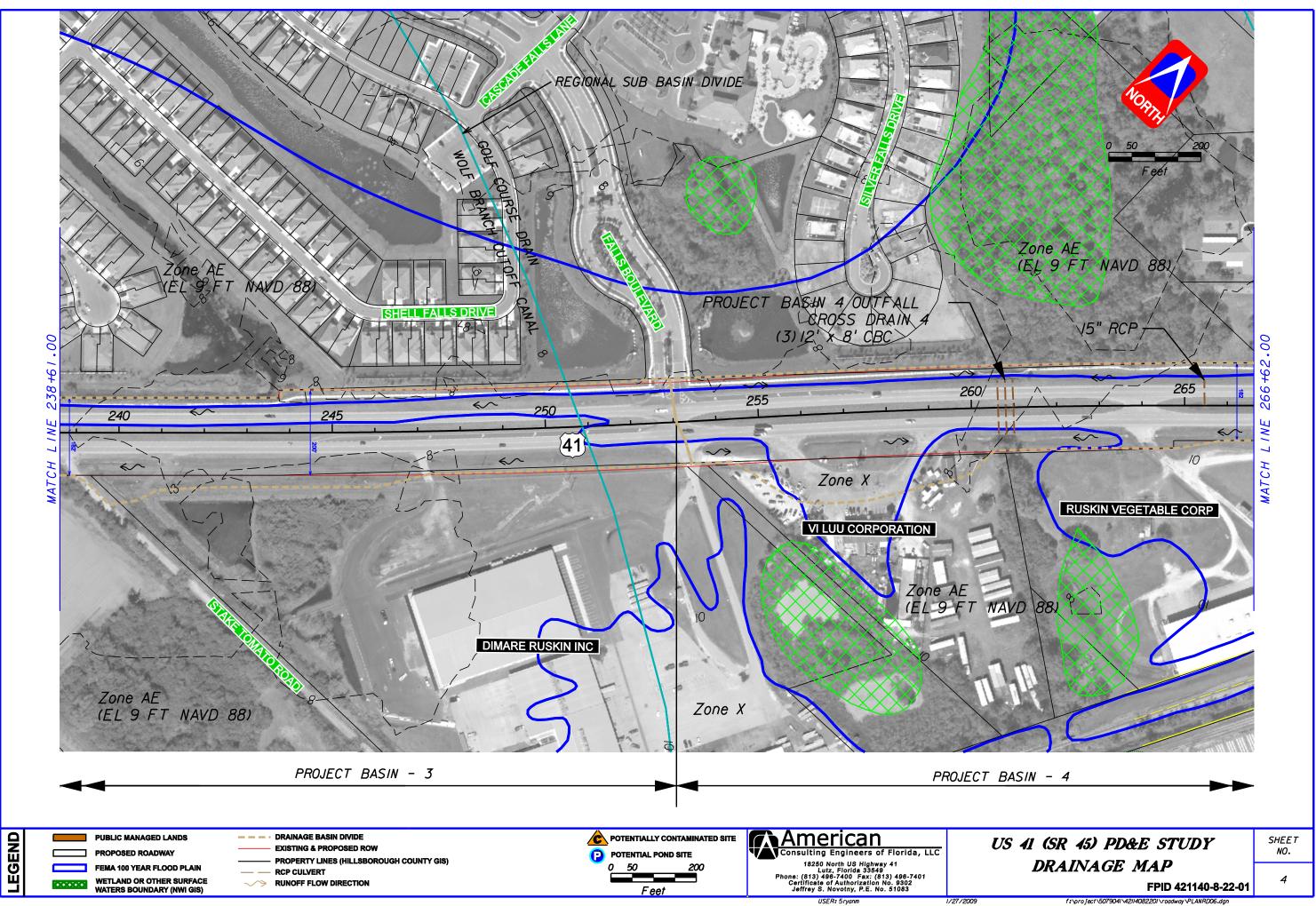
 Table 3-1: Stormwater Management Facility Summary

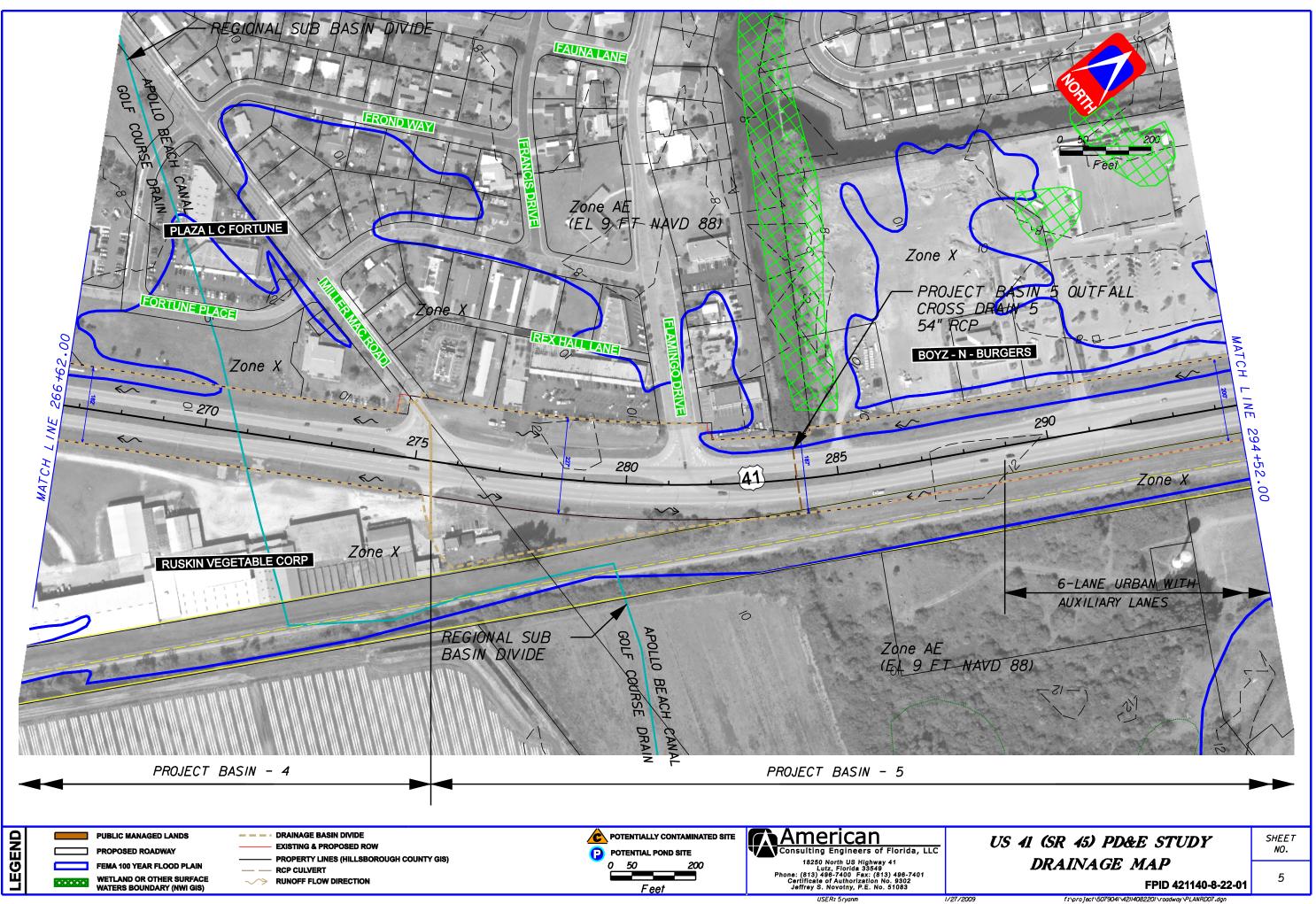
Project Basin/FPC site No.	Project Basin Boundaries	Zone AE 1% annual chance flood EL (ft –NAVD 88) ①	Estimated Floodplain Encroachment Area (ac)	Estimated Floodplain Compensation (FPC) site Volume (ac-ft) ②
1A	Sta 162+50 to Sta 173+72	9.0	4.63	4.63
1	Sta 173+72 to Sta 188+85	9.0	6.32	6.32
2	Sta 188+85 to Sta 229+90	9.0	17.15	17.15
3	Sta 229+90 to Sta 253+02	9.0	6.99	6.99
4	Sta 253+02 to Sta 275+35	9.0	1.80	1.80
5	Sta 275+35 to Sta 321+94	9.0	2.43	2.43
6	Sta 321+94 to Sta 340+35	9.0	0.83	0.83
7	Sta 340+35 to Sta 375+35	10.0	0.04	0.04
8	Sta 375+35 to Sta 391+52	10.0	1.61	1.61
9	Sta 391+52 to Sta 402+35	10.0	3.09	3.09
10	Sta 402+35 to Sta 412+17	10.0	4.10	4.10
11	Sta 412+17 to Sta 439+95	10.0-11.0	11.61	11.61
12	Sta 439+95 to Sta 444+46	10.0-11.0	1.88	1.88
13	Sta 444+46 to Sta 458+35 (west of centerline)	10.0-11.0	2.90	2.90
14	Sta 444+46 to Sta 471+44 (east of centerline)	10.0-11.0	5.64	5.64
15	Sta 458+35 to Sta 471+44 (west of centerline)	10.0-11.0	2.73	2.73

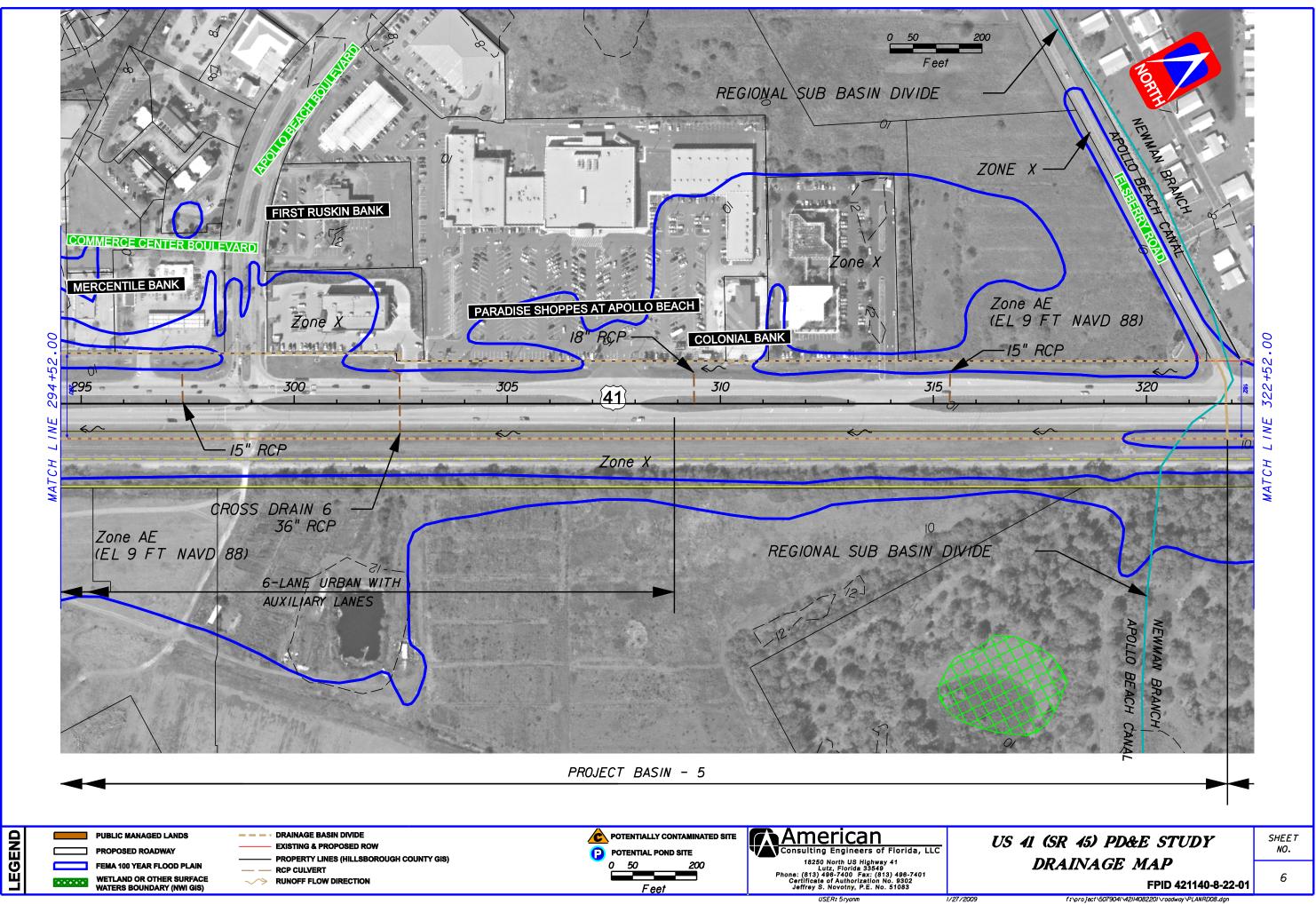

 Table 3-2:
 Floodplain Encroachment and Compensation Summary

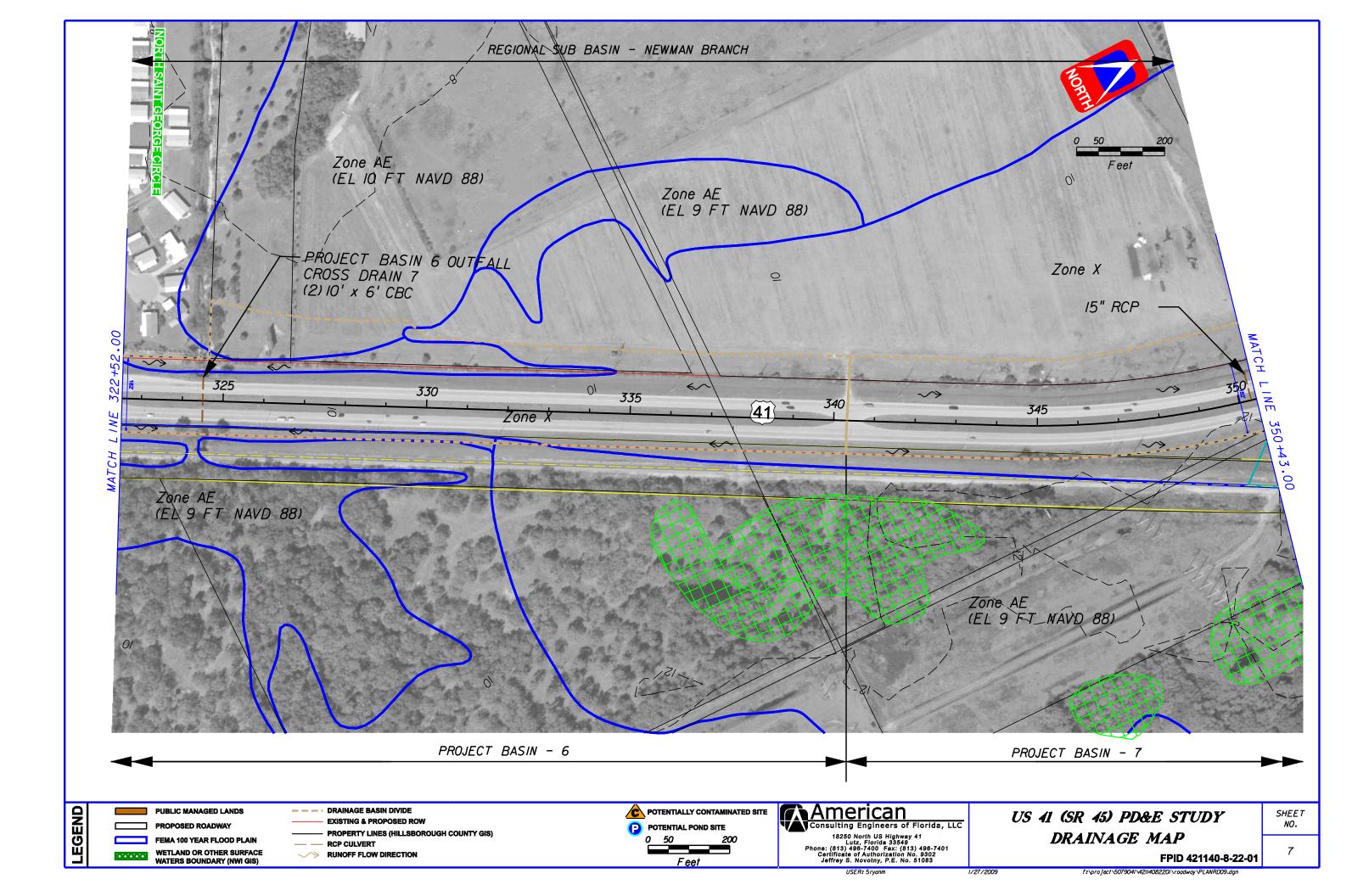

① The estimated 100-year floodplain elevations are taken from the Revised Preliminary FIRMs for Hillsborough County, panel numbers 0656H, 0493H, 0494H, 0492H and 0484H. It is anticipated that the Revised Preliminary FIRMs will supersede the Current Effective FIRMs on August 28, 2008.

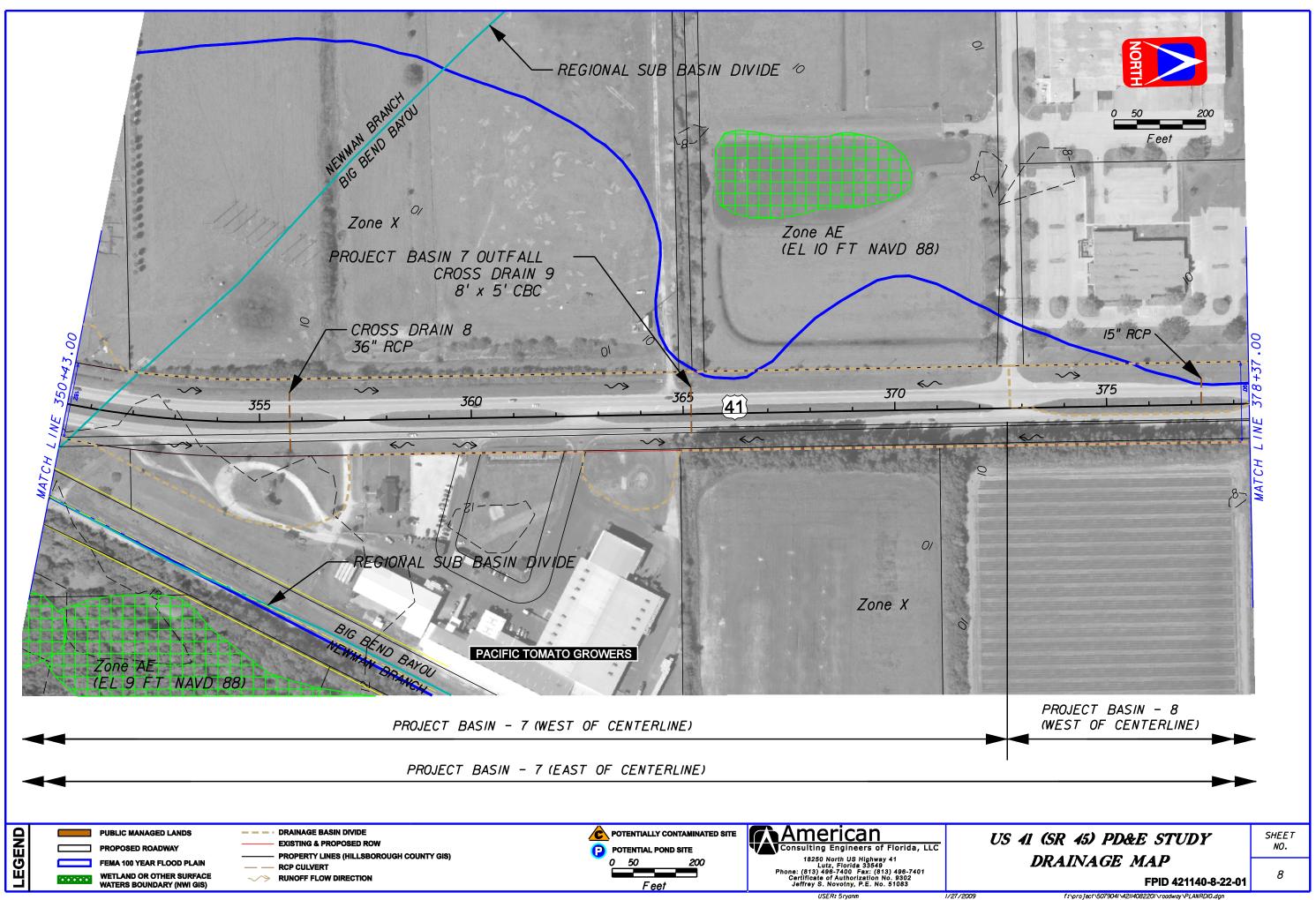

② An estimated fill depth of 1-ft was used to determine the estimated FPC site volume

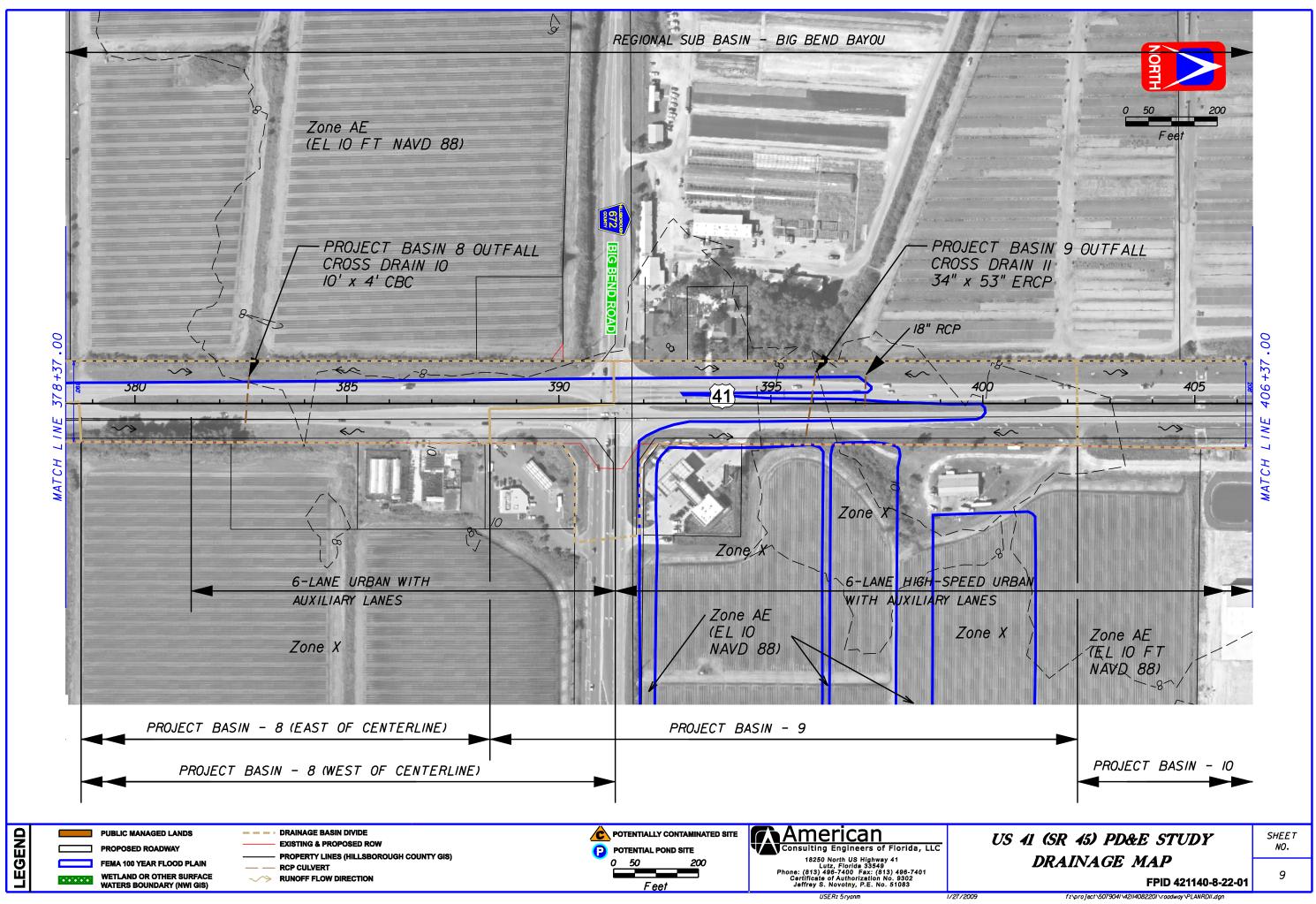

Appendix A

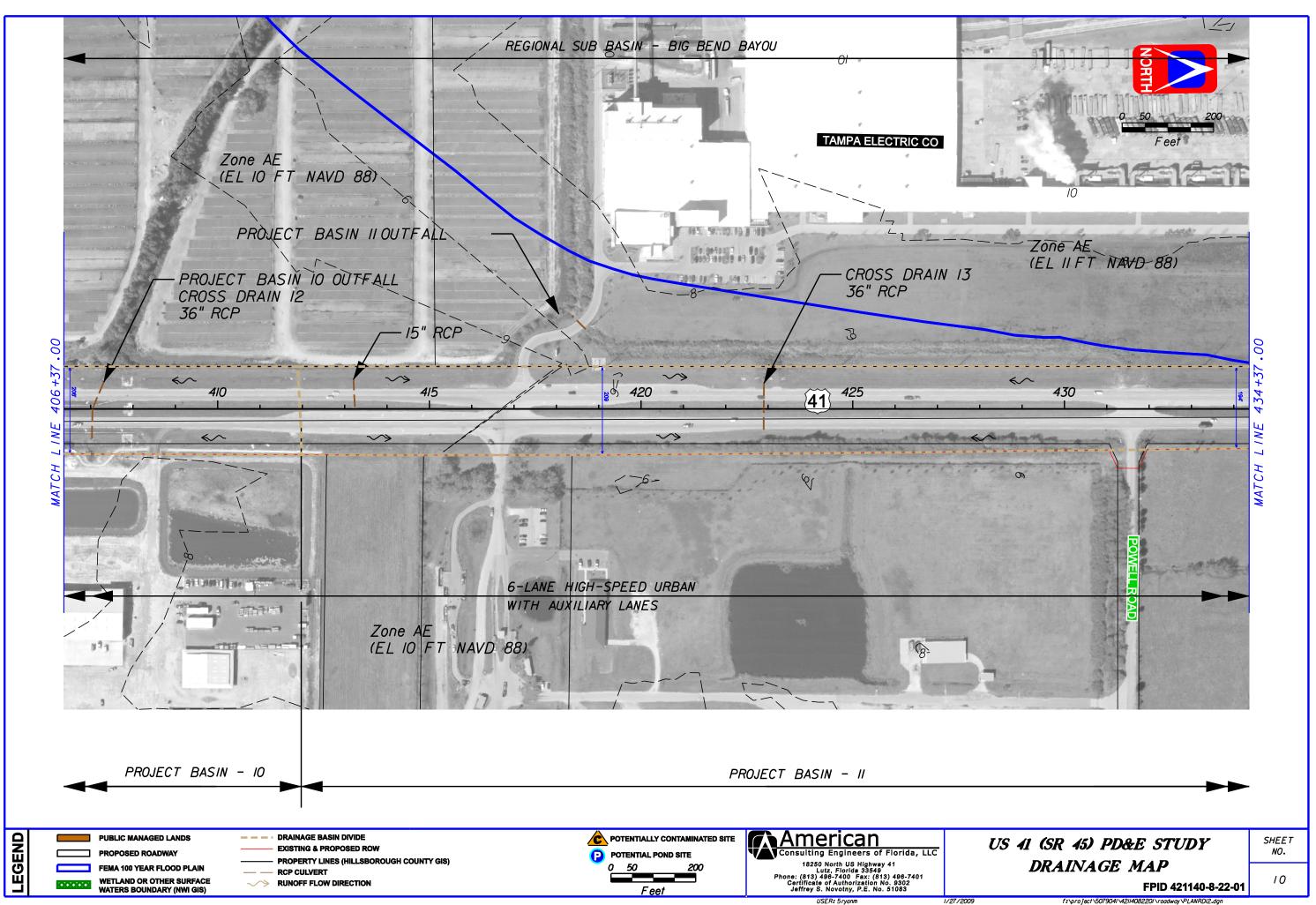

Drainage Maps

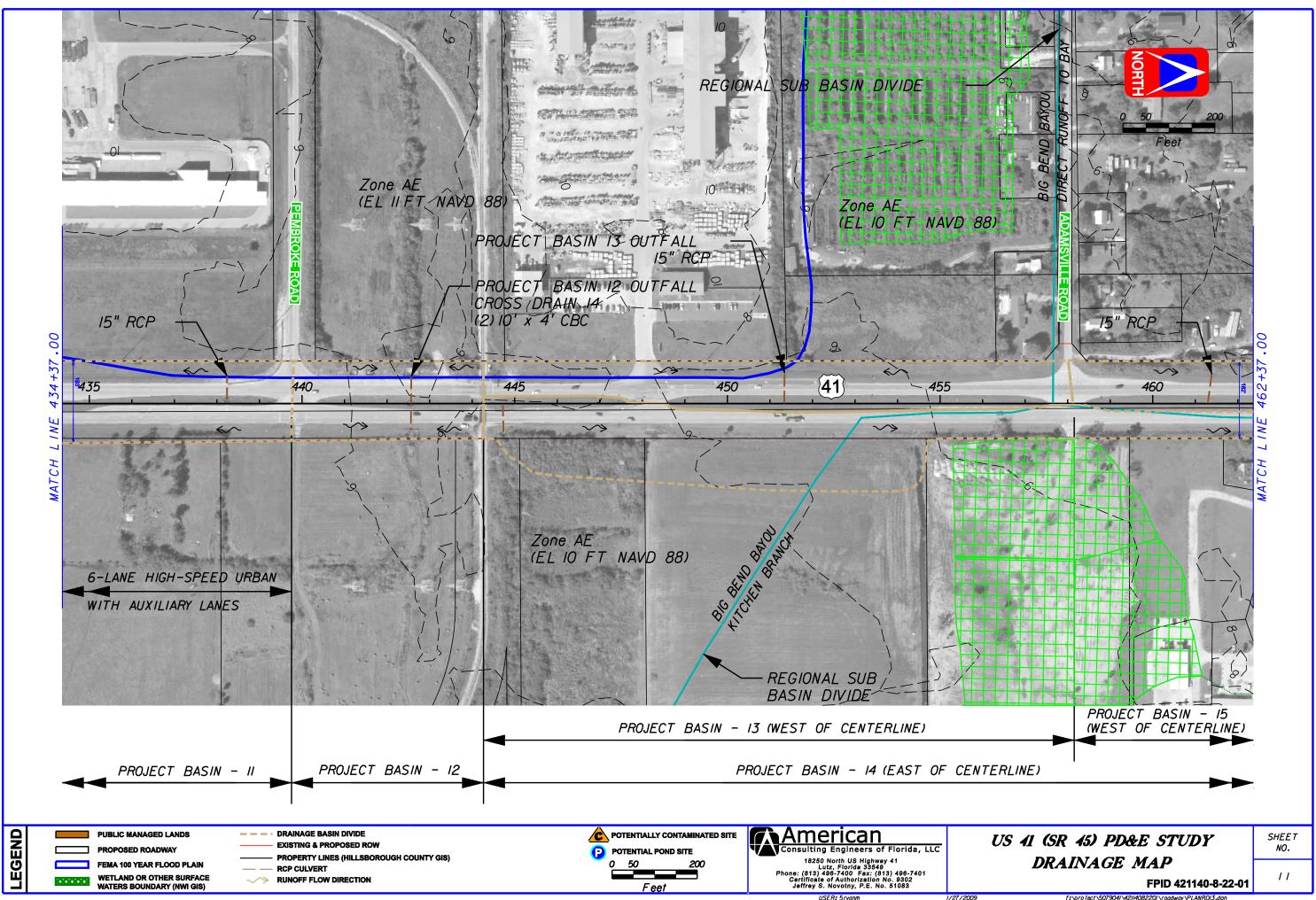


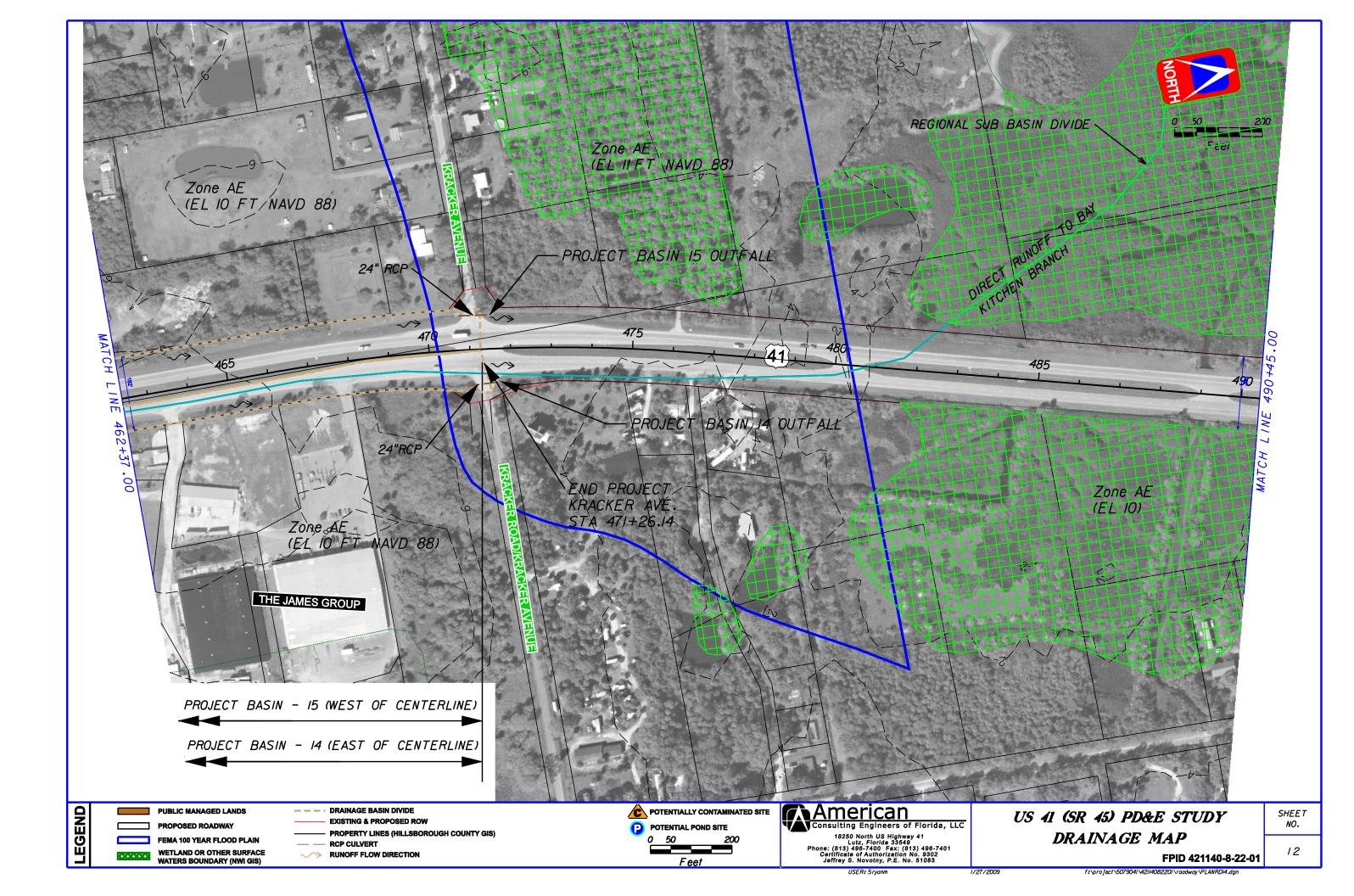












f:\project\507904I\42||408220|\roadway\PLANRD|0.dgn

Appendix B

Drainage Calculations

(This page intentionally left blank)

<u>Project Basin 1A</u>				$\mathbf{\Lambda}$	American Consulting Engineers of Florida, LLC
Begin Station Sta1 := 16250ft	End Station	Sta2 := 17	<mark>372ft</mark>	Project:	US 41 (SR 45) PD&E
Length := $Sta2 - Sta1$	Length = 1122ft	Row_widtl	<mark>h := 182ft</mark>	-	FPID No. 421140-8-22-01
Additional_Area := 0.38acre	Additional_Area =	= 0.38·acre			Hillsborough County No.: 5079041
$Row_area := Length \cdot Row_width + A$	Additional_Area	Row_area	= 5.07·acre	Ū	
Land use break downIncrease impervious areas by percentage for intersections, etc.Exist_inc := 10%Prop_inc := 15%					
Existing areas					
Exist_imp := Length \cdot 56ft \cdot (1 + Exist_	Exist_imp = 1.59 acre				
Exist_per := Row_area - Exist_imp		Exist_per = 3.48 acre			
Proposed areas					
$Prop_imp := Length \cdot 124 ft \cdot (1 + Prop$	Prop_imp =	3.67 acre			
Prop_per := Row_area - Prop_imp		Prop_per =	1.39 acre		
Additional_imp := Prop_imp – Exist_imp		Additional_i	imp = 2.09 ac	re	

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	
Roads	$Elev_{pvmt} := 8 \cdot ft$	
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	
Water table data based on topographic information, a		Depth := 1ft
Wet Season Water Table:	SHW := $Elev_{prv} - Depth$	SHW = 4.00ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$ $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area} \qquad CN_e = 85.6$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 93.05$$

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
SWFWMD design rainfall depth is the 25 yr 24 hr storm event

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in$$
 $S_e = 1.68 \cdot in$

100 year 24 hour runoff volume

25 year 24 hour runoff volume		
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 4.31 \cdot acre \cdot ft$
Runoff in Inches (100-Year, Qf)	$Q_{e100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_e\right)}$	$Q_{e100} = 10.2 \cdot in$

Runoff in Inches (25-Year, Qf) $Q_{e25} := \frac{\left[P_{25yr} - (0.2 \cdot S_e)\right]^2}{P_{25yr} + (0.8 \cdot S_e)}$ $Q_{e25} = 7.26 \cdot in$ Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot Row_area$ $V_{e25} = 3.07 \cdot acre \cdot ft$

Proposed runoff volume calculation

Soil Storage	$\mathbf{S}_{\mathbf{p}} := \left(\frac{1000}{\mathbf{CN}_{\mathbf{p}}} - 10\right) \cdot \mathbf{in}$	$S_p = 0.75 \cdot in$
100 year 24 hour runoff volume	-	
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.15 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 4.71 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.16 \cdot in$
Runoff Volume (25-Year,Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 3.45 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 0.40 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.38 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	$TV_{depth} := 1 in$	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 0.42 \cdot acre \cdot ft$

Preliminary Pond Sizing

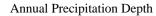
Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5 \text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation

 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 1.00 \cdot acre$


Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{\left(Depth_{available} - P_{25yr}\right)} \cdot 1.25 \qquad Pond_{area25} = 1.34 \cdot acre$

 $Pond_{area} := val \leftarrow Pond_{area100}$ $Pond_{area25}$ if $val < Pond_{area25}$ val otherwise

 $Pond_{area} = 1.34 \cdot acre$

Nutrient loading analysis

 $AP := 51.50 \frac{in}{vr}$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0%

 $CN_{e} = 85.64$

From Appendix C, FDEP Stormwater Quality Handbook

Annual curvenumber	e	$CA_e := 0.266 - \frac{(.266182)}{(90 - 85)} \cdot (90 - CN_e)$	$CA_{e} = 0.19$
Existing ann runoff	ual	$QA_e := CA_e \cdot AP \cdot Row_area$	$QA_e = 4.19 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing ann	ual		
loading			1
	Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 8.48 \cdot \frac{kg}{yr}$
	Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 1.14 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roa	dway DCIA	= 100%	$CN_{p} = 93.05$		
From Append Handbook	dix C, FDEP	Stormwater	Quality		
Annual curve number	2	$CA_p := 0.82$	3		
Existing ann runoff	ual	$QA_p := CA_p$	·AP·Row_area	$QA_{p} = 17.90 f$	$t \cdot \frac{acre}{yr}$
Existing annu loading	ual				1
	Nitrogen loading		$NA_p := TNhwy \cdot QA_p$	$NA_p = 36.21$.	<u>kg</u> yr
	Phosphorus loading		$PA_p := TPhwy \cdot QA_p$	$PA_p = 4.86 \cdot \frac{kg}{y_1}$	2

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 76.6·%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 76.6 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}.65% + 2ft.35% Ave_depth = 3.30 ft

 $Pool := Pond_{area} \cdot Ave_depth$ $Pool = 4.42 \cdot acre \cdot ft$

Proposed Residence Time

Annual input to pond Input := QA_p Input = 17.90 ft $\cdot \frac{\text{acre}}{\text{yr}}$ Rt := $\frac{\text{Pool}}{\text{Input}}$ Rt = 90.15 $\cdot \text{day}$

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.1 \cdot \%$$

$$NG$$

Required additional TMDL treatment

From FDEP Stormwater Quality handbood, appendix D

$$\operatorname{Eff1}_{\operatorname{depth}} := 1.00 \operatorname{in} - \frac{1.00 \operatorname{in} - 0.75 \operatorname{in}}{65.6\% - 55.7\%} \cdot (65.6\% - \operatorname{Eff1}) \qquad \qquad \operatorname{Eff1}_{\operatorname{depth}} = 0.85 \cdot \operatorname{in}$$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 0.36 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} :=
$$\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$$
 Area_{dry} = 0.45 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $1.79 \cdot acre$

Begin Station Sta1 := 17372ft	End Station	Sta2 := 18885ft	' of Florida, LLC
Length := $Sta2 - Sta1$	Length $= 1513$ ft	Row_width := 182ft	Project: US 41 (SR 45) PI FPID No. 421140
Row_area := Length Row_width R	Row_area = $6.32 \cdot acre$		Hillsborough Co Project No.: 5079041
Land use break down Increase impervious areas by perce	entage for intersection	s, etc. Exist_inc := 1	Prop_inc := 15%
Existing areas			
Exist_imp := Length \cdot 56ft \cdot (1 + Exist_	ist_inc)	Exist_imp = 2.14 ·acre	
Exist_per := Row_area - Exist_in	ıp	Exist_per = 4.18 · acre	
Proposed areas			
$Prop_imp := Length \cdot 124 ft \cdot (1 + Pr$	rop_inc)	$Prop_imp = 4.95 \cdot acre$	
Prop_per := Row_area - Prop_im	р	Prop_per = 1.37·acre	
Additional_imp := Prop_imp – Ex	ist_imp	Additional_imp = $2.81 \cdot a$	acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} := 9 \cdot \text{ft}$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$\text{Elev}_{\text{prv2}} \coloneqq 9 \cdot \text{ft}$
Water table data based of topographic information,		Depth := 1ft
Wet Season Water Table:	SHW := $Elev_{prv} - Depth$	SHW = 4.00 ft

SCS Curve Numbers:

Project Basin 1

Soil types within basin limits:

 $CN_{BD} := 80$

CN_{pavt} := 98

Existing curve number calculation

$$CN_{e} := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_{e} = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

PD&E 0-8-22-01 ounty

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event SWFWMD design rainfall depth is the 25 yr 24 hr storm event

 $V_{e25} = 3.85 \cdot acre \cdot ft$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf)	$Q_{e100} := \frac{\left[P_{100yr} - (0.2 \cdot S_e)\right]^2}{P_{100yr} + (0.8 \cdot S_e)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 5.4 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{e25} := \frac{\left[P_{25yr} - (0.2 \cdot S_e)\right]^2}{P_{25yr} + (0.8 \cdot S_e)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage S _p :=	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$\boldsymbol{Q}_{p100} \coloneqq \frac{\left[\boldsymbol{P}_{100yr} - \left(\boldsymbol{0.2} \cdot \boldsymbol{S}_p\right)\right]^2}{\boldsymbol{P}_{100yr} + \left(\boldsymbol{0.8} \cdot \boldsymbol{S}_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 5.94 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 4.37 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 0.54 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.51 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 0.53 \cdot acre \cdot ft$

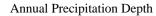
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 1.35 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} := \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 1.73 \cdot acre$ $Pond_{area25} := 1 val \leftarrow Pond_{area25} = 1.73 \cdot acre$

 $Pond_{area} = 1.73 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing road	dway DCIA	L = 0%	$CN_{e} = 86.09$	
From Appen Handbook	dix C, FDE	P Storm	water Quality	
Annual curv number	e	CA _e :=	$0.182 - \frac{(.182266)}{(85 - 90)} \cdot (85 - CN_0)$	$(e) CA_e = 0.20$
Existing ann runoff Existing ann loading		QA _e :=	CA _e ·AP·Row_area	$QA_e = 5.44 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
8	Nitrogen loading		$NA_e := TNhwy \cdot QA_e$	$NA_e = 11.00 \cdot \frac{kg}{yr}$
	Posphorus loading	5	$PA_e := TPhwy \cdot QA_e$	$PA_e = 1.48 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed road	lway DCIA	= 100%	$CN_{p} = 94.10$	
From Appendi Handbook	ix C, FDEP	Stormwate	r Quality	
Annual curve number		$CA_p := 0.8$	823	
Existing annua runoff	al	$QA_p := CA$	A _p ·AP·Row_area	$QA_p = 22.33 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annua loading	al			
	Nitrogen loading		$NA_p := TNhwy \cdot QA_p$	$NA_p = 45.17 \cdot \frac{kg}{yr}$
	Phosphorus loading		$PA_p := TPhwy \cdot QA_p$	$PA_p = 6.06 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7.%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}.65% + 2ft.35% Ave_depth = 3.30 ft Pool := Pond_{area}.Ave_depth Pool = 5.72.acre.ft

Proposed Residence Time

Annual input to pond Input := QA_p Input = 22.33 ft $\frac{acre}{yr}$ Rt := $\frac{Pool}{Input}$ Rt = 93.58 day

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

From FDEP Stormwater Quality handbood, appendix D

$$Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 0.43 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} :=
$$\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$$
 Area_{dry} = 0.54 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = 2.27 · acre

					of Florida, LLC
Begin Station	Sta1 := 18885ft	End Station	Sta2 := 2	22990ft	Project: US 41 (SR 45) PD
Length := Sta2 -	Sta1	Length $= 4105 \text{ft}$	Row_wi	dth := 182ft	FPID No. 421140-
Row_area := Ler	ngth·Row_width R	$aow_area = 17.15 \cdot across$	e		Hillsborough Cou Project No.: 5079041
Land use breat Increase impervio		ntage for intersection.	s, etc.	Exist_inc := 10%	Prop_inc := 15%
Existing areas	S				
Exist_imp := Ler	ngth·56ft·(1 + Exi	st_inc)	Exist_im	$p = 5.81 \cdot acre$	
Exist_per := Rov	v_area – Exist_im	ıp	Exist_pe	$r = 11.35 \cdot acre$	
Proposed are	as				
Prop_imp := Len	$gth \cdot 124 ft \cdot (1 + Property)$	op_inc)	Prop_im	$p = 13.44 \cdot acre$	
Prop_per := Row	_area – Prop_imp	2	Prop_per	$r = 3.71 \cdot acre$	
Additional_imp :	= Prop_imp – Exi	ist_imp	Addition	al_imp = 7.63∙ac	re

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} := 9 \cdot \text{ft}$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$\text{Elev}_{\text{prv2}} \coloneqq 9 \cdot \text{ft}$
Water table data based of topographic information,		Depth := 1ft
Wet Season Water Table:	SHW := $Elev_{prv} - Depth$	SHW = 4.00 ft

SCS Curve Numbers:

Project Basin 2

Soil types within basin limits:

 $CN_{BD} := 80$ $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area} \qquad CN_{p} = 94.1$$

D&E 0-8-22-01 ounty

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event SWFWMD design rainfall depth is the 25 yr 24 hr storm event

 $V_{e25} = 10.46 \cdot \text{acre} \cdot \text{ft}$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

100 year 21 hour runoir voranie		
Runoff in Inches (100-Year, Qf)	$Q_{e100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_e\right)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 14.66 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{e25} := \frac{\left[P_{25yr} - (0.2 \cdot S_e)\right]^2}{P_{25yr} + (0.8 \cdot S_e)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage S _p :=	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 16.12 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 11.85 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 1.46 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 1.39 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 1.43 \cdot acre \cdot ft$

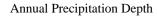
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100vr}} \cdot 1.25 \qquad Pond_{area100} = 3.65 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 4.70 \cdot acre$

 $Pond_{area} = 4.70 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

Annual curve	e number	$CA_e \coloneqq 0.182 - \frac{(.182266)}{(85 - 90)} \cdot (85 - $	CN_e) $CA_e = 0.20$
Existing annu	ual runoff	$QA_e := CA_e \cdot AP \cdot Row_area$	$QA_e = 14.75 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annu	ual loading		
	Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 29.83 \cdot \frac{kg}{yr}$

loading		5
Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 4.00 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roadway DCIA	= 100% CN _p = 94.10				
From Appendix C, FDEP Stormwater Quality Handbook					
Annual curve number	CA _p := 0.823				
Existing annual runoff	$QA_p := CA_p \cdot AP \cdot Row_area$	$QA_p = 60.58 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$			
Existing annual loading		·			
Nitrogen	$NA_p := TNhwy \cdot QA_p$	$NA_p = 122.55 \cdot \frac{kg}{vr}$			

loading	тар тапу стр	yr
Phosphorus loading	$PA_p := TPhwy \cdot QA_p$	$PA_p = 16.44 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7·%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}.65% + 2ft.35% Ave_depth = 3.30 ft Pool := Pond_{area}.Ave_depth Pool = 15.52.acre.ft

Proposed Residence Time

Annual input to pond Input := QA_p Input = 60.58 ft $\cdot \frac{\text{acre}}{\text{yr}}$ Rt := $\frac{\text{Pool}}{\text{Input}}$ Rt = 93.58 $\cdot \text{day}$

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

From FDEP Stormwater Quality handbood, appendix D

$$Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 1.16 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} :=
$$\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$$
 Area_{dry} = 1.45 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = 6.16·acre

Project Basin 3

Length := Sta2 - Sta1

Begin	Station

Sta1 := 22990ft End Station

Length $= 2312 \, \text{ft}$

Sta2 := 25302ft

Row_width := 182ft

Project: US 41 (SR 45) PD&E FPID No. 421140-8-22-01 Hillsborough County

 $Prop_inc := 15\%$

Row_area := Length Row_width Row_area = 9.66 acre

Land use break down

Increase impervious areas by percentage for intersections, etc.

Existing areas

<pre>Exist_imp := Length·56ft·(1 + Exist_inc)</pre>	Exist_imp = $3.27 \cdot acre$		
Exist_per := Row_area - Exist_imp	$Exist_per = 6.39 \cdot acre$		
Proposed areas			
Prop_imp := Length 124ft (1 + Prop_inc)	$Prop_imp = 7.57 \cdot acre$		
Prop_per := Row_area - Prop_imp	$Prop_per = 2.09 \cdot acre$		
Additional_imp := Prop_imp - Exist_imp	Additional_imp = 4.30.acre		

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} := 9 \cdot \text{ft}$
Pervious Areas:	$\text{Elev}_{\text{prv}} := 5 \cdot \text{ft}$	$Elev_{prv2} := 9 \cdot ft$
Water table data based topographic informatio	Depth := 1 ft	
Wet Season Water Tabl	e: SHW := Elev _{prv} – Depth	SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$\label{eq:cn_e} CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area} \qquad \qquad CN_e =$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area} \qquad CN_{p} = \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

Project No.: 5079041

Exist inc := 10%

86.1

94.1

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event SWFWMD design rainfall depth is the 25 yr 24 hr storm event

 $V_{e25} = 5.89 \cdot acre \cdot ft$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

2	
$\mathbf{Q}_{e100} \coloneqq \frac{\left[\mathbf{P}_{100yr} - \left(\mathbf{0.2 \cdot S_e}\right)\right]^2}{\mathbf{P}_{100yr} + \left(\mathbf{0.8 \cdot S_e}\right)}$	$Q_{e100} = 10.26 \cdot in$
$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 8.26 \cdot acre \cdot ft$
_	
$Q_{e25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_e\right)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage S _p :=	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 9.08 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 6.67 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 0.82 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.78 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 0.80 \cdot acre \cdot ft$

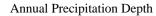
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 2.06 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 2.65 \cdot acre$

 $Pond_{area} = 2.65 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing roadway DCIA = 0% $CN_{e} = 86.09$ From Appendix C, FDEP Stormwater Quality Handbook $CA_e := 0.182 - \frac{(.182 - .266)}{(.85 - .90)} \cdot (.85 - CN_e) CA_e = 0.20$ Annual curve number $QA_e = 8.31 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$ Existing annual $QA_e := CA_e \cdot AP \cdot Row_area$ runoff Existing annual loading $NA_e = 16.80 \cdot \frac{kg}{yr}$ $NA_e := TNhwy \cdot QA_e$ Nitrogen loading $PA_e = 2.25 \cdot \frac{kg}{vr}$ $PA_e := TPhwy \cdot QA_e$ Posphorus loading

Proposed loading calculation

Proposed roadway DC	IA = 100%	$CN_{p} = 94.10$		
From Appendix C, FDEP Stormwater Quality Handbook				
Annual curve number	$CA_p := 0.8$	23		
Existing annual runoff	$QA_p := CA$	_p ·AP·Row_area	($QA_p = 34.12 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annual loading				
Nitrogen loading		$NA_p := TNhwy \cdot QA_p$	1	$NA_p = 69.02 \cdot \frac{kg}{yr}$
Phospho: loading	rus	$PA_p := TPhwy \cdot QA_p$	I	$PA_p = 9.26 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7.%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}.65% + 2ft.35% Ave_depth = 3.30 ft

Proposed Residence Time

Annual input to pond Input := QA_p Input = $34.12 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$ Rt := $\frac{Pool}{Input}$ Rt = $93.58 \cdot \text{day}$

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100} \qquad PRN = 41.8 \cdot \% \text{ NG}$$
$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right] \qquad PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

From FDEP Stormwater Quality handbood, appendix D

$$Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Effl_{depth}$ $Dry_{vol} = 0.65 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} := $\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$ Area_{dry} = 0.82·acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $3.47 \cdot acre$

Exist_imp := Length 56ft (1 + Exist_inc)	Exist_imp = 3.16.acre
Exist_per := Row_area - Exist_imp	$Exist_per = 6.17 \cdot acre$
Proposed areas	
Prop_imp := Length · 124 ft · (1 + Prop_inc)	$Prop_imp = 7.31 \cdot acre$
Prop_per := Row_area - Prop_imp	$Prop_per = 2.02 \cdot acre$
Additional_imp := Prop_imp - Exist_imp	Additional_imp = 4.15 ·acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$Elev_{pvmt2} := 9 \cdot ft$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$Elev_{prv2} := 9 \cdot ft$
Water table data based to topographic information		Depth := 1ft
Wet Season Water Table	e: SHW := Elev _{prv} – Depth	SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_{e} := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_{e} = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

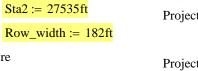
Project Basin 4

Begin Station Sta1 := 25302ft End Station

Row_area := Length Row_width Row_area = 9.33 · acre

Increase impervious areas by percentage for intersections, etc.

Length := Sta2 - Sta1


Land use break down

Length = $2233 \, \text{ft}$

Project: US 41 (SR 45) PD&E FPID No. 421140-8-22-01 Hillsborough County Project No.: 5079041

Exist inc := 10%Prop_inc := 15%

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event
SWFWMD design rainfall depth is the 25 yr 24 hr storm event

$$P_{100yr} := 12in$$
$$P_{25yr} := 9in$$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

100 year 21 nour Tanon Voranie		
Runoff in Inches (100-Year, Qf)	$\mathbf{Q}_{e100} \coloneqq \frac{\left[\mathbf{P}_{100yr} - \left(\mathbf{0.2 \cdot S_e}\right)\right]^2}{\mathbf{P}_{100yr} + \left(\mathbf{0.8 \cdot S_e}\right)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 7.98 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{e25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_e\right)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$ $V_{e25} = 5.69 \cdot acre \cdot ft$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage $S_p :=$	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 8.77 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} := \frac{\left[P_{25yr} - (0.2 \cdot S_p)\right]^2}{P_{25yr} + (0.8 \cdot S_p)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 6.44 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 0.79 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.76 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 0.78 \cdot acre \cdot ft$

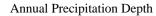
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 1.99 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 2.56 \cdot acre$

 $Pond_{area} = 2.56 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

Annual curve number $CA_e := 0.182 - \frac{(.182 - .266)}{(85 - 90)} \cdot (85 - CN_e) CA_e = 0.20$ Existing annual runoff $QA_e := CA_e \cdot AP \cdot Row_area$ $QA_e = 8.02 \text{ ft} \cdot \frac{acre}{yr}$ Existing annual loading

Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 16.23 \cdot \frac{kg}{yr}$
Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 2.18 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roadway DCIA	$= 100\%$ $CN_p = 94.10$	
From Appendix C, FDEP	Stormwater Quality Handbook	
Annual curve number	CA _p := 0.823	
Existing annual runoff	$QA_p := CA_p \cdot AP \cdot Row_area$	$QA_p = 32.95 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annual loading		,

Nitrogen loading	$NA_p := TNhwy \cdot QA_p$	$NA_p = 66.66 \cdot \frac{kg}{yr}$
Phosphorus loading	$PA_p := TPhwy \cdot QA_p$	$PA_p = 8.94 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe \coloneqq 1 - \frac{NA_e}{NA_p}$	NRe = 75.7.%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}·65% + 2ft·35% Ave_depth = 3.30 ft Pool := Pond_{area}·Ave_depth Pool = 8.44·acre·ft

Proposed Residence Time

Annual input to pond Input := QA_p Input = 32.95 ft $\frac{acre}{yr}$ Rt := $\frac{Pool}{Input}$ Rt = 93.58 day

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

Eff1 := 58.2%Eff2_N := PRNEff2_P := PRPNRe = 75.66 ·%PRe = 75.66 ·%Treatment train efficiencyTrain_N := Eff1 +
$$(1 - Eff1)Eff2_N$$
Train_N = 75.67 ·%Train_P := Eff1 + $(1 - Eff1)Eff2_P$ Train_P = 88.90 ·%

From FDEP Stormwater Quality handbood, appendix D

$$Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Effl_{depth}$ $Dry_{vol} = 0.63 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} :=
$$\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$$
 Area_{dry} = 0.79 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $3.35 \cdot acre$

Begin Station Sta1 := 27535ft	End Station	Sta2 := 3219	94ft	Project: US 41 (SR 45) PL
Length := Sta2 – Sta1	Length $= 4659 \text{ft}$	Row_width	:= 182ft	FPID No. 421140
Row_area := Length·Row_width	h Row_area = $19.47 \cdot a$	acre		Hillsborough Cou Project No.: 5079041
Land use break down Increase impervious areas by per	rcentage for intersecti	ons, etc.	Exist_inc := 10	Prop_inc := 15%
Existing areas				
Exist_imp := Length \cdot 56ft \cdot (1 + H	Exist_inc)	Exist_imj	p = 6.59∙acre	
Exist_per := Row_area - Exist_	_imp	Exist_per	$r = 12.88 \cdot acre$	
Proposed areas				
Prop_imp := Length · 124ft · (1 +	Prop_inc)	Prop_imp	$b = 15.25 \cdot acre$	
Prop_per := Row_area - Prop_i	imp	Prop_per	= 4.21 · acre	
Additional_imp := Prop_imp - 1	Exist_imp	Additiona	al_imp = 8.66·ao	cre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$Elev_{pvmt2} := 9 \cdot ft$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$\text{Elev}_{\text{prv2}} \coloneqq 9 \cdot \text{ft}$
Water table data based on soil data and topographic information, approximate only		Depth := 1 ft
Wet Season Water Table:	SHW := $Elev_{prv} - Depth$	SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

5) PD&E 140-8-22-01 County

Project Basin 5

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event SWFWMD design rainfall depth is the 25 yr 24 hr storm event

 $V_{e25} = 11.87 \cdot acre \cdot ft$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf)	$Q_{e100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_e\right)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 16.64 \cdot acre \cdot ft$
25 year 24 hour runoff volume	_	
Runoff in Inches (25-Year, Qf)	$Q_{e25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_e\right)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage S _p :=	$\left(\frac{1000}{CN_p} - 10\right) \cdot in \qquad S_p = 0.63 \cdot in$	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 18.3 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 13.45 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 1.66 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 1.58 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 1.62 \cdot acre \cdot ft$

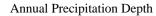
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 4.14 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 5.34 \cdot acre$

 $Pond_{area} = 5.34 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

Annual curve number $CA_e := 0.182 - \frac{(.182 - .266)}{(.85 - 90)} \cdot (.85 - CN_e) CA_e = 0.20$ Existing annual runoff $QA_e := CA_e \cdot AP \cdot Row_area$ $QA_e = 16.74 \text{ ft} \cdot \frac{acre}{yr}$ Existing annual loading

Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 33.86 \cdot \frac{kg}{yr}$
Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 4.54 \cdot \frac{kg}{vr}$

Proposed loading calculation

Proposed roadway DCIA	= 100%	$CN_{p} = 94.10$		
From Appendix C, FDEP Stormwater Quality Handbook				
Annual curve number	$CA_p := 0.823$	3		
Existing annual runoff	$QA_p := CA_p$	·AP·Row_area	$QA_p = 68.75 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$	
Existing annual loading				
Nitrogen lo	ading	$NA_p := TNhwy \cdot QA_p$	$NA_p = 139.08 \cdot \frac{kg}{yr}$	

Phosphorus loading	$PA_p := TPhwy \cdot QA_p$	$PA_p = 18.66 \cdot \frac{kg}{yr}$
Phosphorus loading	$PA_p := TPhwy \cdot QA_p$	$PA_p = 18.66 \cdot \frac{kg}{yr}$

....

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = $75.7 \cdot \%$
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}·65% + 2ft·35% Ave_depth = 3.30 ft Pool := Pond_{area}·Ave_depth Pool = 17.62·acre·ft

Proposed Residence Time

Annual input to pond Input := QA_p Input = 68.75 ft $\cdot \frac{\text{acre}}{\text{yr}}$ Rt := $\frac{\text{Pool}}{\text{Input}}$ Rt = 93.58 $\cdot \text{day}$

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

From FDEP Stormwater Quality handbood, appendix D

$$Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 1.32 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} :=
$$\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$$
 Area_{dry} = 1.65 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = 6.99 · acre

Length := Sta2 – Sta1	Length = 1841 ft	Row_width	:= 182ft	FPID No. Hillsborou
Row_area := Length Row_widt	th Row_area = $7.69 \cdot a$	cre		Project No.: 50790
Land use break down Increase impervious areas by pe	ercentage for intersect	tions, etc.	Exist_inc := 109	% Prop_inc :=
Existing areas				
Exist_imp := Length 56ft (1 +	Exist_inc)	Exist_im	$p = 2.60 \cdot acre$	
Exist_per := Row_area - Exist_	_imp	Exist_per	$r = 5.09 \cdot acre$	
Proposed areas				
<pre>Prop_imp := Length · 124ft · (1 +</pre>	Prop_inc)	Prop_imp	$p = 6.03 \cdot acre$	
Prop_per := Row_area - Prop_	imp	Prop_per	$= 1.67 \cdot \text{acre}$	
Additional_imp := Prop_imp -	Exist_imp	Addition	al_imp = 3.42·acr	e

Sta2 := 34035ft

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} := 9 \cdot \text{ft}$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$\text{Elev}_{\text{prv2}} \coloneqq 9 \cdot \text{ft}$
Water table data based on soil data and topographic information, approximate only		Depth := 1ft
Wet Season Water Table	SHW := $Elev_{prv} - Depth$	SHW = 4.00 ft

SCS Curve Numbers:

Project Basin 6

Begin Station Sta1 := 32194ft End Station

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

Project: US 41 (SR 45) PD&E FPID No. 421140-8-22-01 Hillsborough County Project No.: 5079041

p_inc := 15%

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event	P _{100y}
SWFWMD design rainfall depth is the 25 yr 24 hr storm event	P_{25vr}

$$P_{100yr} := 12in$$
$$P_{25yr} := 9in$$

 $V_{e25} = 4.69 \cdot acre \cdot ft$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

100 year 21 mour ramon voranne		
Runoff in Inches (100-Year, Qf)	$Q_{e100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_e\right)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 6.58 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{e25} := \frac{\left[P_{25yr} - (0.2 \cdot S_e)\right]^2}{P_{25yr} + (0.8 \cdot S_e)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage S _p :=	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 7.23 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 5.31 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$	$Att_{req100} = 0.65 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.62 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 0.64 \cdot acre \cdot ft$

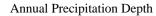
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 1.64 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 2.11 \cdot acre$

 $Pond_{area} = 2.11 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

Annual curve number $CA_e := 0.182 - \frac{(.182 - .266)}{(85 - 90)} \cdot (85 - CN_e) CA_e = 0.20$ Existing annual runoff $QA_e := CA_e \cdot AP \cdot Row_area$ $QA_e = 6.61 \text{ ft} \cdot \frac{acre}{yr}$ Existing annual loading

Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 13.38 \cdot \frac{B}{yr}$
Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 1.79 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roadway DCIA	= 100% CN _p = 94.10	
From Appendix C, FDEP	Stormwater Quality Handbook	
Annual curve number	CA _p := 0.823	
Existing annual runoff	$QA_p := CA_p \cdot AP \cdot Row_area$	$QA_p = 27.17 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annual loading		

Nitrogen loading $NA_p := TNhwy \cdot QA_p$ $NA_p = 54.96 \cdot \frac{kg}{yr}$ Phosphorus loading $PA_p := TPhwy \cdot QA_p$ $PA_p = 7.37 \cdot \frac{kg}{yr}$

....

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = $75.7 \cdot \%$
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}·65% + 2ft·35% Ave_depth = 3.30 ft Pool := Pond_{area}·Ave_depth Pool = 6.96·acre·ft

Proposed Residence Time

Annual input to pond Input := QA_p Input = 27.17 ft $\frac{\text{acre}}{\text{yr}}$ Rt := $\frac{\text{Pool}}{\text{Input}}$ Rt = 93.58 day

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

From FDEP Stormwater Quality handbood, appendix D

$$Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 0.52 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} :=
$$\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$$
 Area_{dry} = 0.65 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = 2.76 · acre

Project Basin 7

Begin Station	Sta1 := 34035ft	End Station
Length := Sta2 -	Sta1	Length $= 3500 \text{ft}$

 $Row_area := Length \cdot Row_width Row_area = 14.62 \cdot acre$

Land use break down

Increase impervious areas by percentage for intersections, etc.

Existing areas

Exist_imp := Length 56ft (1 + Exist_inc)	Exist_imp = 4.95 · acre
Exist_per := Row_area - Exist_imp	Exist_per = 9.67 · acre
Proposed areas	
Prop_imp := Length · 124ft · (1 + Prop_inc)	$Prop_imp = 11.46 \cdot acre$
Prop_per := Row_area - Prop_imp	$Prop_per = 3.17 \cdot acre$
Additional_imp := Prop_imp - Exist_imp	Additional_imp = $6.51 \cdot acre$

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} := 9 \cdot \text{ft}$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$Elev_{prv2} := 9 \cdot ft$
Water table data based on soil data and topographic information, approximate only		Depth := 1 ft
Wet Season Water Table	: SHW := Elev _{prv} – Depth	SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$ $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

Project: US 41 (SR 45) PD&E FPID No. 421140-8-22-01 Hillsborough County Project No.: 5079041

Exist inc := 10%

= 94.1

Sta2 := 37535ft

Row_width := 182ft

 $Prop_inc := 15\%$

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event SWFWMD design rainfall depth is the 25 yr 24 hr storm event

Existing runoff volume calculation

 $S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in$ $S_e = 1.62 \cdot in$ Soil Storage 100 year 24 hour runoff volume $Q_{e100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_e\right)}$ $Q_{e100} = 10.26 \cdot in$ Runoff in Inches (100-Year, Qf) $V_{e100} = 12.5 \cdot acre \cdot ft$ Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot Row_area$ 25 year 24 hour runoff volume $Q_{e25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_e\right)}$ $Q_{e25} = 7.32 \cdot in$ Runoff in Inches (25-Year, Qf) Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot Row_area$ $V_{e25} = 8.91 \cdot acre \cdot ft$

Proposed runoff volume calculation

Soil S _p := Storage	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 13.75 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 10.1 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 1.25 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 1.19 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 1.22 \cdot acre \cdot ft$

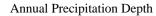
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 3.11 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 4.01 \cdot acre$

 $Pond_{area} = 4.01 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

Annual curve number	$CA_{e} \coloneqq 0.182 - \frac{(.182266)}{(85 - 90)} \cdot (85266) \cdot (8526$	$(CN_e) CA_e = 0.20$
Existing annual runoff	$QA_e := CA_e \cdot AP \cdot Row_area$	$QA_e = 12.57 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annual loading		
Nitrogen	$NA_e := TNhwy \cdot QA_e$	$NA_e = 25.44 \cdot \frac{kg}{k}$

loading	C ,		c	yr
Posphorus loading	$PA_e := TPhwy \cdot Q$	A _e	$PA_e = 3.41 \cdot \frac{k}{y}$	r /r

Proposed loading calculation

Proposed roadway DCIA =	100% $CN_p = 94.10$	
From Appendix C, FDEP Stormwater Quality Handbook		
Annual curve number	CA _p := 0.823	
Existing annual runoff	$QA_p := CA_p \cdot AP \cdot Row_area$	$QA_p = 51.65 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annual loading		2
Nitrogen loading	$NA_p := TNhwy \cdot QA_p$	$NA_p = 104.49 \cdot \frac{kg}{yr}$

loading	P P	P yr
Phosphorus loading	$PA_p := TPhwy \cdot QA_p$	$PA_p = 14.02 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe \coloneqq 1 - \frac{NA_e}{NA_p}$	NRe = 75.7·%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}·65% + 2ft·35% Ave_depth = 3.30 ft Pool := Pond_{area}·Ave_depth Pool = 13.23·acre·ft

Proposed Residence Time

Annual input to pond Input := QA_p Input = 51.65 ft $\frac{\text{acre}}{\text{yr}}$ Rt := $\frac{\text{Pool}}{\text{Input}}$ Rt = 93.58 day

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

From FDEP Stormwater Quality handbood, appendix D

$$Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.82 \cdot in$$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 1.00 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} :=
$$\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$$
 Area_{dry} = $1.25 \cdot \text{acre}$

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = 5.26 · acre

Project Basin 8

Begin Station	Sta1
Length := Sta2 -	Sta1

Sta1 := 37535ft End Station

Sta2 := 39152ft

Row_width := 182ft

Project: US 41 (SR 45) PD&E FPID No. 421140-8-22-01 Hillsborough County Project No.: 5079041

 $Prop_inc := 15\%$

Row_area := Length \cdot Row_width Row_area = 6.76 \cdot acre

Land use break down

Increase impervious areas by percentage for intersections, etc.

Existing areas

<pre>Exist_imp := Length·56ft·(1 + Exist_inc)</pre>	Exist_imp = 2.29 · acre
Exist_per := Row_area - Exist_imp	Exist_per = $4.47 \cdot acre$
Proposed areas	
Prop_imp := Length 124ft (1 + Prop_inc)	$Prop_imp = 5.29 \cdot acre$
Prop_per := Row_area - Prop_imp	$Prop_per = 1.46 \cdot acre$
Additional_imp := Prop_imp - Exist_imp	Additional_imp = 3.01 · acre

Length $= 1617 \, \text{ft}$

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} \coloneqq 9 \cdot \text{ft}$
Pervious Areas:	$\text{Elev}_{\text{prv}} := 5 \cdot \text{ft}$	$\text{Elev}_{\text{prv2}} := 9 \cdot \text{ft}$
Water table data based on soil data and topographic information, approximate only		Depth := 1 ft
Wet Season Water Table	$: SHW := Elev_{prv} - Depth$	SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

Project No.: 5079041

Exist_inc := 10%

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event SWFWMD design rainfall depth is the 25 yr 24 hr storm event

 $V_{e25} = 4.12 \cdot acre \cdot ft$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

	2	
Runoff in Inches (100-Year, Qf)	$\mathbf{Q}_{e100} \coloneqq \frac{\left[\mathbf{P}_{100yr} - \left(0.2 \cdot \mathbf{S}_{e}\right)\right]^{2}}{\mathbf{P}_{100yr} + \left(0.8 \cdot \mathbf{S}_{e}\right)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year,Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 5.78 \cdot acre \cdot ft$
25 year 24 hour runoff volume	2	
Runoff in Inches (25-Year, Qf)	$Q_{e25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_e\right)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage $S_p :=$	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume	_	
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 6.35 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 4.67 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 0.58 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.55 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 0.56 \cdot acre \cdot ft$

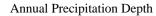
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 1.44 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 1.85 \cdot acre$

 $Pond_{area} = 1.85 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

Annual curve number	$CA_{e} := 0.182 - \frac{(.182266)}{(85 - 90)} \cdot (85 - 90)$	CN_e) $CA_e = 0.20$
Existing annual runoff	$QA_e := CA_e \cdot AP \cdot Row_area$	$QA_e = 5.81 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annual loading		
Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 11.75 \cdot \frac{kg}{yr}$

loading		y.
Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 1.58 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roadway DCIA =	100% $CN_p = 94.10$		
From Appendix C, FDEP Stormwater Quality Handbook			
Annual curve number	$CA_p \coloneqq 0.823$		
Existing annual runoff	$QA_p := CA_p \cdot AP \cdot Row_area$	$QA_p = 23.86 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$	
Existing annual loading		2	
Nitrogen loading	$NA_p := TNhwy \cdot QA_p$	$NA_p = 48.27 \cdot \frac{kg}{yr}$	

loading	inip. Ininiy Qip	yr
Phosphorus loading	$PA_p := TPhwy \cdot QA_p$	$PA_p = 6.48 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7·%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}.65% + 2ft.35% Ave_depth = 3.30 ft

 $Pool := Pond_{area} \cdot Ave_depth$ $Pool = 6.11 \cdot acre \cdot ft$

Annual input to pond Input := QA_p Input = 23.86 ft $\cdot \frac{\text{acre}}{\text{yr}}$ Rt := $\frac{\text{Pool}}{\text{Input}}$ Rt = 93.58 $\cdot \text{day}$

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

Eff1 := 58.2%	$Eff2_N := PRN$	$Eff2_P := PRP$	
	NRe = $75.66 \cdot \%$	$PRe = 75.66 \cdot \%$	
Treatment train	Train _N := Eff1 +	$(1 - Eff1)Eff2_N$	$\text{Train}_{N} = 75.67 \cdot \%$
efficiency	$Train_P := Eff1 +$	$(1 - Eff1)Eff2_P$	$\text{Train}_{P} = 88.90 \cdot \%$

From FDEP Stormwater Quality handbood, appendix D

 $Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Effl_{depth}$ $Dry_{vol} = 0.46 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} := $\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$ Area_{dry} = 0.57 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $2.42 \cdot acre$

Length := Sta2 – Sta1	Length = 1083ft		idth := 182ft	FPID I Hillsbo
Row_area := Length Row_widt	th Row_area = $4.52 \cdot \text{across}$	e		Project No.: 50
Land use break down				
Increase impervious areas by pe etc.	ercentage for intersectio	ns,	Exist_inc := 10%	Prop_inc :
Existing areas				
<pre>Exist_imp := Length·56ft·(1 +</pre>	Exist_inc)	Exist_	imp = 1.53 · acre	
Exist_per := Row_area - Exist_	_imp	Exist_	$per = 2.99 \cdot acre$	
Proposed areas				
Prop_imp := Length · 124ft · (1 +	Prop_inc)	Prop_i	$mp = 3.55 \cdot acre$	
Prop_per := Row_area - Prop_	imp	Prop_j	per = 0.98 · acre	
Additional_imp := Prop_imp –	Exist_imp	Additi	onal_imp = 2.01·ac	cre

Sta2 := 40235ft

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} := 9 \cdot \text{ft}$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$Elev_{prv2} := 9 \cdot ft$
Water table data based o topographic information,		Depth := 1 ft
Wet Season Water Table:	SHW := $Elev_{prv} - Depth$	SHW = 4.00 ft

SCS Curve Numbers:

Project Basin 9

Sta1 := 39152ft End Station

Begin Station

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

Project: US 41 (SR 45) PD&E No. 421140-8-22-01 oorough County 079041

:= 15%

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr	$P_{100yr} := 12in$
storm event SWFWMD design rainfall depth is the 25 yr 24 hr storm	$P_{25vr} := 9in$
event	23 91

Existing runoff volume calculation

 $S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in$ $S_e = 1.62 \cdot in$ Soil Storage 100 year 24 hour runoff volume $Q_{e100} := \frac{\left[P_{100yr} - (0.2 \cdot S_e)\right]^2}{P_{100yr} + (0.8 \cdot S_e)}$ $Q_{e100} = 10.26 \cdot in$ Runoff in Inches (100-Year, Qf) $V_{e100} = 3.87 \cdot acre \cdot ft$ Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot Row_area$ 25 year 24 hour runoff volume $Q_{e25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_e\right)}$ $Q_{e25} = 7.32 \cdot in$ Runoff in Inches (25-Year, Qf) $V_{e25} := Q_{e25} \cdot Row_area$ $V_{e25} = 2.76 \cdot acre \cdot ft$ Runoff Volume (25-Year, Vf)

Proposed runoff volume calculation

Soil S _p := Storage	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year,Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 4.25 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 3.13 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 0.39 \cdot acre \cdot ft$
$Att_{req25} := V_{p25} - V_{e25}$	$Att_{req25} = 0.37 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

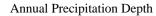
The maximum weir elevation is set at 2.5 ft below the minimum roadway elevation, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

 $Vwq = 0.38 \cdot acre \cdot ft$

 $Weir_{inv} := Elev_{pvmt} - 2.5ft$ $Weir_{inv} = 5.50 ft$

 $Depth_{available} := Weir_{inv} - SHW$ $Depth_{available} = 1.50 ft$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 0.96 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 1.24 \cdot acre$

 $Pond_{area} = 1.24 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = CN _e = 86.09 0% From Appendix C, FDEP Stormwater Quality Handbook					
Annual curvenumber	e	$CA_e := 0.182 - \frac{(.182266)}{(85 - 90)} \cdot (85 - CN_e)$	$CA_{e} = 0.20$		
Existing ann runoff Existing ann loading		$QA_e := CA_e \cdot AP \cdot Row_area$	$QA_e = 3.89 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$		
loading	Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 7.87 \cdot \frac{kg}{yr}$		
	Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 1.06 \cdot \frac{kg}{yr}$		

Proposed loading calculation

Proposed roa	dway DCIA	=	$CN_{p} = 94.10$	
100% From Append	dix C, FDEP	Storm	water Quality	
Handbook			2 .	
Annual curve number	9	CA _p :	= 0.823	
Existing ann runoff	ual	QA _p :	$= CA_{p} \cdot AP \cdot Row_area$	$QA_p = 15.98 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing ann	ual			
loading				ka
	Nitrogen loading		$NA_p := TNhwy \cdot QA_p$	$NA_p = 32.33 \cdot \frac{kg}{yr}$
	Phosphorus loading		$PA_p := TPhwy \cdot QA_p$	$PA_p = 4.34 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7.%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions)

Wet pond permanent pool **SWPWIND** requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}.65% + 2ft.35% Ave_depth = 3.30 ft

 $Pool := Pond_{area} \cdot Ave_depth$ $Pool = 4.09 \cdot acre \cdot ft$

Annual input to pond Input := QA_p Input = 15.98 ft $\cdot \frac{acre}{yr}$ Rt := $\frac{Pool}{Input}$ Rt = 93.58 · day

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

Eff1 := 58.2%	$Eff2_N := PRN$	$Eff2_P := PRP$	
	NRe = $75.66 \cdot \%$	$PRe = 75.66 \cdot \%$	
Treatment train	Train _N := Eff1 +	$(1 - Eff1)Eff2_N$	$\text{Train}_{N} = 75.67 \cdot \%$
efficiency	$Train_P := Eff1 +$	$(1 - Eff1)Eff2_P$	$\text{Train}_{P} = 88.90 \cdot \%$

From FDEP Stormwater Quality handbood, appendix D

 $Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 0.31 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} := $\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$ Area_{dry} = 0.38 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $1.62 \cdot acre$

Project Basin 10

Begin Station	Sta1 := 40235ft	End Station

Length := Sta2 – Sta1

Row_area := Length·Row_width Row_area = 4.10·acre

Land use break down

Increase impervious areas by percentage for intersections, etc.

Existing areas

<pre>Exist_imp := Length·56ft·(1 + Exist_inc)</pre>	Exist_imp = 1.39 ·acre			
Exist_per := Row_area - Exist_imp	Exist_per = $2.71 \cdot acre$			
Proposed areas				
<pre>Prop_imp := Length 124ft (1 + Prop_inc)</pre>	$Prop_imp = 3.21 \cdot acre$			
Prop_per := Row_area - Prop_imp	Prop_per = 0.89 · acre			
Additional_imp := Prop_imp - Exist_imp	Additional_imp = 1.83.acre			

Length $= 982 \, \text{ft}$

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} \coloneqq 9 \cdot \text{ft}$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$\text{Elev}_{\text{prv2}} := 9 \cdot \text{ft}$
Water table data based of topographic information		Depth := 1ft
Wet Season Water Table	:: SHW := Elev _{prv} – Depth	SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

Consulting Engineers of Florida, LLC Project: US 41 (SR 45) PD&E FPID No. 421140-8-22-01

Hillsborough County Project No.: 5079041

Prop_inc := 15%

Exist_inc := 10%

Sta2 := 41217ft

Row_width := 182ft

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm e $P_{100yr} := 12in$ SWFWMD design rainfall depth is the 25 yr 24 hr storm event $P_{25yr} := 9in$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

	2	
Runoff in Inches (100-Year, Qf)	$Q_{e100} := \frac{\left[P_{100yr} - (0.2 \cdot S_e)\right]^2}{P_{100yr} + (0.8 \cdot S_e)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 3.51 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{e25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_e\right)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

 $V_{e25} = 2.5 \cdot acre \cdot ft$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage S _p :=	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 3.86 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 2.83 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 0.35 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.33 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 0.34 \cdot acre \cdot ft$

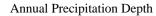
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 0.87 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 1.13 \cdot acre$

 $Pond_{area} = 1.13 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

Annual curve number $CA_e := 0.182 - \frac{(.182 - .266)}{(85 - 90)} \cdot (85 - CN_e) CA_e = 0.20$ Existing annual runoff $QA_e := CA_e \cdot AP \cdot Row_area$ $QA_e = 3.53 \text{ ft} \cdot \frac{acre}{yr}$ Existing annual loading $QA_e := CA_e \cdot AP \cdot Row_area$ $QA_e = 3.53 \text{ ft} \cdot \frac{acre}{yr}$

Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 7.14 \cdot \frac{kg}{yr}$
Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 0.96 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roadway DCIA	$= 100\%$ $CN_p = 94.10$	
From Appendix C, FDEP	Stormwater Quality Handbook	
Annual curve number	CA _p := 0.823	
Existing annual runoff	$QA_p := CA_p \cdot AP \cdot Row_area$	$QA_p = 14.49 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annual loading		

Nitrogen loading	$NA_p := TNhwy \cdot QA_p$	$NA_p = 29.32 \cdot \frac{kg}{yr}$
Phosphorus loading	$PA_p := TPhwy \cdot QA_p$	$PA_p = 3.93 \cdot \frac{kg}{yr}$

....

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7·%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}·65% + 2ft·35% Ave_depth = 3.30 ft Pool := Pond_{area}·Ave_depth Pool = 3.71·acre·ft

Annual input to pond Input := QA_p Input = 14.49 ft $\frac{\text{acre}}{\text{yr}}$ Rt := $\frac{\text{Pool}}{\text{Input}}$ Rt = 93.58 day

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

Eff1 := 58.2%	$Eff2_N := PRN$	$Eff2_P := PRP$	
	NRe = $75.66 \cdot \%$	$PRe = 75.66 \cdot \%$	
Treatment train	Train _N := Eff1 +	$(1 - Eff1)Eff2_N$	$\text{Train}_{N} = 75.67 \cdot \%$
efficiency	$Train_P := Eff1 +$	$(1 - Eff1)Eff2_P$	$\text{Train}_{P} = 88.90 \cdot \%$

From FDEP Stormwater Quality handbood, appendix D

 $Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Effl_{depth}$ $Dry_{vol} = 0.28 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} := $\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$ Area_{dry} = 0.35 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $1.47 \cdot acre$

	Project Basin 11					America Consulting Engine of Florida, LLC
	Begin Station	Sta1 := 41217ft	End Station	Sta2 :=	43995ft	Project: US 41 (SR 45) H
	Length := Sta2	– Sta1	Length = 2778ft	Row_w	vidth := 182ft	FPID No. 42114
	Row_area := Lo	ength·Row_width	Row_area = $11.61 \cdot ac$	cre		Hillsborough C Project No.: 5079041
	Land use br Increase imperv etc.		centage for intersectio	ns,	Exist_inc := 10%	Prop_inc := 15%
	Existing are	as				
	Exist_imp := L	$ength \cdot 56ft \cdot (1 + E)$	<mark>xist_inc)</mark>	Exist_	_imp = 3.93 · acre	
Exist_per := Row_area - Exist_imp		Exist_	_per = 7.68·acre			
	Proposed ar	eas				
	Prop_imp := Le	$ength \cdot 124 ft \cdot (1 + F)$	Prop_inc)	Prop_	imp = 9.09·acre	
	Prop_per := Ro	w_area – Prop_in	np	Prop_	per = $2.51 \cdot acre$	
	Additional_imp	o := Prop_imp – E	xist_imp	Addit	ional_imp = 5.17∙ac	re

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} := 9 \cdot \text{ft}$
Pervious Areas:	$\text{Elev}_{\text{prv}} := 5 \cdot \text{ft}$	$\text{Elev}_{\text{prv2}} := 9 \cdot \text{ft}$
Water table data based o topographic information,		Depth := 1ft
Wet Season Water Table	SHW := $Elev_{prv} - Depth$	SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_{e} := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_{e} = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

PD&E 40-8-22-01 County

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm e $P_{100yr} := 12in$ SWFWMD design rainfall depth is the 25 yr 24 hr storm event $P_{25yr} := 9in$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

Runoff in Inches (100-Year, Qf)	$Q_{e100} := \frac{\left[P_{100yr} - (0.2 \cdot S_e)\right]^2}{P_{100yr} + (0.8 \cdot S_e)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 9.92 \cdot acre \cdot ft$
25 year 24 hour runoff volume	2	
Runoff in Inches (25-Year, Qf)	$Q_{e25} := \frac{\left[P_{25yr} - (0.2 \cdot S_e)\right]^2}{P_{25yr} + (0.8 \cdot S_e)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

 $V_{e25} = 7.08 \cdot acre \cdot ft$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage S _p :=	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 10.91 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 8.02 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 0.99 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.94 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 0.97 {\cdot} acre {\cdot} ft$

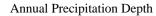
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 2.47 \cdot acre$

Pond surface area for 25 year required attenuation

Pond_{area25} := $\frac{\text{Att}_{\text{req25}} + \text{Vwq}}{(\text{Depth}_{\text{available}} - \text{P}_{25\text{yr}})} \cdot 1.25$ Pond_{area25} = 3.18 · acre

 $Pond_{area} = 3.18 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

Annual curve number $CA_e := 0.182 - \frac{(.182 - .266)}{(85 - 90)} \cdot (85 - CN_e) CA_e = 0.20$ Existing annual runoff $QA_e := CA_e \cdot AP \cdot Row_area$ $QA_e = 9.98 \text{ ft} \cdot \frac{acre}{yr}$ Existing annual loading

Nitrogen loading	$NA_e := TNIWy \cdot QA_e$	$NA_e = 20.19 \cdot \frac{1}{yr}$
Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 2.71 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roa	dway DCIA	=	$CN_{p} = 94.10$	
100% From Append	dix C, FDEP	Storm	vater Quality	
Handbook				
Annual curve number	9	CA _p :=	= 0.823	
Existing ann runoff	ual	QA _p :=	= CA _p ·AP·Row_area	$QA_p = 41.00 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing ann	ual			
loading				ka
	Nitrogen loading		$NA_p := TNhwy \cdot QA_p$	$NA_p = 82.93 \cdot \frac{kg}{yr}$
	Phosphorus loading		$PA_p := TPhwy \cdot QA_p$	$PA_p = 11.12 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7.%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

....

Esimated wet pond properties (based on previous sizing calcualtions)

Wet pond permanent pool **SWPEWIND** requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}.65% + 2ft.35% Ave_depth = 3.30 ft

 $Pool := Pond_{area} \cdot Ave_depth$ $Pool = 10.50 \cdot acre \cdot ft$

Annual input to pond Input := QA_p Input = 41.00 ft $\cdot \frac{acre}{yr}$ Rt := $\frac{Pool}{Input}$ Rt = 93.58 \cdot day

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

Eff1 := 58.2%	$Eff2_N := PRN$	$Eff2_P := PRP$	
	$NRe = 75.66 \cdot \%$	$PRe = 75.66 \cdot \%$	
Treatment train	Train _N := Eff1 +	$(1 - Eff1)Eff2_N$	$\text{Train}_{N} = 75.67.\%$
efficiency	$Train_P := Eff1 +$	$(1 - Eff1)Eff2_P$	$\text{Train}_{P} = 88.90 \cdot \%$

From FDEP Stormwater Quality handbood, appendix D

 $Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 0.79 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} := $\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$ Area_{dry} = 0.98 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{dry}$ SWMF = 4.17·acre

Perviou	s Areas:	$\text{Elev}_{\text{prv}} := 5 \cdot \text{ft}$	$\text{Elev}_{\text{prv2}} := 9 \cdot \text{ft}$
ii difei ii	able data based on phic information, a		Depth := 1ft
Wet Sea	ason Water Table:	$SHW := Elev_{prv} - Depth$	SHW = 4.00 ft
SCS Curve	Numbers:		
Soil	types within basin	imits:	
CN _H	$_{BD} := 80$		

Roads $Elev_{pvmt} := 8 \cdot ft$

only **Minimum Elevations: Maximum Elevations:**

<pre>Prop_imp := Length 124ft (1 + Prop_inc)</pre>	
Prop_per := Row_area - Prop_imp	

Additional_imp := Prop_imp - Exist_imp

a from SWFWMD topographic information (adjusted to NAVD 88), approximate

Exist_imp := Length 56ft (1 + Exist_inc)

Exist_per := Row_area - Exist_imp

Land use break down Increase impervious areas by percentage for intersections,

Row_area := Length Row_width Row_area = 1.88 acre

Exist inc := 10%

Exist imp = $0.64 \cdot acre$

Exist_per = $1.25 \cdot acre$

Prop_imp = $1.48 \cdot acre$

Prop per = $0.41 \cdot acre$

Additional_imp = 0.84·acre

 $CN_{e} = 86.1$

 $CN_{p} = 94.1$

 $Elev_{pvmt2} := 9 \cdot ft$

Project: US 41 (SR 45) PD&E FPID No. 421140-8-22-01 Hillsborough County

Project No.: 5079041

Prop inc := 15%

F:\PROJECT\5079041\FileCabinet\C. Design

 $CN_{pavt} := 98$

Existing curve number calculation

Proposed curve number calculation

 $Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}$

Row area

 $\frac{\text{Prop_imp} \cdot \text{CN}_{\text{pavt}} + \text{Prop_per} \cdot \text{CN}_{\text{BD}}}{\text{Row_area}}$

Project Basin 12

Begin Station

Existing areas

Proposed areas

etc.

Sta1 := 43995ft End Station

Length := Sta2 - Sta1

Length $= 451 \, \text{ft}$

Row width := 182ft

Sta2 := 44446ft

Elevation data

 $CN_e := -$

 $CN_p := -$

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm event	P _{100y1}
SWFWMD design rainfall depth is the 25 yr 24 hr storm event	P _{25vr}

$$P_{100yr} := 12in$$

 $P_{25yr} := 9in$

 $V_{e25} = 1.15 \cdot acre \cdot ft$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

	_	
Runoff in Inches (100-Year, Qf)	$Q_{e100} := \frac{\left[P_{100yr} - (0.2 \cdot S_e)\right]^2}{P_{100yr} + (0.8 \cdot S_e)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 1.61 \cdot acre \cdot ft$
25 year 24 hour runoff volume	2	
Runoff in Inches (25-Year, Qf)	$Q_{e25} := \frac{\left[P_{25yr} - (0.2 \cdot S_e)\right]^2}{P_{25yr} + (0.8 \cdot S_e)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Sp := Storage	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$\boldsymbol{Q}_{p100} \coloneqq \frac{\left[\boldsymbol{P}_{100yr} - \left(\boldsymbol{0.2} \cdot \boldsymbol{S}_p\right)\right]^2}{\boldsymbol{P}_{100yr} + \left(\boldsymbol{0.8} \cdot \boldsymbol{S}_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 1.77 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 1.3 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$	$Att_{req100} = 0.16 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.15 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$

 $Vwq = 0.16 \cdot acre \cdot ft$

Preliminary Pond Sizing

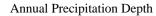
Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevation, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

 $Weir_{inv} := Elev_{pvmt} - 2.5ft$ $Weir_{inv} = 5.50 ft$

 $Depth_{available} := Weir_{inv} - SHW$ $Depth_{available} = 1.50 ft$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 0.40 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} := \frac{Att_{req25} + Vwq}{\left(Depth_{available} - P_{25yr}\right)} \cdot 1.25 \qquad Pond_{area25} = 0.52 \cdot acre$

 $Pond_{area} = 0.52 \cdot acre$

Nutrient loading analysis

AP :=
$$51.50 \frac{11}{2}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing road 0% From Appen Handbook	5	E CN _e = 86.09 P Stormwater Quality	
Annual curve	e	$CA_{e} := 0.182 - \frac{(.182266)}{(85 - 90)} \cdot (85 - CN_{e})$	$CA_{e} = 0.20$
Existing ann runoff Existing ann loading		$QA_e := CA_e \cdot AP \cdot Row_area$	$QA_e = 1.62 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
loading	Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 3.28 \cdot \frac{kg}{yr}$
	Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 0.44 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roa	dway DCIA	=	$CN_{p} = 94.10$	
<mark>100%</mark> From Appen	dix C, FDEP	Stormv	vater Quality	
Handbook				
Annual curve	e	CA _p :=	= 0.823	
Existing ann runoff	ual	QA _p :=	= CA _p ·AP·Row_area	$QA_p = 6.66 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing ann	ual			
loading				ka
	Nitrogen loading		$NA_p := TNhwy \cdot QA_p$	$NA_p = 13.46 \cdot \frac{kg}{yr}$
	Phosphorus loading		$PA_p := TPhwy \cdot QA_p$	$PA_p = 1.81 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7.%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	PRe = 75.7.%

Esimated wet pond properties (based on previous sizing calcualtions)

Wet pond permanent pool **SWPWIND** requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth} ·65% + 2ft ·35% Ave_depth = 3.30 ft

 $Pool := Pond_{area} \cdot Ave_depth$ $Pool = 1.71 \cdot acre \cdot ft$

Annual input to pondInput := QA_p Input = $6.66 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$ $Rt := \frac{Pool}{Input}$ $Rt = 93.58 \cdot \text{day}$

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

Eff1 := 58.2%	$Eff2_N := PRN$	$Eff2_P := PRP$	
	NRe = $75.66 \cdot \%$	$PRe = 75.66 \cdot \%$	
Treatment train	$Train_N := Eff1 + ($	$(1 - Eff1)Eff2_N$	$\text{Train}_{N} = 75.67.\%$
efficiency	$Train_P := Eff1 + ($	$(1 - Eff1)Eff2_P$	$Train_P = 88.90.\%$

From FDEP Stormwater Quality handbood, appendix D

 $Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 0.13 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} := $\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$ Area_{dry} = 0.16 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $0.68 \cdot acre$

Project Basin 13

Begin Station	Sta1 := 44446ft	End Station	Sta2 := 45835ft
Length := Sta2	– Sta1	Length $= 1389 \text{ft}$	Row_width := 91ft

Row_area := Length·Row_width Row_area = 2.90·acre

Land use break down

Increase impervious areas by percentage for intersections, etc.

Existing areas

<pre>Exist_imp := Length·28ft·(1 + Exist_inc)</pre>	Exist_imp = $0.98 \cdot acre$
Exist_per := Row_area - Exist_imp	Exist_per = 1.92 · acre
Proposed areas	
<pre>Prop_imp := Length·62ft·(1 + Prop_inc)</pre>	$Prop_imp = 2.27 \cdot acre$
Prop_per := Row_area - Prop_imp	Prop_per = 0.63·acre
Additional_imp := Prop_imp - Exist_imp	Additional_imp = 1.29.acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} \coloneqq 9 \cdot \text{ft}$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$\text{Elev}_{\text{prv2}} := 9 \cdot \text{ft}$
Water table data based of topographic information	Depth := 1ft	
Wet Season Water Table	:: SHW := Elev _{prv} – Depth	SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

Project: US 41 (SR 45) PD&E FPID No. 421140-8-22-01 Hillsborough County Project No.: 5079041

Prop_inc := 15%

Exist inc := 10%

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr	$P_{100yr} := 12in$
storm event SWFWMD design rainfall depth is the 25 yr 24 hr storm	$P_{25vr} := 9in$
event	23 91

Existing runoff volume calculation

 $S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in$ $S_e = 1.62 \cdot in$ Soil Storage 100 year 24 hour runoff volume $Q_{e100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_e\right)}$ $Q_{e100} = 10.26 \cdot in$ Runoff in Inches (100-Year, Qf) $V_{e100} = 2.48 \cdot acre \cdot ft$ Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot Row_area$ 25 year 24 hour runoff volume $Q_{e25} := \frac{\left[P_{25yr} - (0.2 \cdot S_e)\right]^2}{P_{25yr} + (0.8 \cdot S_e)} \qquad \qquad Q_{e25} = 7.32 \cdot in$ Runoff in Inches (25-Year, Qf) $V_{e25} := Q_{e25} \cdot Row_area$ $V_{e25} = 1.77 \cdot acre \cdot ft$ Runoff Volume (25-Year, Vf)

Proposed runoff volume calculation

Soil Spin Spin Spin Spin Spin Spin Storage	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 2.73 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 2 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$	$Att_{req100} = 0.25 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.24 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$

1

 $Vwq = 0.24 \cdot acre \cdot ft$

Preliminary Pond Sizing

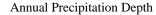
Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevation, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

 $Weir_{inv} := Elev_{pvmt} - 2.5ft$ $Weir_{inv} = 5.50 ft$

 $Depth_{available} := Weir_{inv} - SHW$ $Depth_{available} = 1.50 ft$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 0.62 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} := \frac{Att_{req25} + Vwq}{\left(Depth_{available} - P_{25yr}\right)} \cdot 1.25 \qquad Pond_{area25} = 0.80 \cdot acre$

 $Pond_{area} = 0.80 \cdot acre$

Nutrient loading analysis

AP :=
$$51.50 \frac{11}{x}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing road 0% From Appen Handbook	5	CN _e = 86.09 Stormwater Quality	
Annual curve number	e	$CA_e := 0.182 - \frac{(.182266)}{(85 - 90)} \cdot (85 - CN_e)$	$CA_{e} = 0.20$
Existing ann runoff Existing ann loading		$QA_e := CA_e \cdot AP \cdot Row_area$	$QA_e = 2.50 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
loading	Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 5.05 \cdot \frac{kg}{yr}$
	Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 0.68 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roa	adway DCIA	=	$CN_{p} = 94.10$	
100% From Appen	dix C, FDEP	Storm	water Quality	
Handbook				
Annual curve	e	CA _p :	= 0.823	
Existing ann runoff	ual	QA _p :	= CA _p ·AP·Row_area	$QA_p = 10.25 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing ann	ual			
loading				kσ
	Nitrogen loading		$NA_p := TNhwy \cdot QA_p$	$NA_p = 20.73 \cdot \frac{kg}{yr}$
	Phosphorus loading		$PA_p := TPhwy \cdot QA_p$	$PA_p = 2.78 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7.%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions)

Wet pond permanent pool **SWPWIND** requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth} ·65% + 2ft ·35% Ave_depth = 3.30 ft

 $Pool := Pond_{area} \cdot Ave_depth$ $Pool = 2.63 \cdot acre \cdot ft$

Annual input to pond Input := QA_p Input = 10.25 ft $\cdot \frac{acre}{yr}$ Rt := $\frac{Pool}{Input}$ Rt = 93.58 \cdot day

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

Eff1 := 58.2%	$Eff2_N := PRN$	$Eff2_P := PRP$	
	NRe = $75.66 \cdot \%$	$PRe = 75.66 \cdot \%$	
Treatment train	Train _N := Eff1 +	$(1 - Eff1)Eff2_N$	$\text{Train}_{N} = 75.67 \cdot \%$
efficiency	$Train_P := Eff1 +$	$(1 - Eff1)Eff2_P$	$\text{Train}_{P} = 88.90 \cdot \%$

From FDEP Stormwater Quality handbood, appendix D

 $Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Effl_{depth}$ $Dry_{vol} = 0.20 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} := $\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$ Area_{dry} = 0.25 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $1.04 \cdot acre$

Project Basin 14

Begin Station	Sta1 := 44446ft	End Station	Sta2 := 47144ft
Length := Sta2	– Sta1	Length $= 2698 \text{ft}$	Row_width := 91ft

Row_area := Length \cdot Row_width Row_area = 5.64 \cdot acre

Land use break down

Increase impervious areas by percentage for intersections, etc.

Existing areas

<pre>Exist_imp := Length·28ft·(1 + Exist_inc)</pre>	$Exist_imp = 1.91 \cdot acre$
Exist_per := Row_area - Exist_imp	$Exist_per = 3.73 \cdot acre$
Proposed areas	
Prop_imp := Length 62ft (1 + Prop_inc)	$Prop_imp = 4.42 \cdot acre$
Prop_per := Row_area - Prop_imp	Prop_per = 1.22·acre
Additional_imp := Prop_imp - Exist_imp	Additional_imp = $2.51 \cdot acre$

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} \coloneqq 9 \cdot \text{ft}$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$\text{Elev}_{\text{prv2}} := 9 \cdot \text{ft}$
Water table data based on soil data and topographic information, approximate only		Depth := 1ft
Wet Season Water Table	:: SHW := Elev _{prv} – Depth	SHW = 4.00 ft

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

Consulting Engineers of Florida, LLC Project: US 41 (SR 45) PD&E

FPID No. 421140-8-22-01 Hillsborough County Project No.: 5079041

 $Prop_inc := 15\%$

Exist inc := 10%

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm e $P_{100yr} \coloneqq 12in$ SWFWMD design rainfall depth is the 25 yr 24 hr storm event $P_{25yr} \coloneqq 9in$

Existing runoff volume calculation

 $S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in$ $S_e = 1.62 \cdot in$ Soil Storage 100 year 24 hour runoff volume $Q_{e100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_e\right)}$ $Q_{e100} = 10.26 \cdot in$ Runoff in Inches (100-Year, Qf) $V_{e100} = 4.82 \cdot acre \cdot ft$ Runoff Volume (100-Year, Vf) $V_{e100} := Q_{e100} \cdot Row_area$ 25 year 24 hour runoff volume $Q_{e25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_e\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_e\right)}$ $Q_{e25} = 7.32 \cdot in$ Runoff in Inches (25-Year, Qf) Runoff Volume (25-Year, Vf) $V_{e25} := Q_{e25} \cdot Row_area$ $V_{e25} = 3.44 \cdot acre \cdot ft$

Proposed runoff volume calculation

Soil Spin Spin Spin Spin Spin Spin Spin Spin	$\left(\frac{1000}{\mathrm{CN}_{\mathrm{p}}} - 10\right)$ ·in $S_{\mathrm{p}} = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 5.3 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 3.89 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} := V_{p100} - V_{e100}$	$Att_{req100} = 0.48 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.46 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$

Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

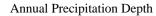
The maximum weir elevation is set at 2.5 ft below the minimum roadway elevation, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

 $Vwq = 0.47 \cdot acre \cdot ft$

 $Weir_{inv} := Elev_{pvmt} - 2.5ft$ $Weir_{inv} = 5.50 ft$

 $Depth_{available} := Weir_{inv} - SHW$ $Depth_{available} = 1.50 ft$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 1.20 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{\left(Depth_{available} - P_{25yr}\right)} \cdot 1.25 \qquad Pond_{area25} = 1.55 \cdot acre$

 $Pond_{area} = 1.55 \cdot acre$

Nutrient loading analysis

AP :=
$$51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing road 0% From Appen Handbook	•	= CN _e = 86.09 P Stormwater Quality	
Annual curv number	e	$CA_e := 0.182 - \frac{(.182266)}{(85 - 90)} \cdot (85 - CN_e)$	$CA_{e} = 0.20$
Existing ann runoff Existing ann loading		$QA_e := CA_e \cdot AP \cdot Row_area$	$QA_e = 4.85 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
louunig	Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 9.80 \cdot \frac{kg}{yr}$
	Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 1.32 \cdot \frac{kg}{yr}$

Proposed loading calculation

Proposed roa	dway DCIA	=	$CN_{p} = 94.10$	
<mark>100%</mark> From Appen	dix C, FDEP	Storm	water Quality	
Handbook				
Annual curve	e	CA _p :=	= 0.823	
Existing ann runoff	ual	QA _p :	$= CA_{p} \cdot AP \cdot Row_area$	$QA_p = 19.91 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing ann	ual			
loading				ka
	Nitrogen loading		$NA_p := TNhwy \cdot QA_p$	$NA_p = 40.27 \cdot \frac{kg}{yr}$
	Phosphorus loading		$PA_p := TPhwy \cdot QA_p$	$PA_p = 5.40 \cdot \frac{kg}{yr}$

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7.%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	PRe = 75.7.%

Esimated wet pond properties (based on previous sizing calcualtions)

Wet pond permanent pool **SWPEWIED** requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area Pool_{depth} := 4ft Ave_depth := Pool_{depth}.65% + 2ft.35% Ave_depth = 3.30 ft

 $Pool := Pond_{area} \cdot Ave_depth \qquad Pool = 5.10 \cdot acre \cdot ft$

Annual input to pond Input := QA_p Input = 19.91 ft $\cdot \frac{\text{acre}}{\text{yr}}$ Rt := $\frac{\text{Pool}}{\text{Input}}$ Rt = 93.58 $\cdot \text{day}$

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

Eff1 := 58.2%	$Eff2_N := PRN$	$Eff2_P := PRP$	
	NRe = $75.66 \cdot \%$	$PRe = 75.66 \cdot \%$	
Treatment train	Train _N := Eff1 +	$(1 - Eff1)Eff2_N$	$\text{Train}_{N} = 75.67 \cdot \%$
efficiency	$Train_P := Eff1 +$	$(1 - Eff1)Eff2_P$	$\text{Train}_{P} = 88.90 \cdot \%$

From FDEP Stormwater Quality handbood, appendix D

 $Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Effl_{depth}$ $Dry_{vol} = 0.38 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} := $\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$ Area_{dry} = 0.48 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $2.02 \cdot acre$

Project Basin 15

Begin Station	Sta1 := 45835ft	End Station
Length := Sta2	– Sta1	Length $= 1309 \text{ft}$

Row_area := Length Row_width Row_area = 2.73 · acre

Land use break down

Increase impervious areas by percentage for intersections, etc.

Existing areas

<pre>Exist_imp := Length·28ft·(1 + Exist_inc)</pre>	Exist_imp = 0.93 · acre
Exist_per := Row_area - Exist_imp	Exist_per = 1.81 ·acre
Proposed areas	
<pre>Prop_imp := Length·62ft·(1 + Prop_inc)</pre>	$Prop_imp = 2.14 \cdot acre$
Prop_per := Row_area - Prop_imp	$Prop_per = 0.59 \cdot acre$
Additional_imp := Prop_imp - Exist_imp	Additional_imp = 1.22.acre

Elevation data from SWFWMD topographic information (adjusted to NAVD 88), approximate only

	Minimum Elevations:	Maximum Elevations:
Roads	$Elev_{pvmt} := 8 \cdot ft$	$\text{Elev}_{\text{pvmt2}} := 9 \cdot \text{ft}$
Pervious Areas:	$Elev_{prv} := 5 \cdot ft$	$\text{Elev}_{\text{prv2}} := 9 \cdot \text{ft}$
Water table data based on soil data and topographic information, approximate only		Depth := 1 ft
Wet Season Water Table	: SHW := $Elev_{prv} - Depth$	SHW = 4.00 ft

Sta2 := 47144ft

Row_width := 91ft

Exist inc := 10%

SCS Curve Numbers:

Soil types within basin limits:

 $CN_{BD} := 80$

 $CN_{pavt} := 98$

Existing curve number calculation

$$CN_e := \frac{Exist_imp \cdot CN_{pavt} + Exist_per \cdot CN_{BD}}{Row_area}$$

$$CN_e = 86.1$$

Proposed curve number calculation

$$CN_{p} := \frac{Prop_imp \cdot CN_{pavt} + Prop_per \cdot CN_{BD}}{Row_area}$$

$$CN_{p} = 94.1$$

American

Project No.: 5079041

 $Prop_inc := 15\%$

14-86 Design rainfall depth (non-routing method) is the 100 yr 24 hr storm e $P_{100yr} := 12in$ SWFWMD design rainfall depth is the 25 yr 24 hr storm event $P_{25yr} := 9in$

Existing runoff volume calculation

Soil Storage
$$S_e := \left(\frac{1000}{CN_e} - 10\right) \cdot in \qquad S_e = 1.62 \cdot in$$

100 year 24 hour runoff volume

	2	
Runoff in Inches (100-Year, Qf)	$Q_{e100} := \frac{\left[P_{100yr} - (0.2 \cdot S_e)\right]^2}{P_{100yr} + (0.8 \cdot S_e)}$	$Q_{e100} = 10.26 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{e100} := Q_{e100} \cdot Row_area$	$V_{e100} = 2.34 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{e25} := \frac{\left[P_{25yr} - (0.2 \cdot S_e)\right]^2}{P_{25yr} + (0.8 \cdot S_e)}$	$Q_{e25} = 7.32 \cdot in$

 $V_{e25} := Q_{e25} \cdot Row_area$

 $V_{e25} = 1.67 \cdot acre \cdot ft$

Proposed runoff volume calculation

Runoff Volume (25-Year, Vf)

Soil Storage S _p :=	$\left(\frac{1000}{CN_p} - 10\right)$ ·in $S_p = 0.63$ ·in	
100 year 24 hour runoff volume		
Runoff in Inches (100-Year, Qf)	$Q_{p100} \coloneqq \frac{\left[P_{100yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{100yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p100} = 11.28 \cdot in$
Runoff Volume (100-Year, Vf)	$V_{p100} := Q_{p100} \cdot Row_area$	$V_{p100} = 2.57 \cdot acre \cdot ft$
25 year 24 hour runoff volume		
Runoff in Inches (25-Year, Qf)	$Q_{p25} \coloneqq \frac{\left[P_{25yr} - \left(0.2 \cdot S_p\right)\right]^2}{P_{25yr} + \left(0.8 \cdot S_p\right)}$	$Q_{p25} = 8.29 \cdot in$
Runoff Volume (25-Year, Vf)	$V_{p25} := Q_{p25} \cdot Row_area$	$V_{p25} = 1.89 \cdot acre \cdot ft$

Required attentuation storage volume calculation

$Att_{req100} \coloneqq V_{p100} - V_{e100}$	$Att_{req100} = 0.23 \cdot acre \cdot ft$
$Att_{req25} \coloneqq V_{p25} - V_{e25}$	$Att_{req25} = 0.22 \cdot acre \cdot ft$

Water Quality Volume Calculations

Required Treatment Volume depth	TV _{depth} := 1in	
Required Treatment Volume for system, (Vwq)	$Vwq := TV_{depth} \cdot Row_area$	$Vwq = 0.23 \cdot acre \cdot ft$

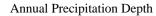
Preliminary Pond Sizing

Preliminary pond size is based on greater of difference in 100yr 24 hr runoff volume and stacked water quality volume and 25 year runoff difference

The maximum weir elevation is set at 2.5 ft below the minimum roadway elevaiton, the area of the required pond is based on the volume available between the SHW and the weir invert after the depth of rainfall on the pond

$$\begin{split} \text{Weir}_{\text{inv}} &\coloneqq \text{Elev}_{\text{pvmt}} - 2.5\text{ft} & \text{Weir}_{\text{inv}} = 5.50 \text{ ft} \\ \text{Depth}_{\text{available}} &\coloneqq \text{Weir}_{\text{inv}} - \text{SHW} & \text{Depth}_{\text{available}} = 1.50 \text{ ft} \end{split}$$

Pond surface area for 100 year required attenuation


 $Pond_{area100} := \frac{Att_{req100}}{Depth_{available} - P_{100yr}} \cdot 1.25 \qquad Pond_{area100} = 0.58 \cdot acre$

Pond surface area for 25 year required attenuation

 $Pond_{area25} \coloneqq \frac{Att_{req25} + Vwq}{(Depth_{available} - P_{25yr})} \cdot 1.25 \qquad Pond_{area25} = 0.75 \cdot acre$

 $Pond_{area} = 0.75 \cdot acre$

Nutrient loading analysis

$$AP := 51.50 \frac{11}{v}$$

Annual Mass Loading for Highway Areas

TNhwy :=
$$1.64 \cdot \frac{\text{mg}}{1}$$

TPhwy := $0.220 \cdot \frac{\text{mg}}{1}$

Annual C values

Meteorological Zone 4

curve number calculations, calculates a curve number for a general non-DCIA land use for determination of an annual runoff coefficient from DEP table in stormwater quality applicant's handbook, appendix C zone 4, will differ from CN used in ICPR routing

Existing loading calculation

Existing roadway DCIA = 0% CN_e = 86.09

From Appendix C, FDEP Stormwater Quality Handbook

Annual curve number $CA_e := 0.182 - \frac{(.182 - .266)}{(.85 - .90)} \cdot (.85 - .200) CA_e = 0.20$ $QA_e = 2.35 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$ Existing annual runoff $QA_e := CA_e \cdot AP \cdot Row_area$ Existing annual loading

Nitrogen loading	$NA_e := TNhwy \cdot QA_e$	$NA_e = 4.76 \cdot \frac{kg}{yr}$
Posphorus loading	$PA_e := TPhwy \cdot QA_e$	$PA_e = 0.64 \cdot \frac{kg}{vr}$

Proposed loading calculation

Proposed roadway DCIA	$= 100\%$ $CN_p = 94.10$	
From Appendix C, FDEP	Stormwater Quality Handbook	
Annual curve number	CA _p := 0.823	
Existing annual runoff	$QA_p := CA_p \cdot AP \cdot Row_area$	$QA_p = 9.66 \text{ ft} \cdot \frac{\text{acre}}{\text{yr}}$
Existing annual loading		,
		kg

Nitrogen loading	$NA_p := TNhwy \cdot QA_p$	$NA_p = 19.54 \cdot \frac{RS}{yr}$
Phosphorus loading	$PA_p := TPhwy \cdot QA_p$	$PA_p = 2.62 \cdot \frac{kg}{vr}$

....

Required removal efficiency calculations

Required N removal efficiency	$NRe := 1 - \frac{NA_e}{NA_p}$	NRe = 75.7·%
Required P removal efficiency	$PRe := 1 - \frac{PA_e}{PA_p}$	$PRe = 75.7 \cdot \%$

Esimated wet pond properties (based on previous sizing calcualtions) Wet pond permanent pool properties SWFWMD requirement is 35% littoral zone at 2 ft depth Permanent pool depth is 65% of pond area $Pool_{depth} := 4ft$ Ave_depth := $Pool_{depth} \cdot 65\% + 2ft \cdot 35\%$ Ave_depth = 3.30 ft $Pool := Pond_{area} \cdot Ave_depth$ $Pool = 2.47 \cdot acre \cdot ft$

Annual input to pondInput := QA_p Input = 9.66 ft $\cdot \frac{acre}{yr}$ $Rt := \frac{Pool}{Input}$ $Rt = 93.58 \cdot day$

Proposed Removal Efficiency

$$PRN := \frac{43.75 \cdot \frac{Rt}{day}}{\left(4.38 + \frac{Rt}{day}\right)} \cdot \frac{1}{100}$$

$$PRN = 41.8 \cdot \% \text{ NG}$$

$$PRP := \frac{1}{100} \cdot \left[40.13 + 6.372 \cdot \ln\left(\frac{Rt}{day}\right) + 0.213 \cdot \left(\ln\left(\frac{Rt}{day}\right)\right)^2\right]$$

$$PRP = 73.4 \cdot \% \text{ NG}$$

Required additional TMDL treatment

Eff1 := 58.2%	$Eff2_N := PRN$	$Eff2_P := PRP$	
	NRe = $75.66 \cdot \%$	$PRe = 75.66 \cdot \%$	
Treatment train efficiency	$Train_N := Eff1 + ($	$(1 - Eff1)Eff2_N$	$\text{Train}_{N} = 75.67.\%$
	$Train_P := Eff1 + ($	$(1 - Eff1)Eff2_P$	$Train_P = 88.90.\%$

From FDEP Stormwater Quality handbood, appendix D

 $Eff1_{depth} := 0.75in - (55.7\% - Eff1) \cdot \frac{(0.75in - 1.0in)}{(55.7\% - 65.6\%)} Eff1_{depth} = 0.81 \cdot in$

Required dry retention volume

 $Dry_{vol} := Row_area \cdot Eff1_{depth}$ $Dry_{vol} = 0.19 \cdot acre \cdot ft$

Required dry retention pond area

$$Bottom_{dry} := SHW + 1 ft$$
 $Weir_{dry} := Elev_{pvmt} - 2 ft$

Area_{dry} := $\frac{\text{Dry}_{\text{vol}}}{\text{Weir}_{\text{dry}} - \text{Bottom}_{\text{dry}}} \cdot 1.25$ Area_{dry} = 0.23 · acre

Total estimated stormwater management facility area requirements

SWMF := $Pond_{area} + Area_{drv}$ SWMF = $0.98 \cdot acre$